Effects of Schroth 3D Exercise on Adolescent Idiopathic Scoliosis: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Registration
2.2. Study Inclusion and Exclusion Criteria
2.2.1. Inclusion Criteria
2.2.2. Exclusion Criteria
2.3. Literature Search
2.4. Literature Review and Data Extraction
2.5. Literature Quality Assessment
2.6. Statistical Analysis
3. Literature Search Results
3.1. Study Selection and Characteristics
3.2. Basic Characteristics and Quality Evaluation
3.3. Result
3.3.1. Cobb Angle
3.3.2. ATR
3.3.3. SRS-22
3.3.4. WRVAS (Walter Reed Visual Assessment Scale)
3.3.5. Back Extensor Strength
4. Discussion
5. Limitations
6. Conclusions
Funding
Conflicts of Interest
References
- Kleiberg, S. Sciatic scoliosis. Am. J. Surg. 1950, 80, 332–337. [Google Scholar] [CrossRef]
- Kuznia, A.L.; Hernandez, A.K.; Lee, L.U. Adolescent Idiopathic Scoliosis: Common Questions and Answers. Am. Fam. Physician. 2020, 101, 19–23. [Google Scholar]
- Xu, S.; Su, Y.; Wang, Z.; Liu, C.; Jin, L.; Liu, H. Characteristics of scoliosis in primary and secondary school students in Chinese mainland: A meta-analysis of 72 studies. Chin. J. Spine Spinal Cord. 2021, 31, 901–910. (In Chinese) [Google Scholar]
- Hong, J.Y.; Suh, S.W.; Park, H.J.; Kim, Y.H.; Park, J.H.; Park, S.Y. Correlations of adolescent idiopathic scoliosis and pectus excavatum. J. Pediatr. Orthop. 2011, 31, 870–874. [Google Scholar] [CrossRef] [PubMed]
- Basbug, G.; Gurses, H.N.; Zeren, M.; Elmadag, N.M. Effects of inspiratory muscle training on respiratory muscle strength, respiratory function and functional capacity in adolescents with idiopathic scoliosis: A randomized, controlled trial. Wien Klin Wochenschr. 2023, 135, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Editorial Department of Journal of Capital University of Physical Education. The concept and implementation of the integration of sports and medicine from the perspective of healthy China—A review of the first China Conference on Physical Education and Health. J. Capital. Univ. Phys. Educ. 2023, 35, 349–358. (In Chinese) [Google Scholar]
- Wu, Q.; Zhang, P.; Chen, J. Interpretation of the 2016 SOSORT guidelines: Orthopedic and rehabilitation treatment of idiopathic scoliosis. Reflexology Rehabil. Med. 2021, 2, 1–5. [Google Scholar]
- Fiore, M.; Ruffilli, A.; Viroli, G.; Barile, F.; Manzetti, M.; Faldini, C. Minimally invasive surgery using posterior-only Pedicle screw fixation in treatment of Adolescent Idiopathic Scoliosis: A Systematic Review and Meta-Analysis. J. Clin. Neurosci. 2022, 99, 317–326. [Google Scholar] [CrossRef]
- Sheffer, B.W.; Kelly, D.M.; Rhodes, L.N.; Sawyer, J.R. Perioperative Pain Management in Pediatric Spine Surgery. Orthop. Clin. North. Am. 2017, 48, 481–486. [Google Scholar] [CrossRef]
- Negrini, S.; Donzelli, S.; Aulisa, A.G.; Czaprowski, D.; Schreiber, S.; de Mauroy, J.C.; Diers, H.; Grivas, T.B.; Knott, P.; Kotwicki, T.; et al. 2016 SOSORT guidelines: Orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth. Scoliosis Spinal Disord. 2018, 13, 3. [Google Scholar] [CrossRef]
- Negrini, S.; Minozzi, S.; Bettany-Saltikov, J.; Chockalingam, N.; Grivas, T.B.; Kotwicki, T.; Maruyama, T.; Romano, M.; Zaina, F. Braces for Idi-Opathic Scoliosis in Adolescents; John Wiley & Sons, Ltd.: Chichester, UK, 2010. [Google Scholar]
- Fusco, C.; Zaina, F.; Atanasio, S.; Romano, M.; Negrini, A.; Negrini, S. Physical exercises in the treatment of adolescent idiopathic scoliosis: An updated sys-tematic review. Physiother. Theory. Pract. 2011, 27, 80–114. [Google Scholar] [CrossRef] [PubMed]
- Burger, M.; Coetzee, W.; du Plessis, L.Z.; Geldenhuys, L.; Joubert, F.; Myburgh, E.; van Rooyen, C.; Vermeulen, N. The effectiveness of Schroth exercises in adolescents with idiopathic scoliosis: A systematic review and meta-analysis. South Afr. J. Physiother. 2019, 75, 904. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-H.; Jeon, H.-S.; Park, H.-W. Effects of the Schroth exercise on idiopathic scoliosis: A meta-analysis. Eur. J. Phys. Rehabil. Med. 2018, 54, 440–449. [Google Scholar] [CrossRef]
- Ceballos-Laita, L.; Carrasco-Uribarren, A.; Cabanillas-Barea, S.; Pérez-Guillén, S.; Pardos-Aguilella, P.; DEL Barrio, S.J. The effectiveness of Schroth method in Cobb angle, quality of life and trunk rotation angle in adolescent idiopathic scoliosis: A systematic review and meta-analysis. Eur. J. Phys. Rehabil. Med. 2023, 59, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savović, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.C.; et al. The cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef]
- Schreiber, S.; Parent, E.C.; Moez, E.K.; Hedden, D.M.; Hill, D.; Moreau, M.J.; Lou, E.; Watkins, E.M.; Southon, S.C. The effect of Schroth exercises added to the standard of care on the quality of life and muscle endurance in adolescents with idiopathic scoliosis-an assessor and statistician blinded randomized controlled trial: “SOSORT 2015 Award Winner”. Scoliosis 2015, 10, 24. [Google Scholar] [CrossRef]
- Shi, J.H. Effect of Schroth training combined with orthosis in adolescent scoliosis. Chin. J. Pract. Med. 2022, 49, 65–67. [Google Scholar]
- Schreiber, S.; Parent, E.C.; Moez, E.K.; Hedden, D.M.; Hill, D.L.; Moreau, M.; Lou, E.; Watkins, E.M.; Southon, S.C. Schroth Physiotherapeutic Scoliosis-Specific Exercises Added to the Standard of Care Lead to Better Cobb Angle Outcomes in Adolescents with Idiopathic Scoliosis—An Assessor and Statistician Blinded Randomized Controlled Trial. PLoS ONE 2016, 11, e0168746. [Google Scholar] [CrossRef]
- Kim, G.; HwangBo, P.N. Effects of Schroth and Pilates exercises on the Cobb angle and weight distribution of patients with scoliosis. J. Phys. Ther. Sci. 2016, 28, 1012–1015. [Google Scholar] [CrossRef]
- Kuru, T.; Yeldan, I.; Dereli, E.E.; Özdinçler, A.R.; Dikici, F.; Çolak, I. The efficacy of three-dimensional Schroth exercises in adolescent idiopathic scoliosis: A randomised controlled clinical trial. Clin. Rehabil. 2016, 30, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, R.A.; Yousef, A.M. Impact of Schroth three-dimensional vs. proprioceptive neuromuscular facilitation techniques in adolescent idiopathic scoliosis: A randomized controlled study. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 7717–7725. [Google Scholar] [PubMed]
- Kocaman, H.; Bek, N.; Kaya, M.H.; Büyükturan, B.; Yetiş, M.; Büyükturan, Ö. The effectiveness of two different exercise approaches in adolescent idiopathic scoliosis: A single-blind, randomized-controlled trial. PLoS ONE 2021, 16, e0249492. [Google Scholar] [CrossRef] [PubMed]
- Akyurek, E.; Zengin Alpozgen, A.; Akgul, T. The preliminary results of physiotherapy scoliosis-specific exercises on spine joint position sense in adolescent idiopathic scoliosis: A randomized controlled trial. Prosthet. Orthot. Int. 2022, 46, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Zapata, K.A.; McIntosh, A.L.; Jo, C.H.; Virostek, D. The Addition of Daytime Physiotherapeutic Scoliosis-specific Exercises to Adolescent Idiopathic Scoliosis Nighttime Bracing Reduces Curve Progression. J. Pediatr. Orthop. 2023, 43, 368–372. [Google Scholar] [CrossRef] [PubMed]
- Moawd, S.A.; Nambi, G.; El-Bagalaty, A.E.; Hassan, S.M.; Elsayed, S.E.B.; Aboelmagd, F.M.; Alhwoaimel, N.A.; Abdeen, H.A. Combined effect of Schroth method and Gensingen brace on Cobb’s angle and pulmonary functions in adolescent idiopathic scoliosis: A prospective, single blinded randomized controlled trial. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 601–610, Retracted in Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 1713. [Google Scholar] [PubMed]
- Kurak, K.; Altunhan, A.; Açak, M.; Korkmaz, M.F.; Düz, S. The Effect of Electrical Muscle Stimulation (EMS) Enhanced Schroth Method Training on Cobb Angle and Quality of Life in Patients with Scoliosis. Pak. J. Med. Health Sci. 2022, 16, 566–570. [Google Scholar] [CrossRef]
- Li, N.; Wang, L. Efficacy of Schrosss gymnastics in moderate adolescent idiopathic scoliosis. Chongqing Med. 2021, 50, 3522–3525, 3530. [Google Scholar]
- Xu, R.; Huang, J. Effect of “Three Steps and Seven Methods” Massage in Adolescent Idiopathic Scoliosis. Chin. J. Contemp. Med. 2022, 29, 135–139. [Google Scholar]
- Lu, Y.; Luo, G.; Xie, H.; Dai, Z. Effect of Schroth therapy combined with Chinese massage in the rehabilitation of adolescent idiopathic scoliosis. Chin. J. General. Pract. 2022, 25, 4059–4064. [Google Scholar]
- Kouwenhoven, J.-W.; Castelein, R.M. The pathogenesis of adolescent idiopathic scoliosis: Review of the literature. Spine 2008, 33, 2898–2908. [Google Scholar] [CrossRef] [PubMed]
- Lau, K.K.L.; Law, K.K.P.; Kwan, K.Y.H.; Cheung, J.P.Y.; Cheung, K.M.C. Proprioception-related gene mutations in relation to the aetiopathogenesis of idiopathic scoliosis: A scoping review. J. Orthop. Res. 2023, 41, 2694–2702. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.C.; Castelein, R.M.; Chu, W.C.; Danielsson, A.J.; Dobbs, M.B.; Grivas, T.B.; Gurnett, C.A.; Luk, K.D.; Moreau, A.; Newton, P.O.; et al. Adolescent idiopathic scoliosis. Nat. Rev. Dis. Primers 2015, 1, 15030. [Google Scholar] [CrossRef] [PubMed]
- Lehnert-Schroth, C. Introduction to the Three-Dimensional Scoliosis Treatment According to Schroth. Physiotherapy 1992, 78, 810–815. [Google Scholar] [CrossRef]
- Ying, X.M.; Lv, L.J.; Zhang, H.Y.; Pan, Y.S.; Li, S.L.; Li, X.M.; Ye, X.; Yang, C.; He, L.L. Correlation between Cobb Angle and straight spinous process Angle in adolescent idiopathic scoliosis. China Orthop. Inj. 2023, 36, 949–953. [Google Scholar]
- Bezalel, T.; Carmeli, E.; Levi, D.; Kalichman, L. The Effect of Schroth Therapy on Thoracic Kyphotic Curve and Quality of Life in Scheuermann’s Patients: A Randomized Controlled Trial. Asian Spine J. 2019, 13, 490–499. [Google Scholar] [CrossRef]
- Pugacheva, N. Corrective Exercises in Multimodality Therapy of Idiopathic Scoliosis in Children-Analysis of Six Weeks Efficiency Pilot Study. Stud. Health Technol. Inform. 2012, 176, 365–371. [Google Scholar]
- Wong, C.K.H.; Cheung, P.W.H.; Samartzis, D.; Luk, K.D.-K.; Cheung, K.M.C.; Lam, C.L.K.; Cheung, J.P.Y. Mapping the SRS22r questionnaire onto the EQ-5D-5L utility score in patients with adolescent idiopathic scoliosis. PLoS ONE 2017, 12, e0175847. [Google Scholar] [CrossRef] [PubMed]
- Lowe, T.G.; Burwell, R.G.; Dangerfield, P.H. Platelet calmodulin levels in adolescent idiopathic scoliosis (AIS): Can they predict curve progression and severity? Summary of an electronic focus group debate of the IBSE. Eur. Spine J. 2004, 13, 257–265. [Google Scholar] [CrossRef]
- Asher, M.; Lai, S.M.; Burton, D.; Manna, B. Discrimination validity of Scoliosis Research Society-22 patient questionnaire: Relation-ship to idiopathic scoliosis curve pattern and curve size. Spine 2003, 28, 74–78. [Google Scholar] [CrossRef]
- Li, K.R.; Zhao, Z.; Chen, M.X. Pulmonary function and respiratory muscle strength in adolescent patients with mild to moderate idiopathic scoliosis. J. Kunming Med. Univ. 2023, 44, 88–93. [Google Scholar]
PICOS | Inclusion Criteria |
---|---|
Population (P) | Adolescents with idiopathic scoliosis, 10° < Cobb angle < 45°, Risser stage < V |
Intervention (I) | Primary use of Schroth training as the main treatment method |
Comparison (C) | Primary use of conservative treatment excluding Schroth training |
Outcome (O) | Cobb angle, angle of trunk rotation (ATR), Scoliosis Research Society-22 (SRS-22) quality of life questionnaire, pulmonary function (FVC, FEV1, FEV1/FVC, MVV, and 6MWT), Walter Reed Visual Assessment Scale (WRVAS); lumbar extensor |
Study Design (S) | Randomized controlled trials (RCTs) |
Study | Age | N | Subject Type | Program Type | Intensity | Outcome | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E | C | E | C | Type | Risser Sign | Cobb Angle | ATR | E | C | ||||
Schreiber 2015 [18] Schreiber 2016 [20] | (13.4 ± 1.6) /(13.4 ± 1.6) | 25/25 | 3c (n = 7), 3cp (n = 15), 4cp (n = 23), 4c (n = 5) | 1.76/1.44 | 29.1° /27.9° | Not available | Schroth | Observation or bracing | 1 h/d, qd, 3 m and 6 m | Biering-Sorensen (BME) test, Scoliosis Research Society (SRS-22r), Spinal Appearance Questionnaire (SAQ) scores, largest Cobb, sum of curve | |||
Kim 2016 [21] | (15.6 ± 1.1) /(15.3 ± 0.8) | 12/12 | Not available | Not available | 24.0 ± 2.6° /23.63 ± 1.5° | Not available | Schroth | Pilates | 60 min, 3 d/w, 12 w | Cobb, weight distribution | |||
Kuru 2016 [22] | (12.9 ± 1.4) /(13.1 ± 1.7) /(12.8 ± 1.2) | 15/15/15 | Not available | 1.5 ± 1.3 /1.4 ± 1.4 /1.0 ± 1.2 | 33.4 ± 8.9° /30.3± 7.6° /30.3 ± 6.6° | 11.9 ± 5.2° | Schroth | Schroth home exercise | Control | 1.5 h, 3 d/w, 24 w | Cobb, ATR, waist asymmetry, maximum hump height, srs-23 | ||
Mohamed 2021 [23] | (14.50 ± 1.2) /(14.9 ± 1.4) | 17/17 | Not available | 3/3.11 | 20.42 ± 2.57° /20.21 ± 2.80° | 8.05 ± 0.65° /8.29 ± 0.68° | Schroth | PNF | 3 d/w, 24 w | Cobb, ATR, static plantar pressure, 6MWT | |||
Kocaman 2021 [24] | (14.07 ± 2.37) /(14.21 ± 2.19) | 14/14 | Lenke I, RT = 3, LT = 5, RTLL = 6 vs. Lenke I, RT = 3, LT = 5, RTLL = 6 | 1.64 ± 1.34 | 10°–20° | ATR-T (8.71 ± 2.37°) ATR-L (4.29 ± 2.73°) | Schroth | Core | 90 min, 3 d/w, 10 w | Cobb, ATR, WRVAS, spinal mobility, peripheral muscle strength, srs-22 | |||
Akyurek 2022 [25] | (13.73 ± 1.83) /(13.86 ± 1.86) | 15/14 | TriLle/TleLri = 7, LriTle/LleTri = 7 TriHle = 1 vs. TriLle/TleLri = 7, LriTle/LleTri = 7. TriHle = 0 | 2.50 ± 1.65 /2.71 ± 2.05 | <25° | ATR-T (5.47 ± 4.29° /6.29 ± 3.75°) ATR-L (5.53 ± 3.09° /6.00 ± 3.53°) | Schroth | Schroth home exercise | 2 d/w, 8 w | JR error, ATR, posture parameters, WRVAS | |||
Zapata 2023 [26] | (12.7 ± 1.3) /(12.1 ± 1.0) | 37/37 | L = 22, TL = 15 vs. L = 23, TL = 14 | After 1 year: 1.6 ± 1.4 /2.3 ± 1.7 | 20°–30° | Not available | Schroth + nighttime bracing | Nighttime bracing | 15 min/d, 5 d/w, 1 y | Cobb, rate of cure progression, surgery recommended | |||
Moawd 2023 [27] | (13.5 ± 1.2) /(13.8 ± 1.5) /(14.1 ± 1.2) | 13/13/12 | Not available | Not available | 35°–40° | 4.5 ± 1.4° /5.2 ± 1.3° /4.9 ± 1.3° | Schroth + brace | Brace | Conventional exercises | Qd, 8 w/24 w | Cobb, ATR, FVC, FEV1, FEV1/FVC, MVV | ||
Kurak 2022 [28] | 14–16 | 8/8/8 | T | Not available | 32.54 ± 5.80°/ 33.26 ± 8.05°/ 31.86 ± 5.12° | Not available | EMS Schroth | Schroth | Control | 3 d/w, 26 w | Cobb, SRS-22 | ||
Li Na 2021 [29] | 10–16 | 18/14 | T = 9, L = 2, TL = 7 vs. T = 7, L = 2, TL = 5 | ≤IV | 33.00 ± 8.13° /31.62 ± 8.15° | 10.28 ± 2.88° /9.79 ± 2.35° | Schroth + brace | Brace | 90 min/d, 3 d/w, 16 w | Cobb angle, PO, CA, TK, LL, ATR, vertebral angel and SRS-22 | |||
Xu Rui 2022 [30] | 12.57 ± 1.31/12.37 ± 1.25 | 30/30 | Not available | I-IV | 21.70 ± 2.26° /21.30 ± 1.93° | Not available | Schroth | Massage | 30 min/d, qd, 8 w | Cobb, SRS-22, trunk muscle strength and angle, clinic efficacy | |||
Lu yuelun 2022 [31] | 13.8 ± 2.1/13.7 ± 3.9 | 20/20 | Not available | Not available | 15 ± 5° /14 ± 4° | 5 ± 2° /5 ± 2° | Massage + Schroth | Massage | 90 min/ d, 3 d/w, 6 m | Cobb, ATR, clinic efficacy | |||
Shi jinhui 2022 [19] | 13.85 ± 1.54/14.09 ± 1.78 | 51/50 | T = 12, L = 23, L = 16 vs. T = 10, L = 27, TL = 13 | ≤IV | 30.74 ± 3.86° /31.32 ± 3.52° | 5.47 ± 1.32° /5.59 ± 1.27° | Schroth + brace | Brace | 1.5 h/d, 3 d/w, 24 w | Cobb, ATR, CA, ATR, trunk muscle strength |
Subgroup | Effect Size | p Value | I2% | P Heterogeneity | Z |
---|---|---|---|---|---|
1.1 Cobb | |||||
1.1.1 10°–20° | −4.22 [−4.60, −3.83] | <0.00001 | 0% | 0.87 | 21.57 |
1.1.2 20°–30° | −2.71 [−3.61, −1.81] | <0.00001 | 0% | 0.61 | 5.89 |
1.1.3 >30° | −2.92 [−4.23, −1.61] | <0.0001 | 24% | 0.27 | 4.36 |
1.2 Risser Sign | |||||
1.2.1 I–II | −4.21 [−4.59, −3.83] | <0.0001 | 0% | 0.083 | 21.51 |
1.2.2 II–III | NA | NA | NA | NA | NA |
1.2.3 >III | −3.56 [−5.30, −1.82] | <0.0001 | NA | NA | 4.01 |
1.3 Intensity | |||||
1.3.1 qd | −2.66 [−3.60, −1.71] | <0.0001 | 24% | 0.27 | 4.41 |
1.3.2 <qd | −4.01 [−4.36, −3.65] | <0.0001 | 41% | 0.11 | 7.67 |
1.4 Duration | |||||
1.4.1 8 w–16 w | −4.01 [−4.38, −3.65] | <0.0001 | 74% | 0.009 | 4.16 |
1.4.2 >16 w | −3.03 [−3.82, −2.24] | <0.0001 | 0% | 0.56 | 7.5 |
Subgroup | Effect Size | p Value | I2% | P Heterogeneity | Z |
---|---|---|---|---|---|
1.1 cobb | |||||
1.1.1 10°–20° | −1.88 [−2.94, −0.82] | 0.0005 | 96% | <0.00001 | 3.49 |
1.1.2 20°–30° | −2.70 [−3.13, −2.27] | <0.00001 | Not applicable | Not applicable | 12.33 |
1.1.3 >30° | −3.12 [−5.69, −0.54] | 0.02 | 92% | <0.00001 | 2.37 |
1.2 ATR | |||||
1.2.1 <5° | −1.17 [−2.55, 0.21] | 0.1 | 82% | 0.02 | 1.66 |
1.2.2 5°–10° | −2.09 [−2.78, −1.40] | <0.00001 | 91% | <0.00001 | 5.91 |
1.2.3 >10° | −4.03 [−7.42, −0.65] | 0.02 | 88% | 0.0002 | 2.33 |
1.3 Risser Sign | |||||
1.3.1 I–II | −3.10 [−4.65, −1.55] | <0.00001 | 98% | <0.00001 | 3.92 |
1.3.2 II–III | −2.32 [−2.93, −1.72] | <0.00001 | 0% | 0.52 | 7.51 |
1.3.3 >III | −2.70 [−3.13, −2.27] | <0.0001 | Not applicable | Not applicable | 12.33 |
1.4 Intensity | |||||
1.4.1 2 d/w | −2.32 [−2.93, −1.72] | <0.00001 | 0% | 0.52 | 7.51 |
1.4.2 3 d/w | −2.25 [−3.15, −1.36] | <0.0001 | 96% | <0.00001 | 4.91 |
1.5 Duration | |||||
1.5.1 <8 w | −5.23 [−7.03, −3.43] | <0.00001 | Not applicable | Not applicable | 5.7 |
1.5.2 8 w–16 w | −1.71 [−2.80, −0.61] | 0.002 | 96% | <0.00001 | 3.05 |
1.5.3 >16 w | −2.50 [−3.94, −1.07] | 0.0006 | 93% | <0.00001 | 3.42 |
Subgroup | Effect Size | p Value | I2% | P Heterogeneity | Z |
---|---|---|---|---|---|
1.1 cobb | |||||
1.1.1 10°–20° | 5.89 [4.07, 7.71] | <0.00001 | Not applicable | Not applicable | 6.34 |
1.1.2 20°–30° | 3.40 [0.82, 5.98] | 0.01 | 94% | <0.0001 | 2.58 |
1.1.3 >30° | 1.40 [0.85, 1.96] | <0.00001 | 11% | 0.32 | 4.94 |
1.2 intensity | |||||
1.2.1 <3 d/w | 2.47 [0.94, 3.99] | <0.0001 | 87% | <0.0001 | 3.17 |
1.2.2 ≥3 d/w | 3.40 [0.82, 5.98] | <0.0001 | 94% | <0.0001 | 3.27 |
1.3 duration | |||||
1.3.1 <8 w | 1.24 [0.45, 2.03] | 0.002 | Not applicable | Not applicable | 3.07 |
1.3.2 8 w–16 w | 3.87 [0.96, 6.79] | 0.009 | 95% | <0.00001 | 2.61 |
1.3.3 >16 w | 2.16 [1.54, 2.78] | <0.00001 | 0% | 0.76 | 6.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Xu, J.; Li, H. Effects of Schroth 3D Exercise on Adolescent Idiopathic Scoliosis: A Systematic Review and Meta-Analysis. Children 2024, 11, 806. https://doi.org/10.3390/children11070806
Chen C, Xu J, Li H. Effects of Schroth 3D Exercise on Adolescent Idiopathic Scoliosis: A Systematic Review and Meta-Analysis. Children. 2024; 11(7):806. https://doi.org/10.3390/children11070806
Chicago/Turabian StyleChen, Chenting, Jialu Xu, and Haifeng Li. 2024. "Effects of Schroth 3D Exercise on Adolescent Idiopathic Scoliosis: A Systematic Review and Meta-Analysis" Children 11, no. 7: 806. https://doi.org/10.3390/children11070806
APA StyleChen, C., Xu, J., & Li, H. (2024). Effects of Schroth 3D Exercise on Adolescent Idiopathic Scoliosis: A Systematic Review and Meta-Analysis. Children, 11(7), 806. https://doi.org/10.3390/children11070806