Relationships between Iron Status and Selected Physical Fitness Components of South African Adolescents: The PAHL-Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Study Sample
2.3. Data Collection
2.3.1. Body Composition
2.3.2. Blood Analysis for Iron Status Assessment
2.4. Selected Physical Fitness Components
2.4.1. Cardiorespiratory Endurance
2.4.2. Lower Extremity Explosive Power
2.5. Ethical Considerations
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gracia-Marco, L.; Valtueña, J.; Ortega, F.B.; Pérez-López, F.R.; Vicente-Rodríguez, G.; Breidenassel, C.; Ferrari, M.; Molnar, D.; Widhalm, K.; de Henauw, S.; et al. Iron and vitamin status biomarkers and its association with physical fitness in adolescents: The HELENA study. J. Appl. Physiol. 2012, 113, 566–573. [Google Scholar] [CrossRef] [PubMed]
- Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on iron and its importance for human health. J. Res. Med. Sci. 2014, 19, 164–174. [Google Scholar] [PubMed] [PubMed Central]
- Chao, H.C.; Lu, J.J.; Yang, C.Y.; Yeh, P.J.; Chu, S.M. Serum Trace Element Levels and Their Correlation with Picky Eating Behavior, Development, and Physical Activity in Early Childhood. Nutrients 2021, 13, 2295. [Google Scholar] [CrossRef] [PubMed]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126–131. [Google Scholar] [PubMed] [PubMed Central]
- Tomkinson, G.R.; Lang, J.J.; Tremblay, M.S. Temporal trends in the cardiorespiratory fitness of children and adolescents representing 19 high-income and upper middle-income countries between 1981 and 2014. Br. J. Sports Med. 2019, 53, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Jankowski, M.; Niedzielska, A.; Brzezinski, M.; Drabik, J. Cardiorespiratory fitness in children: A simple screening test for population studies. Pediatr. Cardiol. 2015, 36, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Poitras, V.J.; Gray, C.E.; Borghese, M.M.; Carson, V.; Chaput, J.P.; Janssen, I.; Katzmarzyk, P.T.; Pate, R.R.; Connor Gorber, S.; Kho, M.E.; et al. Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Appl. Physiol. Nutr. Metab. 2016, 41, S197–S239. [Google Scholar] [CrossRef] [PubMed]
- Clénin, G.; Cordes, M.; Huber, A.; Schumacher, Y.O.; Noack, P.; Scales, J.; Kriemler, S. Iron deficiency in sports—Definition, influence on performance and therapy. Swiss Med. Wkly. 2015, 145, w14196. [Google Scholar] [CrossRef]
- WHO. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity. Vitamin and Mineral Nutrition Information System; (WHO/NMH/NHD/MNM/11.1); World Health Organization: Geneva, Switzerland, 2011; Available online: https://www.who.int/publications/i/item/WHO-NMH-NHD-MNM-11.1 (accessed on 19 May 2019).
- Lemoine, A.; Tounian, P. Childhood anemia and iron deficiency in sub-Saharan Africa—Risk factors and prevention: A review. Arch. Pediatr. 2020, 27, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Premont, R.T.; Singel, D.J.; Stamler, J.S. The enzymatic function of the honorary enzyme: S-nitrosylation of hemoglobin in physiology and medicine. Mol. Asp. Med. 2022, 84, 101056. [Google Scholar] [CrossRef]
- Crouter, S.E.; Horton, M.; Bassett, D.R., Jr. Use of a two-regression model for estimating energy expenditure in children. Med. Sci. Sports Exerc. 2012, 44, 1177–1185. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, J.; Huo, J.S.; Sun, J.; Ning, Z.X. Physical performance of migrant schoolchildren with marginal and severe iron deficiency in the suburbs of Beijing. Biomed. Environ. Sci. 2009, 22, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.N.; Perez, A.J.; Carletti, L.; Bissoli, N.S.; Abreu, G.R. Maximum oxygen uptake in adolescents as measured by cardiopulmonary exercise testing: A classification proposal. J. Pediatr. (Rio. J.) 2006, 82, 426–430. [Google Scholar] [CrossRef] [PubMed]
- Astrand, P.-O. Experimental Studies of Physical Working Capacity in Relation to Sex and Age. Doctoral Dissertation, Ejnar Munksgaard, Copenhagen, Denmark, 1952. [Google Scholar]
- Schmidt, W.; Prommer, N. Impact of alterations in total hemoglobin mass on VO2max. Exerc. Sport. Sci. Rev. 2010, 38, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Prommer, N.; Wachsmuth, N.; Thieme, I.; Wachsmuth, C.; Mancera-Soto, E.M.; Hohmann, A.; Schmidt, W.F.J. Influence of Endurance Training During Childhood on Total Hemoglobin Mass. Front. Physiol. 2018, 9, 251. [Google Scholar] [CrossRef] [PubMed]
- McLean, E.; Cogswell, M.; Egli, I.; Wojdyla, D.; De Benoist, B. Worldwide prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System, 1993–2005. Public Health Nutr. 2009, 12, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Mchiza, Z.J.; Parker, W.A.; Sewpaul, R.; Job, N.; Chola, L.; Mutyambizi, C.; Sithole, M.; Stokes, A.; Labadarios, D. Understanding the determinants of hemoglobin and iron status: Adolescent–adult women comparisons in SANHANES-1. Ann. N. Y. Acad. Sci. 2018, 1416, 31–47. [Google Scholar] [CrossRef]
- Lundgren, K.M.; Aspvik, N.P.; Langlo, K.A.R.; Braaten, T.; Wisløff, U.; Stensvold, D.; Karlsen, T. Blood Volume, Hemoglobin Mass, and Peak Oxygen Uptake in Older Adults: The Generation 100 Study. Front. Sports Act. Living 2021, 3, 638139. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation (WHO). Best Practices for haemoglobin Measurement in Population-Level Anaemia Surveys: Technical Brief. 2023. Available online: https://www.who.int/publications/i/item/9789240087651 (accessed on 11 June 2023).
- Ford, N.D.; Bichha, R.P.; Parajuli, K.R.; Paudyal, N.; Joshi, N.; Whitehead, R.D., Jr.; Chitekwe, S.; Mei, Z.; Flores-Ayala, R.; Adhikari, D.P.; et al. Factors associated with anaemia among adolescent boys and girls 10–19 years old in Nepal. Matern. Child. Nutr. 2022, 18, e13013. [Google Scholar] [CrossRef]
- Du Plessis, T.; Moxley, K.; Lachman, A. Prevalence of iron deficiency in a South African adolescent inpatient psychiatric population: Rates, risk factors and recommendations. S. Afr. J. Psychiatry 2019, 25, a1347. [Google Scholar] [CrossRef]
- Adair, L.S. Child and adolescent obesity: Epidemiology and developmental perspectives. Physiol. Behav. 2008, 94, 8–16. [Google Scholar] [CrossRef] [PubMed]
- de Andrade Cairo, R.C.; Silva, L.R.; Bustani, N.C.; Marques, C.D.F. Iron deficiency anemia in adolescents; a literature review. Nutr. Hosp. 2014, 29, 1240–1249. [Google Scholar] [CrossRef] [PubMed]
- Das, J.K.; Salam, R.A.; Thornburg, K.L.; Prentice, A.M.; Campisi, S.; Lassi, Z.S.; Koletzko, B.; Bhutta, Z.A. Nutrition in adolescents: Physiology, metabolism, and nutritional needs. Ann. N. Y. Acad. Sci. 2017, 1393, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, W.S. Iron deficiency in adolescence. J. Pediatr. 2017, 187, 2. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Long, W.; Tan, W.; Yang, C.; Cao, M.; Zhu, Y. Anaemia, iron deficiency, iron-deficiency anaemia and their associations with obesity among schoolchildren in Guangzhou, China. Public Health Nutr. 2020, 23, 1693–1702. [Google Scholar] [CrossRef]
- Monyeki, M.A.; Neetens, R.; Moss, S.J.; Twisk, J. The relationship between body composition and physical fitness in 14 year old adolescents residing within the Tlokwe local municipality, South Africa. BMC Public Health 2012, 12, 374–382. [Google Scholar] [CrossRef]
- Statistics South Africa (STATSSA). Community Survey 2007: Basic Results-Municipalities; Statistical Release P301.1; Statistics South Africa: Pretoria, South Africa, 2008. [Google Scholar]
- Esparza-Ros, F.; Vaquero-Cristóbal, R.; Marfell-Jones, M. (Eds.) Basic Measurements; International Society for the Advancement of Kinanthropometry: Murcia, Spain, 2019. [Google Scholar]
- Cole, T.J.; Bellizzi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a standard definition for child overweight and obesity worldwide: International survey. Br. Med. J. 2000, 330, 1240–1244. [Google Scholar] [CrossRef] [PubMed]
- Cole, T.J.; Flegal, K.M.; Nicholls, D.; Jackson, A.A. Body mass index cut offs to define thinness in children and adolescents: International survey. Br. Med. J. 2007, 335, 194. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO Guideline on Use of Ferritin Concentrations to Assess Iron Status in Individuals and Populations. 2023. Available online: https://www.who.int/tools/elena/interventions/ferritin-concentrations (accessed on 9 August 2023).
- EUROFIT. Handbook for The Eurofit Test of Physical Fitness; Council of Europe Committee for the Development of Sport, Committee of Expert on Sport Research: Strasbourg, France, 1988. [Google Scholar]
- Australian Sports Commission. 20-m Shuttle Run Test; Australian Sports Commission: Belconnen, Australia, 1988. [Google Scholar]
- Davis, J.A. Direct determination of aerobic power. In Physiological Assessment of Human Fitness, 2nd ed.; Maud, P.J., Foster, C., Eds.; Human Kinetics Publishers: Champaign, IL, USA, 2006; pp. 9–18. [Google Scholar]
- Liu, N.Y.; Plowman, S.A.; Looney, M.A. The reliability and validity of the 20-meter shuttle test in American students 12 to 15 years old. Res. Q. Exerc. Sport. 1992, 63, 360–365. [Google Scholar] [CrossRef]
- Matsuzaka, A.; Takahashi, Y.; Yamazoe, M.; Kumakura, N.; Ikeda, A.; Wilk, B.; Bar-Or, O. Validity of the multistage 20-m shuttle-run test for Japanese children, adolescents, and adults. Pediatr. Exerc. Sci. 2004, 16, 113–125. [Google Scholar] [CrossRef]
- Maulder, P.; Cronin, J. Horizontal and vertical jump assessment: Reliability, symmetry, discriminative and predictive ability. Phys. Ther. Sport. 2005, 6, 74–82. [Google Scholar] [CrossRef]
- Cohen, J.W. Statistical Power Analysis for Behavioural Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Divala, O.H.; Mwakhwawa, Q.; Phiri, M.M.; Owino, V.; El Kari, K.; Maleta, K.M. Development of bioelectrical impedance-based equations for the prediction of body composition of Malawian adolescents aged 10–18 years: A cross-sectional study. BMJ Open 2022, 12, e058551. [Google Scholar] [CrossRef] [PubMed]
- Tesfaye, T.S.; Tessema, F.; Jarso, H. Prevalence of anemia and associated factors among “apparently healthy” urban and rural residents in Ethiopia: A comparative cross-sectional study. J. Blood Med. 2020, 11, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Mulvihill, C.; Davies, G.; Rogers, P. Dietary restraint in relation to nutrient intake, physical activity and iron status in adolescent females. J. Hum. Nutr. Diet. 2002, 15, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Clement, D.B.; Sawchuk, L.L. Iron status and sports performance. Sports Med. 1984, 1, 65–74. [Google Scholar] [CrossRef]
- Keskin, Y.; Moschonis, G.; Dimitriou, M.; Sur, H.; Kocaoglu, B.; Hayran, O.; Manios, Y. Prevalence of iron deficiency among schoolchildren of different socio-economic status in urban Turkey. Eur. J. Clin. Nutr. 2005, 59, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Akil, M.; Celenk, C. Iron metabolism and importance of iron in exercise. Int. J. Acad. Res. 2013, 5, 223–230. [Google Scholar] [CrossRef]
- Reddy, S.P.; Panday, S.; Swart, D.; Jinabhai, C.C.; Amosun, S.L.; James, S.; Monyeki, K.D.; Stevens, G.; Morejele, N.; Kambaran, N.S.; et al. Umthenthe Uhlaba Usamila—The South African Youth Risk Behaviour Survey 2002; South African Medical Research Council: Cape Town, South Africa, 2003. [Google Scholar]
- Chwałczyńska, A.; Jedrzejewski, G.; Socha, M.; Jonak, W.; Sobiech, K.A. Physical fitness of secondary school adolescents in relation to the body weight and the body composition: Classification according to World Health Organization. Part I J. Sports Med. Phys. Fit. 2017, 57, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Monyeki, M.A.; Koppes, L.L.J.; Kemper, H.C.G.; Monyeki, K.D.; Toriola, A.L.; Twisk, J.W.R. Longitudinal relationships between nutritional status, body composition and physical fitness in Ellisras rural children of South Africa. Am. J. Hum. Biol. 2007, 19, 551–558. [Google Scholar] [CrossRef]
- Al Subhi, L.K.; Bose, S.; Al Ani, M.F. Prevalence of Physically Active and Sedentary Adolescents in 10 Eastern Mediterranean Countries and its Relation with Age, Sex, and Body Mass Index. J. Phys. Act. Health 2015, 12, 257–265. [Google Scholar] [CrossRef]
- Allor, K.M.; Pivarnik, J.M.; Sam, L.J.; Perkins, C.D. Treadmill economy in girls and women matched for height and weight. J. Appl. Physiol. 2000, 89, 512–516. [Google Scholar] [CrossRef]
- Heberstreit, H.; Kriemler, S.; Hughson, R.L.; Bar-Or, O. Kinetics of oxygen uptake at the onset of exercise in boys and men. J. Appl. Physiol. 1998, 85, 1833–1841. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, N.; Welsman, J.R. Assessment and interpretation of aerobic fitness in children and adolescents. Exerc. Sport. Sci. Rev. 1994, 22, 435–476. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.A.; Carter, H.; Jones, A.M.; Doust, J.H. Oxygen uptake kinetics during treadmill running in boys and men. J. Appl. Physiol. 2001, 90, 1700–1706. [Google Scholar] [CrossRef] [PubMed]
- Tomkinson, G.R.; Olds, T.S. Secular changes in pediatric aerobic fitness test performance: The global picture. Med. Sport. Sci. 2007, 50, 46–66. [Google Scholar] [CrossRef] [PubMed]
- Tomkinson, G.R.; Lang, J.J.; Blanchard, J.; Léger, L.A.; Tremblay, M.S. The 20-m Shuttle Run: Assessment and Interpretation of Data in Relation to Youth Aerobic Fitness and Health. Pediatr. Exerc. Sci. 2019, 31, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Vélez, R.; Rodrigues-Bezerra, D.; Correa-Bautista, J.E.; Izquierdo, M.; Lobelo, F. Reliability of Health-Related Physical Fitness Tests among Colombian Children and Adolescents: The FUPRECOL Study. PLoS ONE 2015, 10, e0140875. [Google Scholar] [CrossRef]
- Hwang, J.; Kim, Y. Physical Activity and its Related Motivational Attributes in Adolescents with Different BMI. Int. J. Behav. Med. 2013, 20, 106–113. [Google Scholar] [CrossRef]
- Hohensee, C.W.; Nies, M.A. Physical Activity and BMI: Evidence from the Panel Study of Income Dynamics Child Development Supplement. J. Sch. Health 2012, 82, 553–5597. [Google Scholar] [CrossRef] [PubMed]
- Van Rooyen, K.; Verstraeten, R.; Andrade, S.; Ochoa-Avilés, A.; Donoso, S.; Maes, L.; Kolsteren, P. Factors Affecting Physical Activity in Ecuadorian Adolescents: A Focus Group Study. J. Phys. Act. Health 2015, 12, 340–348. [Google Scholar] [CrossRef]
- Kim, S.L.; Shin, S.; Yang, S.J. Iron Homeostasis and Energy Metabolism in Obesity. Clin. Nutr. Res. 2022, 11, 316. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, B.O.; Gollnick, P.D.; Saltin, B. Muscle metabolism and enzyme activities after training in boys 11–13 years old. Acta Physiol. Scand. 1973, 87, 485–497. [Google Scholar] [CrossRef]
- Haralambie, G. Enzyme activities in skeletal muscle of 13-15 years old adolescents. Bull. Eur. Physiopathol. Respir. 1982, 18, 65–74. [Google Scholar] [PubMed]
- Harris, R.C.; Edwards, R.H.; Hultman, E.; Nordesjö, L.O.; Nylind, B.; Sahlin, K. The time course of phosphorylcreatine resynthesis during recovery of the quadriceps muscle in man. Pflug. Arch. 1976, 367, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Sahlin, K.; Harris, R.C.; Hultman, E. Resynthesis of creatine phosphate in human muscle after exercise in relation to intramuscular pH and availability of oxygen. Scand. J. Clin. Lab. Investig. 1979, 39, 551–558. [Google Scholar] [CrossRef]
- Ratel, S.; Blazevich, A.J. Are Prepubertal children metabolically comparable to well-trained adult endurance athletes? Sports Med. 2017, 47, 1477–1485. [Google Scholar] [CrossRef]
Total Group (n = 178) | Boys (n = 75) | Girls (n = 103) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Blood Samples | Normal Reference Value [34] | Median | Low (%) | Normal (%) | Median | Low (n, %) | Normal (n, %) | Median | Low (n, %) | Normal (n, %) |
Hb | >12.0 g/dL | 14 (8.1, 17.7) | 33 (18.5) | 145 (81.5) | 15.20 (12.3, 17.7) | 5 (7) | 70 (93) | 13.70 (8.1, 16.4) | 28 (27) | 75 (73) |
SF | 15–150 µg/L | 41 (3.0, 149) | 25 (14.0) | 153 (86) | 52 (11.0, 149) | 3 (4) | 72 (96) | 30 (3, 96) | 22 (21) | 81 (79) |
WHO BMI Z categories | ||||||||||
Underweight, n (%) | 9 (5.1) | 4 (5.3) | 5 (4.9) | |||||||
Normal weight, n (%) | 128 (71.9) | 58 (77.3) | 70 (68) | |||||||
Overweight, n (%) | 33 (18.5) | 9 (12) | 24 (23.3) | |||||||
Obese, n (%) | 8 (4.5%) | 4 (5.3) | 4 (3.9) |
Physical Fitness Component | Total Group (n = 177) | Boys (n = 75) | Girls (n = 103) | |||||
---|---|---|---|---|---|---|---|---|
Iron Variable | Categorical Groups | n | Mean ± SD | N | Mean ± SD | N | Mean ± SD | |
SBJ (cm) | SF | Iron Deficiency | 25 | 147.32 ± 22.93 | 3 | 175.67 ± 20.98 | 22 | 143.45 ± 20.69 * |
Normal SF | 152 | 168.28 ± 28.58 | 72 | 186.26 ± 25.83 | 81 | 152.09 ± 20.03 * | ||
Hb | Anaemia | 33 | 28.54 ± 6.42 | 5 | 156.00 ± 11.66 | 28 | 148.82 ± 18.44 * | |
Normal Hb | 144 | 34.11 ± 8.56 | 70 | 187.97 ± 25.04 | 74 | 150.76 ± 21.17 * | ||
(mL/kg/min) | SF | Iron Deficiency | 25 | 28.54 ± 6.42 | 3 | 41.83 ± 2.84 | 22 | 26.73 ± 4.20 * |
Normal SF | 152 | 34.11 ± 8.56 | 72 | 40.06 ± 7.45 | 81 | 28.82 ± 5.470 * | ||
Hb | Anaemia | 33 | 29.10 ± 6.61 | 5 | 37.31 ± 8.16 | 28 | 27.64 ± 5.22 * | |
Normal Hb | 144 | 34.29 ± 8.61 | 70 | 40.33 ± 7.28 | 75 | 28.65 ± 5.30 * |
Boys Mean ± SD | Girls Mean ± SD | p-Value | |
---|---|---|---|
Age (years) | 14.85 ± 0.67 | 14.80 ± 0.74 | 0.68 |
Stature (cm) | 165.79 ± 10.04 | 158.02 ± 6.83 | <0.001 |
Body weight (kg) | 57.81 ± 14.64 | 53.24 ± 11.67 | 0.02 |
BMI (kg/m2) | 20.80 ± 3.95 | 21.24 ± 3.98 | 0.47 |
SBJ (cm) | 185.84 ± 25.62 | 149.91 ± 20.24 | <0.001 |
(mL/kg/min) | 40.13 ± 7.32 | 28.40 ± 5.30 | <0.001 |
Serum Iron (mmol/L) | 17.46 ± 6.70 | 13.14 ± 5.66 | <0.001 |
Transferrin (mg/dL) | 3.06 ± 0.44 | 3.18 ± 0.45 | 0.068 |
Serum Ferritin (µg/L) | 59.69 ± 32.73 | 35.43 ± 23.72 | <0.001 |
Transferrin Saturation (%) | 23.47 ± 9.88 | 17.20 ± 8.21 | <0.001 |
Hb (g/dL) | 15.16 ± 1.25 | 13.51 ± 1.50 | <0.001 |
Total | Boys | Girls | |||||
---|---|---|---|---|---|---|---|
SBJ | SBJ | SBJ | |||||
Serum Iron (mmol/L) | r | 0.24 ** | 0.33 ** | −0.02 | 0.22 | 0.08 | 0.13 |
p | 0.001 | <0.001 | 0.88 | 0.06 | 0.45 | 0.21 | |
Serum Ferritin (µg/L) | r | 0.27 ** | 0.34 ** | −0.12 | 0.03 | 0.16 | 0.25 * |
p | <0.001 | <0.001 | 0.33 | 0.80 | 012 | 0.01 | |
Hb (g/dL) | r | 0.44 ** | 0.47 ** | −0.04 | 0.30 ** | 0.32 ** | 0.21 * |
p | <0.001 | <0.001 | 0.74 | 0.01 | <0.001 | 0.03 |
Boys | Girls | ||||
---|---|---|---|---|---|
SBJ | SBJ | ||||
Serum Iron (mmol/L) | r | −0.02 | 0.22 | 0.04 | 0.11 |
p | 0.86 | 0.08 | 0.65 | 0.26 | |
Serum Ferritin (µg/L) | r | −0.12 | 0.005 | 0.12 | 0.23 |
p | 0.31 | 0.96 | 0.22 | 0.02 | |
Hb (g/dL) | r | −0.05 | 0.26 * | 0.20 * | 0.21 * |
p | 0.70 | 0.03 | 0.05 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monyeki, M.A.; Veldsman, T.; Coetzee, B.; Sparks, M.; Moss, S.J.; Pienaar, C.; Swanepoel, M.; Malan, L.; Kruger, H.S. Relationships between Iron Status and Selected Physical Fitness Components of South African Adolescents: The PAHL-Study. Children 2024, 11, 659. https://doi.org/10.3390/children11060659
Monyeki MA, Veldsman T, Coetzee B, Sparks M, Moss SJ, Pienaar C, Swanepoel M, Malan L, Kruger HS. Relationships between Iron Status and Selected Physical Fitness Components of South African Adolescents: The PAHL-Study. Children. 2024; 11(6):659. https://doi.org/10.3390/children11060659
Chicago/Turabian StyleMonyeki, Makama Andries, Tamrin Veldsman, Ben Coetzee, Martinique Sparks, Sarah Johanna Moss, Cindy Pienaar, Mariette Swanepoel, Linda Malan, and Herculina Salome Kruger. 2024. "Relationships between Iron Status and Selected Physical Fitness Components of South African Adolescents: The PAHL-Study" Children 11, no. 6: 659. https://doi.org/10.3390/children11060659
APA StyleMonyeki, M. A., Veldsman, T., Coetzee, B., Sparks, M., Moss, S. J., Pienaar, C., Swanepoel, M., Malan, L., & Kruger, H. S. (2024). Relationships between Iron Status and Selected Physical Fitness Components of South African Adolescents: The PAHL-Study. Children, 11(6), 659. https://doi.org/10.3390/children11060659