The Accuracy of Digital Impressions versus Conventional Impressions in Neonates with Cleft Lip and/or Palate: A Laboratory-Based Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cleft Lip and Palate Models
2.2. Impressions Procedures
2.2.1. Conventional Impressions
2.2.2. Digital Impressions
2.3. Model Comparison Procedure
2.3.1. Intra-Arch Measurements
2.3.2. Surface Discrepancy
2.4. Statistical Analysis
3. Results
3.1. Intra-Arch Measurements
3.2. Surface Discrepancy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tanaka, S.A.; Mahabir, R.C.; Jupiter, D.C.; Menezes, J.M. Updating the epidemiology of cleft lip with or without cleft palate. Plast. Reconstr. Surg. 2012, 129, 511e–518e. [Google Scholar] [CrossRef] [PubMed]
- Vig, K.W.L.; Mercado, A.M. Overview of orthodontic care for children with cleft lip and palate, 1915–2015. Am. J. Orthod. Dentofacial. Orthop. 2015, 148, 543–556. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, B.N.; Rosenstein, S.W. Early maxillary orthopedics for the newborn cleft lip and palate patient. An impression and an appliance. Angle Orthod. 1984, 54, 247–263. [Google Scholar] [PubMed]
- World Health Organization. Global Strategies to Reduce the Health Care Burden of Raniofacial Anomalies; Report of WHO meeting on International Collaborative Research on Craniofacial Anomalies; World Health Organization: Geneva, Switzerland, 2001. [Google Scholar]
- Chate, R.A. A report on the hazards encountered when taking neonatal cleft palate impressions (1983–1992). Br. J. Orthod. 1995, 22, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz, R.B.N.; Çakan, D.G.; Noyan, A. Comparison of Oxygen Saturation During Impression Taking Before and After Presurgical Orthopedic Therapy in Babies with Cleft Lip and Palate. Cleft Palate-Craniofacial J. 2017, 54, 582–587. [Google Scholar] [CrossRef] [PubMed]
- Christensen, G.J. Will Digital Impressions Eliminate the Current Problems with Conventional Impressions? J. Am. Dent. Assoc. 2008, 139, 761–763. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.S.; Shin, H.S. Preoperative Planning and Simulation in Patients with Cleft Palate Using Intraoral Three-Dimensional Scanning and Printing. J. Craniofac Surg. 2019, 30, 2245–2248. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.; Winters, J.; Walters, M. Intraoral Digital Impression Technique for a Neonate with Bilateral Cleft Lip and Palate. Cleft Palate-Craniofacial J. 2019, 56, 1120–1123. [Google Scholar] [CrossRef] [PubMed]
- Woodsend, B.; Koufoudaki, E.; Lin, P.; McIntyre, G.; El-Angbawi, A.; Aziz, A.; Shaw, W.; Semb, G.; Reesu, G.V.; Mossey, P.A. Development of intra-oral automated landmark recognition (ALR) for dental and occlusal outcome measurements. Eur. J. Orthod. 2022, 44, 43–50. [Google Scholar] [CrossRef]
- Zhang, M.; Hattori, M.; Akiyama, M.; Elbashti, M.E.; Liu, R.; Sumita, Y.I. Three-dimensional evaluation of the dental arch in cleft lip and palate after prosthetic treatment. J. Prosthodont. Res. 2023, 67, 87–92. [Google Scholar] [CrossRef]
- Ahmed, M.K.; Ahsanuddin, S.; Retrouvey, J.M.; Koka, K.S.; Qureshi, H.; Bui, A.H.; Taub, P.J. Fabrication of Nasoalveolar Molding Devices for the Treatment of Cleft Lip and Palate, Using Stereolithography Additive Manufacturing Processes and Computer-Aided Design Manipulation Software. J. Craniofac Surg. 2019, 30, 2604–2608. [Google Scholar] [CrossRef] [PubMed]
- Shanbhag, G.; Pandey, S.; Mehta, N.; Kini, Y.; Kini, A. A Virtual Noninvasive Way of Constructing a Nasoalveolar Molding Plate for Cleft Babies, Using Intraoral Scanners, CAD, and Prosthetic Milling. Cleft Palate-Craniofacial J. 2020, 57, 263–266. [Google Scholar] [CrossRef] [PubMed]
- Naveau, A.; Grémare, A.; Plaire, V.; Ducret, M.; Loot, M.; Noirrit-Esclassan, E. Digital management of low cost presurgical plates for young patients with palatal cleft. French J. Dent. Med. 2021, 1–6. [Google Scholar] [CrossRef]
- Bous, R.M.; Kochenour, N.; Valiathan, M. A novel method for fabricating nasoalveolar molding appliances for infants with cleft lip and palate using 3-dimensional workflow and clear aligners. Am. J. Orthod. Dentofacial Orthop. 2020, 158, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Batra, P.; Raghavan, S. Technological advancements in presurgical infant orthopedics. In Cleft Craniofacial Orthod; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2023; pp. 149–157. [Google Scholar] [CrossRef]
- Dalessandri, D.; Tonni, I.; Laffranchi, L.; Migliorati, M.; Isola, G.; Bonetti, S.; Visconti, L.; Paganelli, C. Evaluation of a Digital Protocol for Pre-Surgical Orthopedic Treatment of Cleft Lip and Palate in Newborn Patients: A Pilot Study. Dent. J. 2019, 7, 111. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, E.V.; Mcintyre, G.T.; Wang, W.; Gillgrass, T.; Martin, C.B.; Mossey, P.A. Intraoral 3D Scanning or Dental Impressions for the Assessment of Dental Arch Relationships in Cleft Care: Which is Superior? Cleft Palate Craniofacial J. 2016, 53, 568–577. [Google Scholar] [CrossRef] [PubMed]
- Carter, C.B.; Gallardo, F.F.; Colburn, H.E.; Schlieder, D.W. Novel Digital Workflow for Nasoalveolar Molding and Postoperative Nasal Stent for Infants with Cleft Lip and Palate. Cleft Palate-Craniofacial J. 2022, 60, 1176–1181. [Google Scholar] [CrossRef] [PubMed]
- Fomenko, I.; Maslak, E.; Timakov, I.; Tsoy, T. Use of Virtual 3D-Model for the Assessment of Premaxilla Position in 3–4-Year-Olds with Complete Bilateral Cleft Lip and Palate—A Pilot Study. In Proceedings of the 2019 12th International Conference on Developments in eSystems Engineering (DeSE), Kazan, Russia, 7–10 October 2019; pp. 933–938. [Google Scholar] [CrossRef]
- Krey, K.-F.; Ratzmann, A.; Metelmann, P.H.; Hartmann, M.; Ruge, S.; Kordaß, B. Fully digital workflow for presurgical orthodontic plate in cleft lip and palate patients. Int. J. Comput Dent. 2018, 21, 251. [Google Scholar] [PubMed]
- Gong, X.; Yu, Q. Correction of maxillary deformity in infants with bilateral cleft lip and palate using computer-assisted design. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. 2012, 114, S74–S78. [Google Scholar] [CrossRef]
- Unnikrishnan, J.; Etemad Shahidi, Y.; Bakr, M.; Love, R.; Idris, G. Clinician- and Patient-Centred Outcomes of Digital Impressions in Infants with Cleft Lip and Palate: A Systematic Review. Children 2024, 11, 343. [Google Scholar] [CrossRef]
- ISO 5725-1:1994(en); Accuracy (Trueness and Precision) of Measurement Methods and Results—Part 1: General Principles and Definitions. The International Organization for Standardization: Geneva, Switzerland, 2024. Available online: https://www.iso.org/obp/ui/#iso:std:iso:5725:-1:ed-1:v1:en (accessed on 23 March 2024).
- Mangano, F.; Gandolfi, A.; Luongo, G.; Logozzo, S. Intraoral scanners in dentistry: A review of the current literature. BMC Oral. Health 2017, 17, 149. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Velasco, D.; Martín-Vacas, A.; Paz-Cortés, M.M.; Giovannini, G.; Cintora-López, P.; Aragoneses, J.M. Intraoral scanners in children: Evaluation of the patient perception, reliability and reproducibility, and chairside time—A systematic review. Front. Pediatr. 2023, 11, 1213072. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Velasco, D.; Martín-Vacas, A.; Cintora-López, P.; Paz-Cortés, M.M.; Aragoneses, J.M. Comparative Analysis of the Comfort of Children and Adolescents in Digital and Conventional Full-Arch Impression Methods: A Crossover Randomized Trial. Children 2024, 11, 190. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, H.; Aydin, M.N. Digital versus conventional impression method in children: Comfort, preference and time. Int. J. Paediatr. Dent. 2019, 29, 728–735. [Google Scholar] [CrossRef] [PubMed]
- Bosoni, C.; Nieri, M.; Franceschi, D.; Souki, B.Q.; Franchi, L.; Giuntini, V. Comparison between digital and conventional impression techniques in children on preference, time and comfort: A crossover randomized controlled trial. Orthod. Craniofac Res. 2023, 26, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Bittermann, G.K.; de Ruiter, A.P.; Janssen, N.G.; Bittermann, A.J.; van der Molen, A.M.; van Es, R.J.; Rosenberg, A.J.; Koole, R. Management of the premaxilla in the treatment of bilateral cleft of lip and palate: What can the literature tell us? Clin. Oral. Investig. 2016, 20, 207–217. [Google Scholar] [CrossRef] [PubMed]
- ElNaghy, R.; Amin, S.A.; Hasanin, M. Evaluating the accuracy of intraoral direct digital impressions in 2 infants with unilateral cleft lip and palate compared with digitized conventional impression. Am. J. Orthod. Dentofac. Orthop. 2022, 162, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, T.; Kawanabe, H.; Fukui, K. Comparison of conventional impression making and intraoral scanning for the study of unilateral cleft lip and palate. Congenit. Anom. 2023, 63, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Moon, H.S.; Kim, J.-H.; Yoon, H.-I.; Oh, K.C. Accuracy of impression-making methods in edentulous arches: An in vitro study encompassing conventional and digital methods. J. Prosthet. Dent. 2022, 128, 479–486. [Google Scholar] [CrossRef]
- Todd, J.A.; Oesterle, L.J.; Newman, S.M.; Shellhart, W.C. Dimensional changes of extended-pour alginate impression materials. Am. J. Orthod. Dentofacial Orthop. 2013, 143, S55–S63. [Google Scholar] [CrossRef]
- Ting-shu, S.; Jian, S. Intraoral Digital Impression Technique: A Review. J. Prosthodont. 2015, 24, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Weise, C.; Frank, K.; Wiechers, C.; Weise, H.; Reinert, S.; Koos, B.; Xepapadeas, A.B. Intraoral scanning of neonates and infants with craniofacial disorders: Feasibility, scanning duration, and clinical experience. Eur. J. Orthod. 2022, 44, 279–286. [Google Scholar] [CrossRef] [PubMed]
- An, H.; Langas, E.E.; Gill, A.S. Effect of scanning speed, scanning pattern, and tip size on the accuracy of intraoral digital scans. J. Prosthet. Dent. 2024, 131, 1160–1167. [Google Scholar] [CrossRef] [PubMed]
- Kurz, M.; Attin, T.; Mehl, A. Influence of material surface on the scanning error of a powder-free 3D measuring system. Clin. Oral. Investig. 2015, 19, 2035–2043. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Guo, Y.; Jiang, L.; Yu, H. Influence of intraoral conditions on the accuracy of digital and conventional implant impression techniques for two-implant-supported fixed dental prostheses. J. Prosthodont. Res. 2023, 67, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Papaspyridakos, P.; De Souza, A.; Finkelman, M.; Sicilia, E.; Gotsis, S.; Chen, Y.W.; Vazouras, K.; Chochlidakis, K. Digital vs Conventional Full-Arch Implant Impressions: A Retrospective Analysis of 36 Edentulous Jaws. J. Prosthodont. Off. J. Am. Coll. Prosthodont. 2023, 32, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Floriani, F.; Lopes, G.C.; Cabrera, A.; Duarte, W.; Zoidis, P.; Oliveira, D.; Rocha, M.G. Linear Accuracy of Intraoral Scanners for Full-Arch Impressions of Implant-Supported Prostheses: A Systematic Review and Meta-Analysis. Eur. J. Dent. 2023, 17, 964–973. [Google Scholar] [CrossRef]
- Aragón, M.L.C.; Pontes, L.F.; Bichara, L.M.; Flores-Mir, C.; Normando, D. Validity and reliability of intraoral scanners compared to conventional gypsum models measurements: A systematic review. Eur. J. Orthod. 2016, 38, 429–434. [Google Scholar] [CrossRef]
Reference Points | |
---|---|
P | Midline of the premaxilla |
P1 and P2 | The most prominent inferior portion of the premaxilla bilaterally |
A1 and A2 | The most prominent points in the anterior portion of the cleft bilaterally |
C1 and C2 | The canine points bilaterally |
T1 and T2 | The maxillary tuberosities bilaterally |
W1 and W2 | The most prominent points in the posterior portion of the cleft bilaterally |
Linear and Angular Measurements | |
P1-A1 and P2-A2or P-A1 and P/A2 | The distance between the premaxilla and the most anterior point of the alveolar cleft |
A1-A2 | The linear distance measured around alveolar ridges anteriorly |
C1-C2 | Inter canine distance |
T1-T2 | Inter tuberosity distance |
W1 and W2 | Posterior cleft width, linear distance measured between the most prominent points in the posterior part of the cleft on the right and left sides |
P-T1-T2 | The deviation angle from the inter tuberosity line to the most anterior part of the premaxilla |
Descriptive Statistics | |||||
---|---|---|---|---|---|
N | Minimum | Maximum | Mean | Std. Deviation | |
PP1-A1 (mm) | 30 | 7.96 | 10.01 | 8.7093 | 0.49249 |
PP2-A2 (mm) | 30 | 5.37 | 23.30 | 13.4010 | 5.76788 |
A1-A2 (mm) | 30 | 2.35 | 21.74 | 12.5697 | 7.61835 |
C1-C2 (mm) | 42 | 24.48 | 38.14 | 29.6019 | 4.32987 |
T1-T2 (mm) | 42 | 25.91 | 39.60 | 32.4302 | 4.40571 |
W1-W2 (mm) | 30 | 5.01 | 18.84 | 14.0090 | 4.34986 |
P-T1-T2 (angle) | 42 | 59.85 | 76.71 | 67.7481 | 5.44689 |
Valid N (listwise) | 24 |
ANOVA | ||||||
---|---|---|---|---|---|---|
Sum of Squares (mm) | df | Mean Square (mm) | F | Sig. | ||
PP1_A1 | Between Groups | 0.300 | 2 | 0.150 | 0.601 | 0.555 |
Within Groups | 6.734 | 27 | 0.249 | |||
Total | 7.034 | 29 | ||||
PP2_A2 | Between Groups | 2.026 | 2 | 1.013 | 0.028 | 0.972 |
Within Groups | 962.758 | 27 | 35.658 | |||
Total | 964.784 | 29 | ||||
A1_A2 | Between Groups | 0.442 | 2 | 0.221 | 0.004 | 0.996 |
Within Groups | 1682.695 | 27 | 62.322 | |||
Total | 1683.137 | 29 | ||||
C1_C2 | Between Groups | 0.705 | 2 | 0.353 | 0.018 | 0.982 |
Within Groups | 767.954 | 39 | 19.691 | |||
Total | 768.659 | 41 | ||||
T1_T2 | Between Groups | 5.402 | 2 | 2.701 | 0.133 | 0.876 |
Within Groups | 790.419 | 39 | 20.267 | |||
Total | 795.821 | 41 | ||||
W1_W2 | Between Groups | 3.654 | 2 | 1.827 | 0.091 | 0.914 |
Within Groups | 545.064 | 27 | 20.188 | |||
Total | 548.718 | 29 | ||||
P_T1_T2 | Between Groups | 0.323 | 2 | 0.162 | 0.005 | 0.995 |
Within Groups | 1216.088 | 39 | 31.182 | |||
Total | 1216.411 | 41 |
ANOVA | ||||||
---|---|---|---|---|---|---|
Sum of Squares (mm) | df | Mean Square (mm) | F | Sig. | ||
Minimum | Between Groups | 32.260 | 2 | 16.130 | 11.090 | 0.000 |
Within Groups | 56.726 | 39 | 1.455 | |||
Total | 88.986 | 41 | ||||
Maximum | Between Groups | 2.618 | 2 | 1.309 | 4.003 | 0.026 |
Within Groups | 12.754 | 39 | 0.327 | |||
Total | 15.372 | 41 | ||||
Q1 | Between Groups | 0.001 | 2 | 0.001 | 0.005 | 0.995 |
Within Groups | 4.034 | 39 | 0.103 | |||
Total | 4.035 | 41 | ||||
Median | Between Groups | 0.038 | 2 | 0.019 | 0.319 | 0.729 |
Within Groups | 2.315 | 39 | 0.059 | |||
Total | 2.353 | 41 | ||||
Q3 | Between Groups | 0.129 | 2 | 0.064 | 1.625 | 0.210 |
Within Groups | 1.548 | 39 | 0.040 | |||
Total | 1.677 | 41 | ||||
Mean | Between Groups | 0.152 | 2 | 0.076 | 1.140 | 0.330 |
Within Groups | 2.607 | 39 | 0.067 | |||
Total | 2.759 | 41 | ||||
S.D | Between Groups | 0.275 | 2 | 0.138 | 7.523 | 0.002 |
Within Groups | 0.713 | 39 | 0.018 | |||
Total | 0.988 | 41 | ||||
RMS | Between Groups | 0.339 | 2 | 0.170 | 4.599 | 0.016 |
Within Groups | 1.438 | 39 | 0.037 | |||
Total | 1.777 | 41 |
Group | Time | Mean | Intraclass Correlation | 95% Confidence Interval | p Value | |
---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||
IOS | Baseline | 28.97 | 1.000 | 0.997 | 1.000 | <0.001 * |
1 Month | 29.09 | |||||
Alg | Baseline | 29.206 | 0.999 | 0.997 | 1.000 | <0.001 * |
1 Month | 29.358 | |||||
Putty | Baseline | 29.271 | 0.999 | 0.997 | 1.000 | <0.001 * |
1 Month | 29.395 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Unnikrishnan, J.; Bakr, M.; Love, R.; Idris, G. The Accuracy of Digital Impressions versus Conventional Impressions in Neonates with Cleft Lip and/or Palate: A Laboratory-Based Study. Children 2024, 11, 827. https://doi.org/10.3390/children11070827
Unnikrishnan J, Bakr M, Love R, Idris G. The Accuracy of Digital Impressions versus Conventional Impressions in Neonates with Cleft Lip and/or Palate: A Laboratory-Based Study. Children. 2024; 11(7):827. https://doi.org/10.3390/children11070827
Chicago/Turabian StyleUnnikrishnan, Jyotsna, Mahmoud Bakr, Robert Love, and Ghassan Idris. 2024. "The Accuracy of Digital Impressions versus Conventional Impressions in Neonates with Cleft Lip and/or Palate: A Laboratory-Based Study" Children 11, no. 7: 827. https://doi.org/10.3390/children11070827
APA StyleUnnikrishnan, J., Bakr, M., Love, R., & Idris, G. (2024). The Accuracy of Digital Impressions versus Conventional Impressions in Neonates with Cleft Lip and/or Palate: A Laboratory-Based Study. Children, 11(7), 827. https://doi.org/10.3390/children11070827