Impact of Interleukin-17 Receptor A Gene Variants on Asthma Susceptibility and Clinical Manifestations in Children and Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population Characteristics
2.2. Pulmonary Function and Methacholine Challenge Tests
2.3. Laboratory Investigations
2.4. Genomic DNA Extraction and IL17RA Variants Allelic Discrimination Analysis
2.5. Statistical Analysis
2.6. In Silico Analysis
3. Results
3.1. Participants Characteristics
3.2. Association of IL17RA Polymorphisms with Disease Risk
3.3. Haplotype Analysis and Disease Risk
3.4. Association of Gene Variants with Disease Severity
3.5. Association of Gene Variants with Therapeutic Response
3.6. Association of IL17RA Haplotypes with Asthma Severity and Therapeutic Response
3.7. Molecular Features of IL17RA and In Silico Analysis of the Impact of the Studied IL17RA Variants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patel, S.J.; Teach, S.J. Asthma. Pediatr. Rev. 2019, 40, 549–567. [Google Scholar] [CrossRef]
- Mortimer, K.; Lesosky, M.; Garcia-Marcos, L.; Asher, M.I.; Pearce, N.; Ellwood, E.; Bissell, K.; El Sony, A.; Ellwood, P.; Marks, G.B.; et al. The burden of asthma, hay fever and eczema in adults in 17 countries: GAN Phase I study. Eur. Respir. J. 2022, 60, 2102865. [Google Scholar] [CrossRef] [PubMed]
- Siroux, V.; Bouzigon, E. Asthma heterogeneity: The increasing genetic evidence. Lancet Respir. Med. 2019, 7, 469–471. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, R.K.; Al Heialy, S.; Hamid, Q. Role of IL-17 in asthma pathogenesis and its implications for the clinic. Expert Rev. Respir. Med. 2019, 13, 1057–1068. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Wu, L.; Li, X. IL-17 family: Cytokines, receptors and signaling. Cytokine 2013, 64, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Mills, K.H.G. IL-17 and IL-17-producing cells in protection versus pathology. Nat. Rev. Immunol. 2023, 23, 38–54. [Google Scholar] [CrossRef] [PubMed]
- Moseley, T.A.; Haudenschild, D.R.; Rose, L.; Reddi, A.H. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev. 2003, 14, 155–174. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Bechara, R.; Zhao, J.; McGeachy, M.J.; Gaffen, S.L. IL-17 receptor-based signaling and implications for disease. Nat. Immunol. 2019, 20, 1594–1602. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016, 44, D457–D462. [Google Scholar] [CrossRef]
- Chen, K.; Kolls, J.K. Interluekin-17A (IL17A). Gene 2017, 614, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, D.; Wang, L.; Wang, S.; Roden, A.C.; Zhao, H.; Li, X.; Prakash, Y.S.; Matteson, E.L.; Tschumperlin, D.J.; et al. Profibrotic effect of IL-17A and elevated IL-17RA in idiopathic pulmonary fibrosis and rheumatoid arthritis-associated lung disease support a direct role for IL-17A/IL-17RA in human fibrotic interstitial lung disease. Am. J. Physiol. Lung Cell. Mol. Physiol. 2019, 316, L487–L497. [Google Scholar] [CrossRef] [PubMed]
- Amatya, N.; Garg, A.V.; Gaffen, S.L. IL-17 Signaling: The Yin and the Yang. Trends Immunol. 2017, 38, 310–322. [Google Scholar] [CrossRef] [PubMed]
- Confalonieri, M.; Salton, F.; Fabiano, F. Acute respiratory distress syndrome. Eur. Respir. Rev. Off. J. Eur. Respir. Soc. 2017, 26, 160116. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M.; Melton, A.C.; Chen, C.; Engler, M.B.; Huang, K.E.; Ren, X.; Wang, Y.; Bernstein, X.; Li, J.T.; Atabai, K.; et al. IL-17A produced by αβ T cells drives airway hyper-responsiveness in mice and enhances mouse and human airway smooth muscle contraction. Nat. Med. 2012, 18, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Manni, M.L.; Robinson, K.M.; Alcorn, J.F. A tale of two cytokines: IL-17 and IL-22 in asthma and infection. Expert Rev. Respir. Med. 2014, 8, 25–42. [Google Scholar] [CrossRef]
- Roos, A.B.; Sethi, S.; Nikota, J.; Wrona, C.T.; Dorrington, M.G.; Sanden, C.; Bauer, C.M.; Shen, P.; Bowdish, D.; Stevenson, C.S.; et al. IL-17A and the Promotion of Neutrophilia in Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2015, 192, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Tiringer, K.; Treis, A.; Fucik, P.; Gona, M.; Gruber, S.; Renner, S.; Dehlink, E.; Nachbaur, E.; Horak, F.; Jaksch, P.; et al. A Th17- and Th2-skewed cytokine profile in cystic fibrosis lungs represents a potential risk factor for Pseudomonas aeruginosa infection. Am. J. Respir. Crit. Care Med. 2013, 187, 621–629. [Google Scholar] [CrossRef]
- Tsai, H.C.; Velichko, S.; Hung, L.Y.; Wu, R. IL-17A and Th17 cells in lung inflammation: An update on the role of Th17 cell differentiation and IL-17R signaling in host defense against infection. Clin. Dev. Immunol. 2013, 2013, 267971. [Google Scholar] [CrossRef]
- Gurczynski, S.J.; Moore, B.B. IL-17 in the lung: The good, the bad, and the ugly. Am. J. Physiol. Lung Cell. Mol. Physiol. 2018, 314, L6–L16. [Google Scholar] [CrossRef]
- Chang, Y.; Al-Alwan, L.; Risse, P.A.; Halayko, A.J.; Martin, J.G.; Baglole, C.J.; Eidelman, D.H.; Hamid, Q. Th17-associated cytokines promote human airway smooth muscle cell proliferation. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2012, 26, 5152–5160. [Google Scholar] [CrossRef] [PubMed]
- Hynes, G.M.; Hinks, T.S.C. The role of interleukin-17 in asthma: A protective response? ERJ Open Res. 2020, 6, 00364–02019. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Niu, C.; Ying, L.; Zhang, Q.; Long, M.; Fu, Z. Exploration of the Serum Interleukin-17 and Interleukin-27 Expression Levels in Children with Bronchial Asthma and Their Correlation with Indicators of Lung Function. Genet. Test. Mol. Biomark. 2020, 24, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Tan, Y.; Bajinka, O.; Wang, L.; Tang, Z. Th17/IL-17 Axis Regulated by Airway Microbes Get Involved in the Development of Asthma. Curr. Allergy Asthma Rep. 2020, 20, 11. [Google Scholar] [CrossRef] [PubMed]
- Kousha, A.; Mahdavi Gorabi, A.; Forouzesh, M.; Hosseini, M.; Alexander, M.; Imani, D.; Razi, B.; Mousavi, M.J.; Aslani, S.; Mikaeili, H. Interleukin 4 gene polymorphism (−589C/T) and the risk of asthma: A meta-analysis and met-regression based on 55 studies. BMC Immunol. 2020, 21, 55. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Liu, T.; Wang, L.; Li, Q.; Wu, Y.; Liu, B. Polymorphisms in the interleukin 4 promoter −589C/T gene and the risk of asthma: A systematic review and meta-analysis. Transl. Pediatr. 2021, 10, 2355–2365. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Yin, W.; Luo, L.; Wu, Y.; Qin, S.; Qin, X. Association between Interleukin-4-590C>T Polymorphism and the Susceptibility to Asthma: A Meta-Analysis of Case-Control Study. J. Healthc. Eng. 2022, 2022, 1712715. [Google Scholar] [CrossRef] [PubMed]
- Qurashi, T.A.; Bhat, G.A.; Khan, M.S.; Rasool, R.; Sameen, F.; Hassan, I.; Mudassar, S. Interleukin 4 and Interleukin 4 receptor alpha gene variants and risk of atopy—A case control study based assessment. Clin. Immunol. 2021, 229, 108783. [Google Scholar] [CrossRef]
- Mahdaviani, S.A.; Eskian, M.; Khorasanizadeh, M.; Bashardoost, B.; Tashayoie Nejad, S.; Jamaati, H.R.; Rezaei, A.; Sadr, M.; Aryan, Z.; Rezaei, N. Interleukin 9 serum level and single nucleotide polymorphism in patients with asthma. Acta Bio-Medica Atenei Parm. 2021, 92, e2021206. [Google Scholar] [CrossRef]
- Mocellin, M.; de Azeredo Leitao, L.A.; de Araujo, P.D.; Jones, M.H.; Stein, R.T.; Pitrez, P.M.; de Souza, A.P.D.; Pinto, L.A. Association between interleukin-10 polymorphisms and CD4(+)CD25(+)FOXP3(+) T cells in asthmatic children. J. Pediatr. 2021, 97, 546–551. [Google Scholar] [CrossRef]
- Raghdah Maytham, H.; Haidar Abdul Amir Najim, A.; Mohanad Mohsin, A. Interleukin-5 and Interleukin-5 Receptor Polymorphism in Asthma. In Chemokines Updates; Murat, Ş., Ed.; IntechOpen: Rijeka, Croatia, 2022; p. Ch. 7. [Google Scholar]
- Hafez, R.A.; Hassan, M.E.; Haggag, M.G.; Atef, N.; Abdallah, A.L.; Gerges, M.A. Association of Interleukin 13 rs20541 Gene Polymorphism and Serum Periostin with Asthma and Allergic Conjunctivitis Among Egyptian Patients. J. Asthma Allergy 2022, 15, 971–982. [Google Scholar] [CrossRef] [PubMed]
- Riikonen, R.; Terasjarvi, J.; Lauhkonen, E.; Nuolivirta, K.; He, Q.; Korppi, M. Interleukin 1 receptor-like 1 rs13408661/13431828 polymorphism is associated with persistent post-bronchiolitis asthma at school age. Acta Paediatr. 2022, 111, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Zheng, X.; Huang, J.; Hu, X. Association of IL33, IL1RL1, IL1RAP Polymorphisms and Asthma in Chinese Han Children. Front. Cell Dev. Biol. 2021, 9, 759542. [Google Scholar] [CrossRef]
- Ezzat, D.A.; Morgan, D.S.; Mohamed, R.A.; Mohamed, A.F. Genetic association of interleukin 18 (−607C/A, rs1946518) single nucleotide polymorphism with asthmatic children, disease severity and total IgE serum level. Cent.-Eur. J. Immunol. 2019, 44, 285–291. [Google Scholar] [CrossRef]
- Konstantinidis, A.K.; Barton, S.J.; Sayers, I.; Yang, I.A.; Lordan, J.L.; Rorke, S.; Clough, J.B.; Holgate, S.T.; Holloway, J.W. Genetic association studies of interleukin-13 receptor α1 subunit gene polymorphisms in asthma and atopy. Eur. Respir. J. 2007, 30, 40–47. [Google Scholar] [CrossRef]
- Mosayebian, A.; Ganjalikhani Hakemi, M.; Meshkat, R.; Ghasemi, R.; Khan Ahmad, H.; Samadi, M. Association between Interleukin-23 Receptor R381Q Gene. Iran. J. Allergy Asthma Immunol. 2015, 14, 386–391. [Google Scholar] [PubMed]
- Arikan, S.; Ozturk, O.; Duygulu, S.; Atalay, E.O.; Atalay, A. Associations of IL-17 and IL-17 receptor polymorphisms with Behcet’s disease in Denizli Province of Turkey. Immunol. Res. 2023, 71, 600–608. [Google Scholar] [CrossRef]
- Cakmak Genc, G.; Karakas Celik, S.; Yilmaz, B.; Piskin, N.; Altinsoy, B.; Dursun, A. Investigation of the relationship between IL17A, IL17F and ILR1N polymorphisms and COVID-19 severity: The predictive role of IL17A rs2275913 polymorphism in the clinical course of COVID-19. Int. J. Immunogenet. 2023, 50, 117–126. [Google Scholar] [CrossRef]
- Liberalesso, V.Y.S.W.; Azevedo, M.L.V.; Malaquias, M.A.S.; de Paula, C.B.V.; Nagashima, S.; de Souza, D.G.; Neto, P.C.; Gouveia, K.O.; Biscaro, L.C.; Giamberardino, A.L.G.; et al. The role of IL17 and IL17RA polymorphisms in lethal pandemic acute viral pneumonia (Influenza A virus H1N1 subtype). Surg. Exp. Pathol. 2023, 6, 1. [Google Scholar] [CrossRef]
- Ruiz de Morales, J.M.G.; Puig, L.; Dauden, E.; Canete, J.D.; Pablos, J.L.; Martin, A.O.; Juanatey, C.G.; Adan, A.; Montalban, X.; Borruel, N.; et al. Critical role of interleukin (IL)-17 in inflammatory and immune disorders: An updated review of the evidence focusing in controversies. Autoimmun. Rev. 2020, 19, 102429. [Google Scholar] [CrossRef]
- Shao, M.; Xu, S.; Yang, H.; Xu, W.; Deng, J.; Chen, Y.; Gao, X.; Guan, S.; Xu, S.; Shuai, Z.; et al. Association between IL-17A and IL-17F gene polymorphism and susceptibility in inflammatory arthritis: A meta-analysis. Clin. Immunol. 2020, 213, 108374. [Google Scholar] [CrossRef]
- Jiang, L.; Zhou, X.; Xiong, Y.; Bao, J.; Xu, K.; Wu, L. Association between interleukin-17A/F single nucleotide polymorphisms and susceptibility to osteoarthritis in a Chinese population. Medicine 2019, 98, e14944. [Google Scholar] [CrossRef]
- Pasha, H.F.; Tantawy, E.A.; Youssef, M.A. Osteopontin and interleukin-17A genes polymorphisms in Egyptian systemic lupus erythematosus patients: A relation to disease activity and severity. Gene 2019, 702, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Song, G.G. Associations between interleukin 17A and 17F polymorphisms and asthma susceptibility: A meta-analysis. Int. J. Immunogenet. 2023, 50, 53–62. [Google Scholar] [CrossRef]
- Zhai, C.; Li, S.; Feng, W.; Shi, W.; Wang, J.; Wang, Q.; Chai, L.; Zhang, Q.; Yan, X.; Li, M. Association of interleukin-17a rs2275913 gene polymorphism and asthma risk: A meta-analysis. Arch. Med. Sci. AMS 2018, 14, 1204–1211. [Google Scholar] [CrossRef] [PubMed]
- Ganta, S.; Komaravalli, P.L.; Ahmad, S.; Gaddam, S.L. Influence of genetic variants and mRNA expression of interleukin IL17A gene in asthma susceptibility. Gene 2023, 854, 147119. [Google Scholar] [CrossRef]
- Du, J.W.; Xu, Z.L.; Xu, Q.X. Interaction of Interleukin 7 Receptor (IL7R) and IL6 Gene Polymorphisms with Smoking Associated with Susceptibility to Asthma in Chinese Han Adults. Immunol. Investig. 2022, 51, 1364–1371. [Google Scholar] [CrossRef] [PubMed]
- Yuce, G.D.; Erdogan, T.; Bozkurt, B.; Toprak, U.; Ceylan, G.G. Relationship between asthma and IL-17 gene polymorphism in a Turkish population. Ir. J. Med. Sci. 2023, 192, 269–275. [Google Scholar] [CrossRef]
- Huang, H.T.; Lu, Y.L.; Wang, R.; Qin, H.M.; Wang, C.F.; Wang, J.L.; Xiang, Y.; Guo, J.; Lan, Y.; Wei, Y.S. The association of IL-17A polymorphisms with IL-17A serum levels and risk of ischemic stroke. Oncotarget 2017, 8, 103499–103508. [Google Scholar] [CrossRef]
- El-Qutob, D.; Maillo, M. New GINA Guidelines: Controversy Still Exists. Clin. Pulm. Med. 2020, 27, 61–63. [Google Scholar] [CrossRef]
- Cole, T.J.; Bellizzi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a standard definition for child overweight and obesity worldwide: International survey. Bmj 2000, 320, 1240–1243. [Google Scholar] [CrossRef]
- Marshall, W.A.; Tanner, J.M. Variations in pattern of pubertal changes in girls. Arch. Dis. Child. 1969, 44, 291–303. [Google Scholar] [CrossRef] [PubMed]
- Graham, B.L.; Steenbruggen, I.; Miller, M.R.; Barjaktarevic, I.Z.; Cooper, B.G.; Hall, G.L.; Hallstrand, T.S.; Kaminsky, D.A.; McCarthy, K.; McCormack, M.C.; et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am. J. Respir. Crit. Care Med. 2019, 200, e70–e88. [Google Scholar] [CrossRef] [PubMed]
- Hussein, M.H.; Sobhy, K.E.; Sabry, I.M.; El Serafi, A.T.; Toraih, E.A. Beta2-adrenergic receptor gene haplotypes and bronchodilator response in Egyptian patients with chronic obstructive pulmonary disease. Adv. Med. Sci. 2017, 62, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Coates, A.L.; Wanger, J.; Cockcroft, D.W.; Culver, B.H.; Bronchoprovocation Testing Task Force: Kai-Hakon, C.; Diamant, Z.; Gauvreau, G.; Hall, G.L.; Hallstrand, T.S.; Horvath, I.; et al. ERS technical standard on bronchial challenge testing: General considerations and performance of methacholine challenge tests. Eur. Respir. J. 2017, 49, 1601526. [Google Scholar] [CrossRef] [PubMed]
- Crapo, R.O.; Casaburi, R.; Coates, A.L.; Enright, P.L.; Hankinson, J.L.; Irvin, C.G.; MacIntyre, N.R.; McKay, R.T.; Wanger, J.S.; Anderson, S.D.; et al. Guidelines for methacholine and exercise challenge testing-1999. This official statement of the American Thoracic Society was adopted by the ATS Board of Directors, July 1999. Am. J. Respir. Crit. Care Med. 2000, 161, 309–329. [Google Scholar] [CrossRef]
- Price, D.B.; Rigazio, A.; Campbell, J.D.; Bleecker, E.R.; Corrigan, C.J.; Thomas, M.; Wenzel, S.E.; Wilson, A.M.; Small, M.B.; Gopalan, G.; et al. Blood eosinophil count and prospective annual asthma disease burden: A UK cohort study. Lancet Respir. Med. 2015, 3, 849–858. [Google Scholar] [CrossRef]
- Toraih, E.A.; Hussein, M.H.; Al Ageeli, E.; Riad, E.; AbdAllah, N.B.; Helal, G.M.; Fawzy, M.S. Structure and functional impact of seed region variant in MIR-499 gene family in bronchial asthma. Respir. Res. 2017, 18, 169. [Google Scholar] [CrossRef] [PubMed]
- Toraih, E.A.; Hussein, M.H.; Ibrahim, A.; AbdAllah, N.B.; Mohammad, E.; Kishk, A.M.; Fawzy, M.S. Beta2-adrenergic receptor variants in children and adolescents with bronchial asthma. Front. Biosci. 2019, 11, 61–78. [Google Scholar] [CrossRef]
- Omasits, U.; Ahrens, C.H.; Muller, S.; Wollscheid, B. Protter: Interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics 2014, 30, 884–886. [Google Scholar] [CrossRef]
- Steinhaus, R.; Proft, S.; Schuelke, M.; Cooper, D.N.; Schwarz, J.M.; Seelow, D. MutationTaster2021. Nucleic Acids Res. 2021, 49, W446–W451. [Google Scholar] [CrossRef] [PubMed]
- Sim, N.L.; Kumar, P.; Hu, J.; Henikoff, S.; Schneider, G.; Ng, P.C. SIFT web server: Predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012, 40, W452–W457. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P.D.; Ebert, D.; Muruganujan, A.; Mushayahama, T.; Albou, L.P.; Mi, H. PANTHER: Making genome-scale phylogenetics accessible to all. Protein Sci. A Publ. Protein Soc. 2022, 31, 8–22. [Google Scholar] [CrossRef] [PubMed]
- Kopanos, C.; Tsiolkas, V.; Kouris, A.; Chapple, C.E.; Albarca Aguilera, M.; Meyer, R.; Massouras, A. VarSome: The human genomic variant search engine. Bioinformatics 2019, 35, 1978–1980. [Google Scholar] [CrossRef] [PubMed]
- Capriotti, E.; Fariselli, P.; Casadio, R. I-Mutant2.0: Predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res. 2005, 33, W306–W310. [Google Scholar] [CrossRef] [PubMed]
- Ward, L.D.; Kellis, M. HaploReg: A resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012, 40, D930–D934. [Google Scholar] [CrossRef] [PubMed]
- Gaffen, S.L. Structure and signalling in the IL-17 receptor family. Nat. Rev. Immunol. 2009, 9, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Lee, S.Y.; Park, M.J.; Hong, S.J. TNF-α (rs1800629) polymorphism modifies the effect of sensitization to house dust mite on asthma and bronchial hyperresponsiveness in children. Exp. Mol. Pathol. 2020, 115, 104467. [Google Scholar] [CrossRef]
- El-Shal, A.S.; Shalaby, S.M.; Abdel-Nour, H.M.; Sarhan, W.M.; Hamed Gehad, M.; Mohamed Yousif, Y. Impact of cytokines genes polymorphisms and their serum levels on childhood asthma in Egyptian population. Cytokine 2022, 157, 155933. [Google Scholar] [CrossRef]
- Jin, X.; Zheng, J. IL-4-C-590T locus polymorphism and susceptibility to asthma in children: A meta-analysis. J. Pediatr. 2021, 97, 264–272. [Google Scholar] [CrossRef]
- Elsaid, A.; Shoaib, R.M.S.; Badr, S.S.; Wahba, Y.; Ayyad, S.N. Polymorphisms of interleukin 4 and interleukin 4 receptor genes and bronchial asthma risk among Egyptian children. Clin. Biochem. 2021, 93, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Demenais, F.; Margaritte-Jeannin, P.; Barnes, K.C.; Cookson, W.O.C.; Altmuller, J.; Ang, W.; Barr, R.G.; Beaty, T.H.; Becker, A.B.; Beilby, J.; et al. Multiancestry association study identifies new asthma risk loci that colocalize with immune-cell enhancer marks. Nat. Genet. 2018, 50, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Schoettler, N.; Strek, M.E. Recent Advances in Severe Asthma: From Phenotypes to Personalized Medicine. Chest 2020, 157, 516–528. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Lee, P.H.; Chaffin, M.D.; Chung, W.; Loh, P.R.; Lu, Q.; Christiani, D.C.; Liang, L. A genome-wide cross-trait analysis from UK Biobank highlights the shared genetic architecture of asthma and allergic diseases. Nat. Genet. 2018, 50, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Laulajainen-Hongisto, A.; Lyly, A.; Hanif, T.; Dhaygude, K.; Kankainen, M.; Renkonen, R.; Donner, K.; Mattila, P.; Jartti, T.; Bousquet, J.; et al. Genomics of asthma, allergy and chronic rhinosinusitis: Novel concepts and relevance in airway mucosa. Clin. Transl. Allergy 2020, 10, 45. [Google Scholar] [CrossRef] [PubMed]
- Thompson, E.E.; Dang, Q.; Mitchell-Handley, B.; Rajendran, K.; Ram-Mohan, S.; Solway, J.; Ober, C.; Krishnan, R. Cytokine-induced molecular responses in airway smooth muscle cells inform genome-wide association studies of asthma. Genome Med. 2020, 12, 64. [Google Scholar] [CrossRef]
- Li, J.; Xu, L.; Zhao, W.; Pan, J.; Lu, J.; Lu, H.; Yan, J.; Weng, J.; Liu, F. Serum IL-17A concentration and a IL17RA single nucleotide polymorphism contribute to the risk of autoimmune type 1 diabetes. Diabetes/Metab. Res. Rev. 2022, 38, e3547. [Google Scholar] [CrossRef]
- Sabry, D.; Aboraia, N.; Samir, M. A potential association between psoriasin to rs4819554 of IL-17RA gene polymorphism in psoriasis Egyptian patients. Arch. Dermatol. Res. 2020, 312, 273–281. [Google Scholar] [CrossRef]
- Batalla, A.; Coto, E.; Gonzalez-Lara, L.; Gonzalez-Fernandez, D.; Gomez, J.; Aranguren, T.F.; Queiro, R.; Santos-Juanes, J.; Lopez-Larrea, C.; Coto-Segura, P. Association between single nucleotide polymorphisms IL17RA rs4819554 and IL17E rs79877597 and Psoriasis in a Spanish cohort. J. Dermatol. Sci. 2015, 80, 111–115. [Google Scholar] [CrossRef]
- Batalla, A.; Coto, E.; Gomez, J.; Eiris, N.; Gonzalez-Fernandez, D.; Gomez-De Castro, C.; Dauden, E.; Llamas-Velasco, M.; Prieto-Perez, R.; Abad-Santos, F.; et al. IL17RA gene variants and anti-TNF response among psoriasis patients. Pharmacogenomics J. 2018, 18, 76–80. [Google Scholar] [CrossRef]
- Nada, H.; Hassan, R.; Ibrahim, R.A.E.; Abdelsalam, O.E.; Fathy, A.; Toraih, E.A.; Atwa, M.A. Interleukin 17 receptor A haplotype analysis in chronic spontaneous urticaria: A preliminary study. J. Cosmet. Dermatol. 2021, 20, 1331–1342. [Google Scholar] [CrossRef] [PubMed]
- Sanad, E.M.; Salem, R.M.; Ali, H.M.; Elshafee, S.N. IL17RA Gene polymorphism in Alopecia Areata in an Egyption sample. Benha J. Appl. Sci. 2020, 5, 281–284. [Google Scholar] [CrossRef]
- Vidal-Castineira, J.R.; Lopez-Vazquez, A.; Diaz-Pena, R.; Diaz-Bulnes, P.; Martinez-Camblor, P.; Coto, E.; Coto-Segura, P.; Bruges-Armas, J.; Pinto, J.A.; Blanco, F.J.; et al. A Single Nucleotide Polymorphism in the Il17ra Promoter Is Associated with Functional Severity of Ankylosing Spondylitis. PLoS ONE 2016, 11, e0158905. [Google Scholar] [CrossRef] [PubMed]
- Lappalainen, T.; MacArthur, D.G. From variant to function in human disease genetics. Science 2021, 373, 1464–1468. [Google Scholar] [CrossRef] [PubMed]
- Somers, J.; Ruttens, D.; Verleden, S.E.; Vandermeulen, E.; Piloni, D.; Wauters, E.; Lambrechts, D.; Vos, R.; Verleden, G.M.; Vanaudenaerde, B.; et al. Interleukin-17 receptor polymorphism predisposes to primary graft dysfunction after lung transplantation. J. Heart Lung Transplant. Off. Publ. Int. Soc. Heart Transplant. 2015, 34, 941–949. [Google Scholar] [CrossRef] [PubMed]
- Fathollahpour, A.; Abyaneh, F.A.; Darabi, B.; Ebrahimi, M.; Kooti, W.; Kalmarzi, R.N. Aspirin-Exacerbated Respiratory Disease Polymorphisms; a review study. Gene 2023, 870, 147326. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Park, B.L.; Kim, M.O.; Heo, J.S.; Jung, J.S.; Bae, D.J.; Uh, S.T.; Kim, M.K.; Choi, I.S.; Cho, S.H.; et al. Association of single nucleotide polymorphisms on Interleukin 17 receptor A (IL17RA) gene with aspirin hypersensitivity in asthmatics. Hum. Immunol. 2013, 74, 598–606. [Google Scholar] [CrossRef] [PubMed]
- Johnston, A.; Guzman, A.M.; Swindell, W.R.; Wang, F.; Kang, S.; Gudjonsson, J.E. Early tissue responses in psoriasis to the antitumour necrosis factor-α biologic etanercept suggest reduced interleukin-17 receptor expression and signalling. Br. J. Dermatol. 2014, 171, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Wong, L.Y.; Hatfield, J.K.; Brown, M.A. Ikaros sets the potential for Th17 lineage gene expression through effects on chromatin state in early T cell development. J. Biol. Chem. 2013, 288, 35170–35179. [Google Scholar] [CrossRef]
- Lauhkonen, E.; Holster, A.; Terasjarvi, J.; Nuolivirta, K.; He, Q.; Korppi, M. IL17RA variations showed no associations with post-bronchiolitis asthma or lung function. Pediatr. Int. Off. J. Jpn. Pediatr. Soc. 2021, 63, 196–201. [Google Scholar] [CrossRef]
- Murdaca, G.; Negrini, S.; Magnani, O.; Penza, E.; Pellecchio, M.; Puppo, F. Impact of pharmacogenomics upon the therapeutic response to etanercept in psoriasis and psoriatic arthritis. Expert Opin. Drug Saf. 2017, 16, 1173–1179. [Google Scholar] [CrossRef] [PubMed]
- Sandip, C.; Tan, L.; Huang, J.; Li, Q.; Ni, L.; Cianflone, K.; Wang, D.W. Common variants in IL-17A/IL-17RA axis contribute to predisposition to and progression of congestive heart failure. Medicine 2016, 95, e4105. [Google Scholar] [CrossRef] [PubMed]
- Coto, E.; Pascual, I.; Avanzas, P.; Cuesta-Lavona, E.; Lorca, R.; Martin, M.; Vazquez-Coto, D.; Diaz-Corte, C.; Moris, C.; Rodriguez-Reguero, J.; et al. IL17RA in early-onset coronary artery disease: Total leukocyte transcript analysis and promoter polymorphism (rs4819554) association. Cytokine 2020, 136, 155285. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Zhao, H.; Wang, J.; Zhang, R.; Liu, J.; Zhao, X.; Li, C.; Jia, X.; Li, X.; Lin, Y.; et al. Haplotype Analysis of Candidate Genes Involved in Inflammation and Oxidative Stress and the Susceptibility to Preeclampsia. J. Immunol. Res. 2020, 2020, 4683798. [Google Scholar] [CrossRef] [PubMed]
- Cai, T.; Wang, G.; Yang, Y.; Mu, K.; Zhang, J.; Jiang, Y.; Zhang, J.A. Association Between Polymorphisms of IL-23/IL-17 Pathway and Clinical Phenotypes of Autoimmune Thyroid Diseases. Iran. J. Immunol. IJI 2022, 19, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Wielinska, J.; Swierkot, J.; Kolossa, K.; Bugaj, B.; Chaszczewska-Markowska, M.; Jeka, S.; Bogunia-Kubik, K. Polymorphisms within Genes Coding for IL-17A and F and Their Receptor as Clinical Hallmarks in Ankylosing Spondylitis. Mediat. Inflamm. 2021, 2021, 3125922. [Google Scholar] [CrossRef] [PubMed]
- Coto, E.; Gomez, J.; Suarez, B.; Tranche, S.; Diaz-Corte, C.; Ortiz, A.; Ruiz-Ortega, M.; Coto-Segura, P.; Batalla, A.; Lopez-Larrea, C. Association between the IL17RA rs4819554 polymorphism and reduced renal filtration rate in the Spanish RENASTUR cohort. Hum. Immunol. 2015, 76, 75–78. [Google Scholar] [CrossRef]
- Zhang, X.; Ye, T.; Li, M.; Yan, H.; Lin, H.; Lu, H.; Qi, Z.; Sheng, H.; He, C. Association of Polymorphisms in Inflammation Genes with the Prognosis of Advanced Non-Small Cell Lung Cancer Patients Receiving Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors. Front. Oncol. 2022, 12, 836117. [Google Scholar] [CrossRef] [PubMed]
- Bertol, B.C.; Goes de Araujo, J.N.; de Carvalho, K.T.C.; Gonzaga Dos Santos, M.; Martelli-Palomino, G.; de Figueiredo Feitosa, N.L.; Maciel, L.M.Z.; Silbiger, V.N.; Lucena-Silva, N.; Freitas, J.; et al. Polymorphisms at the IL17A and IL17RA Genes are Associated with Prognosis of Papillary Thyroid Carcinoma. Arch. Med. Res. 2022, 53, 163–169. [Google Scholar] [CrossRef]
- Huang, Y.; Zhou, F.; Shen, C.; Wang, H.; Xiao, Y. LBP reduces theinflammatory injuryof kidney in septic rat and regulates the Keap1-Nrf2/ARE signaling pathway1. Acta Cir. Bras. 2019, 34, e20190010000003. [Google Scholar] [CrossRef]
- Kavanagh, K.; Hsu, F.C.; Davis, A.T.; Kritchevsky, S.B.; Rejeski, W.J.; Kim, S. Biomarkers of leaky gut are related to inflammation and reduced physical function in older adults with cardiometabolic disease and mobility limitations. GeroScience 2019, 41, 923–933. [Google Scholar] [CrossRef]
- Barshad, G.; Webb, L.M.; Ting, H.A.; Oyesola, O.O.; Onyekwere, O.G.; Lewis, J.J.; Rice, E.J.; Matheson, M.K.; Sun, X.H.; von Moltke, J.; et al. E-Protein Inhibition in ILC2 Development Shapes the Function of Mature ILC2s during Allergic Airway Inflammation. J. Immunol. 2022, 208, 1007–1020. [Google Scholar] [CrossRef]
- Huo, R.; Tian, X.; Chang, Q.; Liu, D.; Wang, C.; Bai, J.; Wang, R.; Zheng, G.; Tian, X. Targeted inhibition of β-catenin alleviates airway inflammation and remodeling in asthma via modulating the profibrotic and anti-inflammatory actions of transforming growth factor-β1. Ther. Adv. Respir. Dis. 2021, 15, 1753466620981858. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Dong, T.; Wang, S.; Jing, H.; Chen, J. Vitamin D(3)-vitamin D receptor axis suppresses pulmonary emphysema by maintaining alveolar macrophage homeostasis and function. EBioMedicine 2019, 45, 563–577. [Google Scholar] [CrossRef] [PubMed]
- Aggeletopoulou, I.; Thomopoulos, K.; Mouzaki, A.; Triantos, C. Vitamin D-VDR Novel Anti-Inflammatory Molecules-New Insights into Their Effects on Liver Diseases. Int. J. Mol. Sci. 2022, 23, 8465. [Google Scholar] [CrossRef] [PubMed]
- Lew, B.L.; Cho, H.R.; Haw, S.; Kim, H.J.; Chung, J.H.; Sim, W.Y. Association between IL17A/IL17RA Gene Polymorphisms and Susceptibility to Alopecia Areata in the Korean Population. Ann. Dermatol. 2012, 24, 61–65. [Google Scholar] [CrossRef]
- Aneas, I.; Decker, D.C.; Howard, C.L.; Sobreira, D.R.; Sakabe, N.J.; Blaine, K.M.; Stein, M.M.; Hrusch, C.L.; Montefiori, L.E.; Tena, J.; et al. Asthma-associated genetic variants induce IL33 differential expression through an enhancer-blocking regulatory region. Nat. Commun. 2021, 12, 6115. [Google Scholar] [CrossRef]
- Pierrou, S.; Broberg, P.; O’Donnell, R.A.; Pawlowski, K.; Virtala, R.; Lindqvist, E.; Richter, A.; Wilson, S.J.; Angco, G.; Moller, S.; et al. Expression of genes involved in oxidative stress responses in airway epithelial cells of smokers with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2007, 175, 577–586. [Google Scholar] [CrossRef]
- Costanzo, L.; Soto, B.; Meier, R.; Geraghty, P. The Biology and Function of Tissue Inhibitor of Metalloproteinase 2 in the Lungs. Pulm. Med. 2022, 2022, 3632764. [Google Scholar] [CrossRef]
- Wang, K.; Xu, K.; Leng, X.; Han, Y.; Fang, Q. miRNA-9 Inhibits Proliferation and Migration of Lung Squamous Cell Carcinoma Cells by Regulating NRSF/EGFR. Technol. Cancer Res. Treat. 2020, 19, 1533033820945807. [Google Scholar] [CrossRef]
- Besnard, V.; Calender, A.; Bouvry, D.; Pacheco, Y.; Chapelon-Abric, C.; Jeny, F.; Nunes, H.; Planes, C.; Valeyre, D. G908R NOD2 variant in a family with sarcoidosis. Respir. Res. 2018, 19, 44. [Google Scholar] [CrossRef] [PubMed]
- Collins, P.E.; Grassia, G.; Colleran, A.; Kiely, P.A.; Ialenti, A.; Maffia, P.; Carmody, R.J. Mapping the Interaction of B Cell Leukemia 3 (BCL-3) and Nuclear Factor κB (NF-κB) p50 Identifies a BCL-3-mimetic Anti-inflammatory Peptide. J. Biol. Chem. 2015, 290, 15687–15696. [Google Scholar] [CrossRef] [PubMed]
- Cabarcas-Petroski, S.; Schramm, L. BDP1 Alterations Correlate with Clinical Outcomes in Breast Cancer. Cancers 2022, 14, 1658. [Google Scholar] [CrossRef] [PubMed]
- Alunno, A.; Padjen, I.; Fanouriakis, A.; Boumpas, D.T. Pathogenic and Therapeutic Relevance of JAK/STAT Signaling in Systemic Lupus Erythematosus: Integration of Distinct Inflammatory Pathways and the Prospect of Their Inhibition with an Oral Agent. Cells 2019, 8, 898. [Google Scholar] [CrossRef] [PubMed]
- Tuli, H.S.; Sak, K.; Iqubal, A.; Garg, V.K.; Varol, M.; Sharma, U.; Chauhan, A.; Yerer, M.B.; Dhama, K.; Jain, M.; et al. STAT signaling as a target for intervention: From cancer inflammation and angiogenesis to non-coding RNAs modulation. Mol. Biol. Rep. 2022, 49, 8987–8999. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Cao, Y.; Huang, T.; Sang, Y.; Dai, Y.; Tao, Z. Comprehensive analysis of fifteen hub genes to identify a promising diagnostic model, regulated networks, and immune cell infiltration in acute kidney injury. J. Clin. Lab. Anal. 2022, 36, e24709. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Umbach, D.M.; Weinberg, C.R. Identification of risk-related haplotypes with the use of multiple SNPs from nuclear families. Am. J. Hum. Genet. 2007, 81, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Vishweswaraiah, S.; Ramachandra, N.B.; Jayaraj, B.S.; Holla, A.D.; Chakraborty, S.; Agrawal, A.; Mahesh, P.A. Haplotype analysis of ADAM33 polymorphisms in asthma: A pilot study. Indian J. Med. Res. 2019, 150, 272–281. [Google Scholar] [CrossRef]
- Thomsen, S.F. Genetics of asthma: An introduction for the clinician. Eur. Clin. Respir. J. 2015, 2, 24643. [Google Scholar] [CrossRef]
- Ahmadi, K.R.; Goldstein, D.B. Multifactorial diseases: Asthma genetics point the way. Curr. Biol. CB 2002, 12, R702–R704. [Google Scholar] [CrossRef]
SNP Reference Sequence | Assay ID | Location on Ch.22 According to GRCh38 Assembly | Context Sequence [VIC/FAM] |
---|---|---|---|
rs4819554 | C__337392_30 | 17084145 | GGGAAGTAACGACTCTCTTAGGTGC[A/G]GC TGGGACACAGTCTCACAGACCAG |
rs879577 | C__2666446_20 | 17108319 | CTTGTTTCCTTAGATGGCCTGCCTG[C/T]GGC TGACCTGATCCCCCCACCGCTG |
rs41323645 | C__86401686_10 | 17109290 | GCCTGGGCCCCTGGCTGACGGTGCC[A/G]CA GTCCGGCTGGCACTGGCGGGGG |
rs4819555 | C__28000962_10 | 17109379 | GGCGAAATAGCGTCCTCTTCCTCCC[C/T]GTG GACCCCGAGGACTCGCCCCTTG |
Characteristics | Levels | Control (n = 96) | Asthma (n = 96) | p-Value |
---|---|---|---|---|
Age | Mean ± SD | 9.6 ± 3.1 | 9.7 ± 3.0 | 0.76 |
Sex | Female | 56 (58.3%) | 52 (54.2%) | 0.66 |
Male | 40 (41.7%) | 44 (45.8%) | ||
Residency | Rural | 51 (53.1%) | 64 (66.7%) | 0.08 |
Urban | 45 (46.9%) | 32 (33.3%) | ||
FH of asthma | Negative | 89 (92.7%) | 67 (69.8%) | <0.001 |
Positive | 7 (7.3%) | 29 (30.2%) | ||
BMI % | <85th | 51 (53.1%) | 53 (55.2%) | 0.95 |
<95th | 34 (35.4%) | 32 (33.3%) | ||
≥95th | 11 (11.5%) | 11 (11.5%) | ||
Pubertal status | Negative | 52 (54.2%) | 51 (53.1%) | 0.88 |
Positive | 44 (45.8%) | 45 (46.9%) | ||
Tanner stage * | Stage 1 | 52 (54.2%) | 51 (53.1%) | 0.65 |
Stage 2 | 14 (14.6%) | 17 (17.7%) | ||
Stage 3 | 18 (18.8%) | 12 (12.5%) | ||
Stage 4 | 6 (6.3%) | 10 (10.4%) | ||
Stage 5 | 6 (6.3%) | 6 (6.3%) |
Genetic Models | Genotype | Controls (n= 96) | Patients (n = 96) | OR (95%CI) | p-Value | AIC |
---|---|---|---|---|---|---|
rs4819554 | ||||||
Codominant Model | A/A | 29 (30.2%) | 47 (49%) | 1 | 0.001 | 250.4 |
A/G | 44 (45.8%) | 42 (43.8%) | 0.69 (0.35–1.36) | |||
G/G | 23 (24%) | 7 (7.3%) | 0.15 (0.05–0.45) | |||
Dominant Model | A/A | 29 (30.2%) | 47 (49%) | 1 | 0.028 | 257.4 |
A/G-G/G | 67 (69.8%) | 49 (51%) | 0.49 (0.26–0.93) | |||
Recessive Model | A/A-A/G | 73 (76%) | 89 (92.7%) | 1 | <0.001 | 249.6 |
G/G | 23 (24%) | 7 (7.3%) | 0.18 (0.07–0.52) | |||
Over dominant | A/A-G/G | 52 (54.2%) | 54 (56.2%) | 1 | 0.73 | 262 |
A/G | 44 (45.8%) | 42 (43.8%) | 1.12 (0.60–2.07) | |||
rs879577 | ||||||
Codominant Model | C/C | 23 (24%) | 57 (59.4%) | 1 | <0.001 | 237.3 |
C/T | 48 (50%) | 31 (32.3%) | 0.22 (0.10–0.45) | |||
T/T | 25 (26%) | 8 (8.3%) | 0.13 (0.05–0.36) | |||
Dominant Model | C/C | 23 (24%) | 57 (59.4%) | 1 | <0.001 | 236.2 |
C/T-T/T | 73 (76%) | 39 (40.6%) | 0.19 (0.10–0.37) | |||
Recessive Model | C/C-C/T | 71 (74%) | 88 (91.7%) | 1 | 0.004 | 253.8 |
T/T | 25 (26%) | 8 (8.3%) | 0.28 (0.11–0.70) | |||
Over dominant | C/C-T/T | 48 (50%) | 65 (67.7%) | 1 | 0.003 | 253.1 |
C/T | 48 (50%) | 31 (32.3%) | 0.37 (0.19–0.72) | |||
rs41323645 | ||||||
Codominant Model | G/G | 42 (43.8%) | 23 (24%) | 1 | 0.004 | 253 |
G/A | 39 (40.6%) | 43 (44.8%) | 2.47 (1.19–5.14) | |||
A/A | 15 (15.6%) | 30 (31.2%) | 3.86 (1.62–9.18) | |||
Dominant Model | G/G | 42 (43.8%) | 23 (24%) | 1 | 0.002 | 252.1 |
G/A-A/A | 54 (56.2%) | 73 (76%) | 2.89 (1.47–5.68) | |||
Recessive Model | G/G-G/A | 81 (84.4%) | 66 (68.8%) | 1 | 0.025 | 257.1 |
A/A | 15 (15.6%) | 30 (31.2%) | 2.34 (1.10–4.98) | |||
Over dominant | G/G-A/A | 57 (59.4%) | 53 (55.2%) | 1 | 0.24 | 260.8 |
G/A | 39 (40.6%) | 43 (44.8%) | 1.45 (0.78–2.72) | |||
rs4819555 | ||||||
Codominant Model | C/C | 42 (43.8%) | 33 (34.4%) | 1 | 0.19 | 260.9 |
C/T | 42 (43.8%) | 45 (46.9%) | 1.43 (0.72–2.82) | |||
T/T | 12 (12.5%) | 18 (18.8%) | 2.32 (0.91–5.92) | |||
Dominant Model | C/C | 42 (43.8%) | 33 (34.4%) | 1 | 0.14 | 260 |
C/T-T/T | 54 (56.2%) | 63 (65.6%) | 1.61 (0.85–3.07) | |||
Recessive Model | C/C-C/T | 84 (87.5%) | 78 (81.2%) | 1 | 0.13 | 259.9 |
T/T | 12 (12.5%) | 18 (18.8%) | 1.91 (0.81–4.47) | |||
Over dominant | C/C-T/T | 54 (56.2%) | 51 (53.1%) | 1 | 0.75 | 262.1 |
C/T | 42 (43.8%) | 45 (46.9%) | 1.11 (0.60–2.05) |
Allele | Overall | Controls | Patients | OR (95%CI) | p-Value |
---|---|---|---|---|---|
rs4819554 | |||||
A | 162 (84.4%) | 73 (76%) | 89 (92.7%) | 4.01 (1.63–9.86) | 0.002 |
G | 116 (60.4%) | 67 (69.8%) | 49 (51%) | 0.45 (0.25–0.82) | 0.012 |
rs879577 | |||||
C | 159 (82.8%) | 71 (74%) | 88 (91.7%) | 3.87 (1.65–9.11) | 0.002 |
T | 112 (58.3%) | 73 (76%) | 39 (40.6%) | 0.22 (0.12–0.4) | <0.001 |
rs41323645 | |||||
G | 147 (76.6%) | 81 (84.4%) | 66 (68.8%) | 0.41 (0.2–0.82) | 0.016 |
A | 127 (66.1%) | 54 (56.3%) | 73 (76%) | 2.47 (1.33–4.58) | 0.006 |
rs4819555 | |||||
C | 162 (84.4%) | 84 (87.5%) | 78 (81.3%) | 0.62 (0.28–1.37) | 0.32 |
T | 117 (60.9%) | 54 (56.3%) | 63 (65.6%) | 1.48 (0.83–2.66) | 0.24 |
SNP ID | Genotype | Prepuberty | Puberty | p-Value * | ||||
---|---|---|---|---|---|---|---|---|
Controls | Patients | OR (95%CI) | Controls | Patients | OR (95%CI) | |||
rs4819554 | A/A | 29 | 47 | 1 | 14 | 19 | 1 | 0.33 |
A/G-G/G | 67 | 49 | 0.49 (0.26–0.93) | 30 | 26 | 0.70 (0.27–1.77) | ||
rs879577 | C/C | 11 | 32 | 1 | 12 | 25 | 1 | 0.13 |
C/T-T/T | 41 | 19 | 0.11 (0.04–0.30) | 32 | 20 | 0.33 (0.13–0.87) | ||
rs41323645 | G/G | 22 | 10 | 1 | 20 | 13 | 1 | 0.65 |
G/A-A/A | 30 | 41 | 3.35 (1.30–8.62) | 24 | 32 | 2.47 (0.95–6.43) | ||
rs4819555 | C/C | 26 | 19 | 1 | 16 | 14 | 1 | 0.91 |
C/T-T/T | 26 | 32 | 1.67 (0.72–3.84) | 28 | 31 | 1.55 (0.58–4.11) |
Haplotype | Total | Controls | Patients | Cumulative Frequency | OR (95%CI) | p-Value | |
---|---|---|---|---|---|---|---|
1 | ACAC | 0.1391 | 0.0136 | 0.2287 | 0.1391 | 1 | --- |
2 | ACGC | 0.1332 | 0.1517 | 0.1472 | 0.2723 | 0.00 (0.00–0.11) | 0.002 |
3 | ATGC | 0.1016 | 0.1777 | 0.0218 | 0.3739 | 0.00 (0.00–0.05) | <0.001 |
4 | GCAC | 0.0882 | 0.0745 | 0.0683 | 0.4621 | 0.00 (0.00–0.08) | 0.002 |
5 | ACGT | 0.0879 | 0.1064 | 0.0923 | 0.55 | 0.02 (0.00–0.36) | 0.009 |
6 | ATGT | 0.0701 | 0.0784 | 0.0725 | 0.6201 | 0.00 (0.00–0.07) | 0.001 |
7 | GCGC | 0.0503 | 0.0499 | 0.0502 | 0.6704 | 0.06 (0.00–1.46) | 0.08 |
8 | GTGC | 0.0499 | 0.0528 | 0.0294 | 0.7203 | 0.00 (-Inf–Inf) | 1.00 |
9 | ACAT | 0.0482 | 0.092 | 0.0162 | 0.7685 | 0.02 (0.00–0.48) | 0.018 |
10 | GTAC | 0.0446 | 0.0584 | 0.0034 | 0.8131 | 0.00 (0.00–0.04) | <0.001 |
11 | ATAT | 0.0426 | 0.0288 | 0.0725 | 0.8556 | NA | <0.001 |
12 | GCAT | 0.0353 | 0.0593 | 0 | 0.8909 | 0.00 (0.00–0.14) | 0.003 |
13 | GCGT | 0.0329 | 0.0381 | 0.0336 | 0.9237 | 0.03 (0.00–1.01) | 0.05 |
14 | GTAT | 0.0327 | NA | 0.079 | 0.9564 | 0.00 (0.00–0.12) | 0.004 |
15 | GTGT | 0.0313 | 0.012 | 0.0665 | 0.9877 | 0.00 (0.00–0.16) | 0.004 |
16 | ATAC | 0.0123 | 0.0066 | 0.0182 | 1 | 0.00 (0.00–1.36) | 0.06 |
Characteristics | rs4819554*A Carrier | p-Value | rs879577*C Carrier | p-Value | rs41323645*A Carrier | p-Value | rs4819555*C Carrier | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No | Yes | No | Yes | No | Yes | No | Yes | ||||||
Total number | 7 | 89 | 8 | 88 | 23 | 73 | 18 | 78 | |||||
Demographics | |||||||||||||
Age | Mean ± SD | 9.6 ± 2.9 | 9.7 ± 3.1 | 0.84 | 9.5 ± 3.3 | 9.7 ± 3 | 0.70 | 9.9 ± 3.1 | 9.6 ± 3.1 | 0.48 | 10.4 ± 3.3 | 9.6 ± 3 | 0.16 |
Sex | Male | 3 (42.9%) | 41 (46.1%) | 0.87 | 4 (50%) | 40 (45.5%) | 0.80 | 12 (52.2%) | 32 (43.8%) | 0.63 | 6 (33.3%) | 38 (48.7%) | 0.30 |
Residency | Urban | 4 (57.1%) | 28 (31.5%) | 0.22 | 5 (62.5%) | 27 (30.7%) | 0.11 | 5 (21.7%) | 27 (37%) | 0.21 | 8 (44.4%) | 24 (30.8%) | 0.28 |
FH of asthma | Positive | 5 (71.4%) | 24 (27%) | 0.025 | 2 (25%) | 27 (30.7%) | 0.74 | 7 (30.4%) | 22 (30.1%) | 0.98 | 4 (22.2%) | 25 (32.1%) | 0.57 |
Pubertal status | Positive | 5 (71.4%) | 40 (44.9%) | 0.25 | 4 (50%) | 41 (46.6%) | 0.85 | 13 (56.5%) | 32 (43.8%) | 0.34 | 7 (38.9%) | 38 (48.7%) | 0.60 |
BMI % | <85th | 2 (28.6%) | 51 (57.3%) | 0.21 | 3 (37.5%) | 50 (56.8%) | 0.38 | 12 (52.2%) | 41 (56.2%) | 0.76 | 10 (55.6%) | 43 (55.1%) | 1.00 |
<95th | 3 (42.9%) | 29 (32.6%) | 3 (37.5%) | 29 (33%) | 9 (39.1%) | 23 (31.5%) | 6 (33.3%) | 26 (33.3%) | |||||
≥95th | 2 (28.6%) | 9 (10.1%) | 2 (25%) | 9 (10.2%) | 2 (8.7%) | 9 (12.3%) | 2 (11.1%) | 9 (11.5%) | |||||
Presentation | |||||||||||||
Onset | Early (≤3 y) | 2 (28.6%) | 43 (48.3%) | 0.44 | 5 (62.5%) | 40 (45.5%) | 0.47 | 10 (43.5%) | 35 (47.9%) | 0.81 | 10 (55.6%) | 35 (44.9%) | 0.44 |
Late (>3 y) | 5 (71.4%) | 46 (51.7%) | 3 (37.5%) | 48 (54.5%) | 13 (56.5%) | 38 (52.1%) | 8 (44.4%) | 43 (55.1%) | |||||
Asthma phenotype | Atopic | 6 (85.7%) | 70 (78.7%) | 0.67 | 4 (50%) | 72 (81.8%) | 0.10 | 19 (82.6%) | 57 (78.1%) | 0.53 | 11 (61.1%) | 65 (83.3%) | 0.007 |
Non-atopic | 1 (14.3%) | 6 (6.7%) | 2 (25%) | 5 (5.7%) | 2 (8.7%) | 5 (6.8%) | 3 (16.7%) | 4 (5.1%) | |||||
Exercise-induced | 0 (0%) | 11 (12.4%) | 2 (25%) | 9 (10.2%) | 1 (4.3%) | 10 (13.7%) | 2 (11.1%) | 9 (11.5%) | |||||
Aspirin-sensitive | 0 (0%) | 2 (2.2%) | 0 (0%) | 2 (2.3%) | 1 (4.3%) | 1 (1.4%) | 2 (11.1%) | 0 (0%) | |||||
Symptoms | Cough | 7 (100%) | 87 (97.8%) | 0.69 | 8 (100%) | 86 (97.7%) | 0.67 | 22 (95.7%) | 72 (98.6%) | 0.42 | 18 (100%) | 76 (97.4%) | 0.49 |
Dyspnea | 3 (42.9%) | 53 (59.6%) | 0.45 | 4 (50%) | 52 (59.1%) | 0.72 | 17 (73.9%) | 39 (53.4%) | 0.09 | 12 (66.7%) | 44 (56.4%) | 0.60 | |
Sputum | 3 (42.9%) | 51 (57.3%) | 0.70 | 3 (37.5%) | 51 (58%) | 0.29 | 16 (69.6%) | 38 (52.1%) | 0.16 | 9 (50%) | 45 (57.7%) | 0.60 | |
Tightness | 4 (57.1%) | 60 (67.4%) | 0.68 | 6 (75%) | 58 (65.9%) | 0.71 | 16 (69.6%) | 48 (65.8%) | 0.80 | 16 (88.9%) | 48 (61.5%) | 0.029 | |
Wheezes | 4 (57.1%) | 76 (85.4%) | 0.09 | 6 (75%) | 74 (84.1%) | 0.62 | 20 (87%) | 60 (82.2%) | 0.75 | 14 (77.8%) | 66 (84.6%) | 0.49 | |
Daytime symptoms > 2 wk. | 2 (28.6%) | 46 (51.7%) | 0.44 | 5 (62.5%) | 43 (48.9%) | 0.71 | 13 (56.5%) | 35 (47.9%) | 0.63 | 12 (66.7%) | 36 (46.2%) | 0.19 | |
Night awakening | 0 (0%) | 16 (18%) | 0.60 | 0 (0%) | 16 (18.2%) | 0.34 | 4 (17.4%) | 12 (16.4%) | 0.91 | 2 (11.1%) | 14 (17.9%) | 0.73 | |
Reliever use > 2 wks. | 1 (14.3%) | 32 (36%) | 0.42 | 1 (12.5%) | 32 (36.4%) | 0.26 | 12 (52.2%) | 21 (28.8%) | 0.047 | 6 (33.3%) | 27 (34.6%) | 0.92 | |
Activity limitations | 2 (28.6%) | 27 (30.3%) | 0.92 | 3 (37.5%) | 26 (29.5%) | 0.69 | 10 (43.5%) | 19 (26%) | 0.13 | 7 (38.9%) | 22 (28.2%) | 0.40 | |
Comorbidities | Positive | 2 (28.6%) | 46 (51.7%) | 0.44 | 3 (37.5%) | 45 (51.1%) | 0.72 | 15 (65.2%) | 33 (45.2%) | 0.15 | 3 (16.7%) | 45 (57.7%) | 0.003 |
Allergic rhinitis | 2 (28.6%) | 36 (40.4%) | 0.70 | 2 (25%) | 36 (40.9%) | 0.47 | 11 (47.8%) | 27 (37%) | 0.46 | 3 (16.7%) | 35 (44.9%) | 0.033 | |
Eczema | 0 (0%) | 30 (33.7%) | 0.09 | 2 (25%) | 28 (31.8%) | 0.69 | 9 (39.1%) | 21 (28.8%) | 0.44 | 0 (0%) | 30 (38.5%) | 0.001 | |
Asthma Severity | Mild | 5 (71.4%) | 35 (39.3%) | 0.20 | 5 (62.5%) | 35 (39.8%) | 0.45 | 10 (43.5%) | 30 (41.1%) | 0.66 | 7 (38.9%) | 33 (42.3%) | 0.96 |
Moderate | 2 (28.6%) | 38 (42.7%) | 2 (25%) | 38 (43.2%) | 8 (34.8%) | 32 (43.8%) | 8 (44.4%) | 32 (41%) | |||||
Severe | 0 (0%) | 16 (18%) | 1 (12.5%) | 15 (17%) | 5 (21.7%) | 11 (15.1%) | 3 (16.7%) | 13 (16.7%) | |||||
Duration, years | Median (IQR) | 6 (4–9) | 5 (5–8) | 0.88 | 5.5 (5–7.8) | 5 (5–8) | 0.84 | 6 (5–9) | 5 (4–8) | 0.16 | 6 (5–9) | 5 (4–8) | 0.08 |
Asthma Control | Well-controlled | 5 (71.4%) | 30 (34.9%) | 0.13 | 3 (37.5%) | 32 (37.6%) | 0.38 | 5 (22.7%) | 30 (42.3%) | 0.13 | 4 (23.5%) | 31 (40.8%) | 0.24 |
Partly-controlled | 2 (28.6%) | 41 (47.7%) | 5 (62.5%) | 38 (44.7%) | 11 (50%) | 32 (45.1%) | 11 (64.7%) | 32 (42.1%) | |||||
Uncontrolled | 0 (0%) | 15 (17.4%) | 0 (0%) | 15 (17.6%) | 6 (27.3%) | 9 (12.7%) | 2 (11.8%) | 13 (17.1%) | |||||
Investigations | |||||||||||||
Lab tests | High total IgE | 3 (42.9%) | 33 (37.1%) | 0.76 | 2 (25%) | 34 (38.6%) | 0.71 | 11 (47.8%) | 25 (34.2%) | 0.32 | 9 (50%) | 27 (34.6%) | 0.28 |
Eosinophilia | 3 (42.9%) | 11 (12.4%) | 0.06 | 1 (12.5%) | 13 (14.8%) | 0.86 | 4 (17.4%) | 10 (13.7%) | 0.74 | 5 (27.8%) | 9 (11.5%) | 0.08 | |
Total IgE (IU/mL) | 75 (25–245) | 50 (15–120) | 0.33 | 43.5 (17.5–105) | 60 (15–120) | 0.69 | 80 (15–180) | 45 (15–120) | 0.11 | 100 (25–155.8) | 47.5 (15–120) | 0.07 | |
Eosinophil (×106/L) | 240 (20–689) | 78 (25–235) | 0.43 | 111 (21.3–243) | 78 (25–240) | 0.96 | 78 (25–340) | 98 (25–240) | 0.85 | 230 (86–509.8) | 50 (20–207.5) | 0.009 |
Characteristics | rs4819554*A Carrier | p-Value | rs879577*C Carrier | p-Value | rs41323645*A Carrier | p-Value | rs4819555*C Carrier | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No | Yes | No | Yes | No | Yes | No | Yes | ||||||
Total number | 30 | 162 | 33 | 159 | 65 | 127 | 30 | 162 | |||||
Management | |||||||||||||
AHR | Normal | 3 (42.9) | 37 (41.6) | 0.77 | 4 (50) | 36 (40.9) | 0.74 | 7 (30.4) | 33 (45.2) | 0.66 | 4 (22.2) | 36 (46.2) | 0.14 |
Borderline | 3 (42.9) | 25 (28.1) | 3 (37.5) | 25 (28.4) | 8 (34.8) | 20 (27.4) | 9 (50) | 19 (24.4) | |||||
Mild/moderate | 1 (14.3) | 23 (25.8) | 1 (12.5) | 23 (26.1) | 7 (30.4) | 17 (23.3) | 4 (22.2) | 20 (25.6) | |||||
Severe | 0 (0) | 4 (4.5) | 0 (0) | 4 (4.5) | 1 (4.3) | 3 (4.1) | 1 (5.6) | 3 (3.8) | |||||
Therapy Level | Step 1 | 3 (42.9) | 18 (20.2) | 0.23 | 2 (25) | 19 (21.6) | 0.59 | 4 (17.4) | 17 (23.3) | 0.91 | 3 (16.7) | 18 (23.1) | 0.92 |
Step 2 | 2 (28.6) | 17 (19.1) | 3 (37.5) | 16 (18.2) | 6 (26.1) | 13 (17.8) | 4 (22.2) | 15 (19.2) | |||||
Step 3 | 2 (28.6) | 14 (15.7) | 1 (12.5) | 15 (17) | 4 (17.4) | 12 (16.4) | 4 (22.2) | 12 (15.4) | |||||
Step 4 | 0 (0) | 32 (36) | 1 (12.5) | 31 (35.2) | 7 (30.4) | 25 (34.2) | 6 (33.3) | 26 (33.3) | |||||
Step 5 | 0 (0) | 8 (9) | 1 (12.5) | 7 (8) | 2 (8.7) | 6 (8.2) | 1 (5.6) | 7 (9) | |||||
Therapeutic responsePFT | FVC1 (% predicted) | 83 (78–89) | 80 (72–82.5) | 0.07 | 80 (70.5–88.5) | 80 (72–83) | 0.66 | 80 (72–84) | 80 (72–82.5) | 0.82 | 81 (77.5–84) | 78 (72–82) | 0.16 |
Pre FEV1 (% predicted) | 66 (62–80) | 62 (53–72) | 0.11 | 70 (48–85.5) | 62 (55–71.5) | 0.56 | 62 (50–76) | 62 (59–74) | 0.41 | 61.5 (52–72) | 62 (58–76) | 0.73 | |
Post FEV1 (% predicted) | 82 (80–88) | 80 (70–82) | 0.045 | 81.5 (71–89.5) | 80 (70.5–83.5) | 0.45 | 78 (70–84) | 80 (71–83) | 0.96 | 81 (74–86) | 80 (70–82) | 0.17 | |
PEFR1 (%predicted) | 86 (80–93) | 78 (68–86) | 0.046 | 85 (66.5–89) | 79 (68–86) | 0.39 | 80 (68–86) | 80 (68–86) | 0.90 | 85 (71–88) | 79 (68–84.5) | 0.22 | |
PC20 | 8 (5–8) | 4 (1–8) | 0.55 | 8 (2.8–8) | 4 (1.8–8) | 0.82 | 6 (1–8) | 6 (4–8) | 0.69 | 8 (1–16) | 4 (3.3–8) | 0.36 | |
BDRBASE (ml) | 32.3 (5.1–33.3) | 32.3 (5.4–39.7) | 0.34 | 19 (4.7–47.6) | 32.3 (5.6–38.6) | 0.87 | 34.5 (7–42.3) | 31.3 (5.2–37.9) | 0.24 | 32.6 (22.1–41.1) | 29.2 (5.2–38.5) | 0.26 |
Characteristics | ACA(C/T) Haplotype | p-Value | ||
---|---|---|---|---|
No | Yes | |||
Total number | 36 | 60 | ||
Demographics | ||||
Age | Mean ± SD | 9.7 ± 3.1 | 9.6 ± 3.0 | 0.79 |
Sex | Male | 17 (47.2%) | 27 (45%) | 0.84 |
Residency | Urban | 12 (33.3%) | 20 (33.3%) | 1.00 |
FH of asthma | Positive | 12 (33.3%) | 17 (28.3%) | 0.65 |
Pubertal status * | Positive | 20 (55.6%) | 25 (41.7%) | 0.21 |
BMI % | <85th | 17 (47.2%) | 36 (60%) | 0.34 |
<95th | 13 (36.1%) | 19 (31.7%) | ||
≥95th | 6 (16.7%) | 5 (8.3%) | ||
Presentation | ||||
Onset | Early (≤3 y) | 17 (47.2%) | 28 (46.7%) | 0.96 |
Late (>3 y) | 19 (52.8%) | 32 (53.3%) | ||
Asthma phenotype | Atopic | 27 (75%) | 49 (81.7%) | 0.24 |
Non-atopic | 5 (13.9%) | 2 (3.3%) | ||
Exercise-induced | 3 (8.3%) | 8 (13.3%) | ||
Aspirin-sensitive | 1 (2.8%) | 1 (1.7%) | ||
Symptoms | Cough | 35 (97.2%) | 59 (98.3%) | 0.71 |
Dyspnea | 22 (61.1%) | 34 (56.7%) | 0.83 | |
Sputum | 20 (55.6%) | 34 (56.7%) | 0.92 | |
Tightness | 24 (66.7%) | 40 (66.7%) | 1.00 | |
Wheezes | 28 (77.8%) | 52 (86.7%) | 0.27 | |
Daytime Symptoms > 2 wks. | 18 (50%) | 30 (50%) | 1.00 | |
Night awakening | 4 (11.1%) | 12 (20%) | 0.40 | |
Reliever use > 2 wks. | 12 (33.3%) | 21 (35%) | 0.87 | |
Activity limitations | 13 (36.1%) | 16 (26.7%) | 0.36 | |
Comorbidities | Positive | 20 (55.6%) | 28 (46.7%) | 0.53 |
Allergic rhinitis | 15 (41.7%) | 23 (38.3%) | 0.83 | |
Eczema | 11 (30.6%) | 19 (31.7%) | 0.91 | |
Asthma severity | Mild | 18 (50%) | 22 (36.7%) | 0.38 |
Moderate | 12 (33.3%) | 28 (46.7%) | ||
Severe | 6 (16.7%) | 10 (16.7%) | ||
Asthma control | Well-controlled | 13 (37.1%) | 22 (37.9%) | 0.98 |
Partly-controlled | 16 (45.7%) | 27 (46.6%) | ||
Uncontrolled | 6 (17.1%) | 9 (15.5%) | ||
Management | ||||
AHR | Normal | 12 (33.3%) | 28 (46.7%) | 0.38 |
Borderline | 14 (38.9%) | 14 (23.3%) | ||
Mild/moderate | 9 (25%) | 15 (25%) | ||
Severe | 1 (2.8%) | 3 (5%) | ||
Therapy level | Step 1 | 7 (19.4%) | 14 (23.3%) | 0.21 |
Step 2 | 11 (30.6%) | 8 (13.3%) | ||
Step 3 | 7 (19.4%) | 9 (15%) | ||
Step 4 | 8 (22.2%) | 24 (40%) | ||
Step 5 | 3 (8.3%) | 5 (8.3%) | ||
Lab tests | High IgE | 16 (44.4%) | 20 (33.3%) | 0.29 |
Eosinophilia | 8 (22.2%) | 6 (10%) | 0.14 | |
Therapeutic response | ||||
PFT | FVC1 (% predicted) | 80 (72–84) | 79 (72–82) | 0.32 |
Pre FEV1 (% predicted) | 62 (52–77.5) | 62 (58–71.5) | 1.0 | |
Post FEV1 (% predicted) | 80.5 (72.5–86) | 79 (70–82) | 0.23 | |
PEFR1 (% predicted) | 83 (68.5–87.5) | 78 (68–84) | 0.16 | |
PC20 | 8.0 (1.0–8.0) | 4.0 (4.0–8.0) | 0.91 | |
BDRBASE (mL) | 32.3 (6.0–41.6) | 29.1 (5.2–38.3) | 0.39 |
SNP ID and Position | Amino Acid change | Region | Mutation Taster | SIFT Prediction (Score) | PANTHER | 3D Protein Viewer with a Specified Amino Acid Substitution |
---|---|---|---|---|---|---|
rs4819554 c.-947A > G | NA | Promoter 808 bp 5′ of the gene | NA | NA | NA | |
rs879577 c.1100C > A g.23366C > A | A367V | CDS (Exon 13) | Likely benign | Tolerated 0.285 | Probably benign | |
rs41323645 c.2071G > A g.24337G > A | A691T | CDS (Exon 13) | Benign | Tolerated 0.362 | Probably benign | |
rs4819555 c.2160C > G | P720P | CDS (Exon 13) | Likely benign | Tolerated 1.0 | Possibly damaging |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maher, S.A.; AbdAllah, N.B.; Ageeli, E.A.; Riad, E.; Kattan, S.W.; Abdelaal, S.; Abdelfatah, W.; Ibrahim, G.A.; Toraih, E.A.; Awadalla, G.A.; et al. Impact of Interleukin-17 Receptor A Gene Variants on Asthma Susceptibility and Clinical Manifestations in Children and Adolescents. Children 2024, 11, 657. https://doi.org/10.3390/children11060657
Maher SA, AbdAllah NB, Ageeli EA, Riad E, Kattan SW, Abdelaal S, Abdelfatah W, Ibrahim GA, Toraih EA, Awadalla GA, et al. Impact of Interleukin-17 Receptor A Gene Variants on Asthma Susceptibility and Clinical Manifestations in Children and Adolescents. Children. 2024; 11(6):657. https://doi.org/10.3390/children11060657
Chicago/Turabian StyleMaher, Shymaa Ahmed, Nouran B. AbdAllah, Essam Al Ageeli, Eman Riad, Shahad W. Kattan, Sherouk Abdelaal, Wagdy Abdelfatah, Gehan A. Ibrahim, Eman A. Toraih, Ghada A. Awadalla, and et al. 2024. "Impact of Interleukin-17 Receptor A Gene Variants on Asthma Susceptibility and Clinical Manifestations in Children and Adolescents" Children 11, no. 6: 657. https://doi.org/10.3390/children11060657
APA StyleMaher, S. A., AbdAllah, N. B., Ageeli, E. A., Riad, E., Kattan, S. W., Abdelaal, S., Abdelfatah, W., Ibrahim, G. A., Toraih, E. A., Awadalla, G. A., Fawzy, M. S., & Ibrahim, A. (2024). Impact of Interleukin-17 Receptor A Gene Variants on Asthma Susceptibility and Clinical Manifestations in Children and Adolescents. Children, 11(6), 657. https://doi.org/10.3390/children11060657