Immersive Virtual Reality for Pain and Anxiety Management Associated with Medical Procedures in Children and Adolescents: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raja, S.N.; Carr, D.B.; Cohen, M.; Finnerup, N.B.; Flor, H.; Gibson, S.; Keefe, F.J.; Mogil, J.S.; Ringkamp, M.; Sluka, K.A.; et al. The revised International Association for the Study of Pain definition of pain: Concepts, challenges, and compromises. Pain 2020, 161, 1976–1982. [Google Scholar] [CrossRef]
- Lambert, V.; Boylan, P.; Boran, L.; Hicks, P.; Kirubakaran, R.; Devane, D. Virtual reality distraction for acute pain in children. Cochrane Database Syst. Rev. 2020, 10, CD010686. [Google Scholar] [PubMed]
- Asensio-Samper, J.M.; Quesada-Carrascosa, M.; Fabregat-Cid, G.; López-Alarcón, M.D.; de Andrés, J. Practical recommendations for the management of the patient with chronic pain during the pandemic of COVID-19. Rev. Esp. Anestesiol. Reanim. 2020, 68, 495–503. [Google Scholar] [CrossRef] [PubMed]
- García, N.; Merino, M.; García, C.; Lacarta, I.; Carbonell, L.; Pina, B.; Álvarez, F.J.; Arístegui, J. Relief of pain and distress during immunizations. Synthesis of the evidence. Recommendations of the Advisory Committee on Vaccines of the Spanish Association of Pediatrics. Rev. Pediatr. Aten. Primaria 2015, 17, 317–327. [Google Scholar]
- Groenewald, C.B.; Rabbitts, J.A.; Schroeder, D.R.; Harrison, T.E. Prevalence of moderate-severe pain in hospitalized children. Paediatr. Anaesth. 2012, 22, 661–668. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Stadistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2014; pp. 189–200. [Google Scholar]
- Suleiman-Martos, N.; García-Lara, R.A.; Membrive-Jiménez, M.J.; Pradas-Hernández, L.; Romero-Béjar, J.L.; Domínguez-Vías, G. Effect of a game-based intervention on preoperative pain and anxiety in children: A systematic review and meta-analysis. J. Clin. Nurs. 2022, 31, 3350–3367. [Google Scholar] [CrossRef]
- Stevens, B.J.; Abbott, L.K.; Yamada, J. Epidemiology and management of painful procedures in children in Canadian hospitals. Can. Med. Assoc. J. 2011, 183, E403–E410. [Google Scholar] [CrossRef]
- Tran, T.H.; Konara, S.P.; Huang, M.C. Effects of Distraction on Reducing Pain During Invasive Procedures in Children with Cancer: A Systematic Review and Meta-Analysis. Pain. Manag. Nurs. 2022, 23, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Stevens, B.J.; Harrison, D.; Rashotte, J. Pain assessment and intensity in hospitalized children in Canada. J. Pain 2012, 13, 857–865. [Google Scholar] [CrossRef]
- Marotta, F.; Addati, G.A.; Montes de Oca, J.A. Simulaciones con Realidad Inmersiva, Semi Inmersiva y No Inmersiva; Serie Documentos de Trabajo, No. 740; Universidad del Centro de Estudios Macroeconómicos de Argentina (UCEMA): Buenos Aires, Argentina, 2020. [Google Scholar]
- Gershon, J.; Zimand, E.; Pickering, M.; Rothbaum, B.O.; Hodges, L. A pilot and feasibility study of virtual reality as a distraction for children with cancer. J. Am. Acad. Child. Adolesc. Psychiatry 2004, 43, 1243–1249. [Google Scholar] [CrossRef]
- Rothbaum, B.O.; Hodges, L.; Alarcon, R. Virtual reality exposure therapy for PTSD Vietnam Veterans: A case study. J. Trauma. Stress 1999, 12, 263–271. [Google Scholar] [CrossRef]
- Oing, T.; Prescott, J. Implementations of Virtual Reality for Anxiety-Related Disorders: Systematic Review. JMIR Serious Games 2018, 6, e10965. [Google Scholar] [CrossRef]
- Gold, J.I.; Kim, S.H.; Kant, A.J.; Joseph, M.H.; Rizzo, A.S. Effectiveness of virtual reality for pediatric pain distraction during i.v. placement. Cyberpsychol. Behav. 2006, 9, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Simón-Vicente, L.; Rodríguez-Cano, S.; Delgado-Benito, V.; Ausín-Villaverde, V.; Cubo-Delgado, E. Cybersickness. A systematic literature review of adverse effects related to virtual reality. Neurología 2022, 9, 1–9. [Google Scholar] [CrossRef]
- Birnie, K.A.; Noel, M.; Chambers, C.T.; Uman, L.S.; Parker, J.A. Psychological interventions for needle-related procedural pain and distress in children and adolescents. Cochrane Database Syst. Rev. 2018, 10, CD005179. [Google Scholar]
- Cabello-López, J.B. Template to Help You Understand a Clinical Trial [Internet]. Alicante: CASPe, 2005 (CASPe Guides for Critical Reading of Medical Literature). Available online: https://redcaspe.org/ (accessed on 23 November 2023).
- Chan, E.; Hovenden, M.; Ramage, E. Virtual Reality for Pediatric Needle Procedural Pain: Two Randomized Clinical Trials. J. Pediatr. 2019, 209, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Schlechter, A.K.; Whitaker, W.; Iyer, S.; Gabriele, G.; Wilkinson, M. Virtual reality distraction during pediatric intravenous line placement in the emergency department: A prospective randomized comparison study. Am. J. Emerg. Med. 2021, 44, 296–299. [Google Scholar] [CrossRef] [PubMed]
- Özalp, G.; Ayar, D.; Özdemir, E.Z.; Bektaş, M. Effects of virtual reality on pain, fear and anxiety during blood draw in children aged 5-12 years old: A randomised controlled study. J. Clin. Nurs. 2020, 29, 1151–1161. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.N.; Bae, W.; Park, J.W. Virtual reality environment using a dome screen for procedural pain in young children during intravenous placement: A pilot randomized controlled trial. PLoS ONE 2021, 16, e0256489. [Google Scholar] [CrossRef] [PubMed]
- Clerc, P.G.B.; Arneja, J.S.; Zwimpfer, C.M.; Behboudi, A.; Goldman, R.D. A Randomized Controlled Trial of Virtual Reality in Awake Minor Pediatric Plastic Surgery Procedures. Plast. Reconstr. Surg. 2021, 148, 400–408. [Google Scholar] [CrossRef]
- Eijlers, R.; Dierckx, B.; Staals, L.M. Virtual reality exposure before elective day care surgery to reduce anxiety and pain in children: A randomised controlled trial. Eur. J. Anaesthesiol. 2019, 36, 728–737. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.J.; Libaw, J.S.; Ma, K.; Whitlock, E.L.; Feiner, J.R.; Sinskey, J.L. Pediatric Distraction on Induction of Anesthesia with Virtual Reality and Perioperative Anxiolysis: A Randomized Controlled Trial. Anesth. Analg. 2021, 132, 798–806. [Google Scholar] [CrossRef]
- Liu, K.Y.; Ninan, S.J.; Laitman, B.M.; Goldrich, D.Y.; Iloreta, A.M.; Londino, A.V. Virtual Reality as Distraction Analgesia and Anxiolysis for Pediatric Otolaryngology Procedures. Laryngoscope 2021, 131, E1714–E1721. [Google Scholar] [CrossRef] [PubMed]
- Jeffs, D.; Dorman, D.; Brown, S. Effect of virtual reality on adolescent pain during burn wound care. J. Burn Care Res. 2014, 35, 395–408. [Google Scholar] [CrossRef]
- Das, D.A.; Grimmer, K.A.; Sparnon, A.L.; McRae, S.E.; Thomas, B.H. The efficacy of playing a virtual reality game in modulating pain for children with acute burn injuries: A randomized controlled trial. BMC Pediatr. 2005, 5, 1. [Google Scholar] [CrossRef]
- Russo, L.; Tozzi, A.E.; Mastronuzzi, A. Feasibility of a VR Intervention to Decrease Anxiety in Children with Tumors Undergoing CVC Dressing. Int. J. Environ. Res. Public Health 2022, 19, 11953. [Google Scholar] [CrossRef]
- Chang, Z.Y.; Kang, G.C.; Koh, E.Y.L. Immersive Virtual Reality in Alleviating Pain and Anxiety in Children During Immunization in Primary Care: A Pilot Randomized Controlled Trial. Front. Pediatr. 2022, 10, 847257. [Google Scholar] [CrossRef]
- Goldman, R.D.; Behboudi, A. Pilot Randomized Controlled Trial of Virtual Reality vs. Standard-of-Care During Pediatric Laceration Repair. J. Child Adolesc. Trauma. 2021, 14, 295–298. [Google Scholar] [CrossRef]
- Niaz, F.; Tariq, S.; Ahmed, A.M.; Afzal, Y.; Shaikh, T.G.; Nashwan, A.J.; Ullah, I. Virtual reality for pain and anxiety management in children undergoing venipuncture procedures: A systematic review and meta-analysis. Glob. Pediatr. 2023, 4, 100060. [Google Scholar] [CrossRef]
- Wong, C.L.; Lui, M.M.W.; Choi, K.C. Effects of immersive virtual reality intervention on pain and anxiety among pediatric patients undergoing venipuncture: A study protocol for a randomized controlled trial. Trials 2023, 20, 369. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Eijlers, R.; Utens, E.M.W.J.; Staals, L.M. Systematic Review and Meta-analysis of Virtual Reality in Pediatrics: Effects on Pain and Anxiety. Anesth. Analg. 2019, 129, 1344–1353. [Google Scholar] [CrossRef]
- Nordgård, R.; Låg, T. The effects of virtual reality on procedural pain and anxiety in pediatrics: A systematic review and meta-analysis. Front. Virtual Real. 2021, 2, 699383. [Google Scholar] [CrossRef]
- Czech, O.; Wrzeciono, A.; Rutkowska, A.; Guzik, A.; Kiper, P.; Rutkowski, S. Virtual reality interventions for needle-related procedural pain, fear and anxiety—A systematic review and meta-analysis. J. Clin. Med. 2021, 10, 3248. [Google Scholar] [CrossRef] [PubMed]
Databases | Search Strategy | No. of Documents Returned (n=) | Discarded Items (n=) | Final Sample of Documents (n=) |
---|---|---|---|---|
PUBMED | (Treatment Outcome[mh] OR Treatment Outcome[tiab] OR Treatment Effectiveness[tiab] OR Treatment Efficacy[tiab] OR Clinical Effectiveness[tiab] OR Clinical Efficacy[tiab]) AND (Virtual Reality[mh] OR Virtual Reality[tiab] OR Reality Virtual[tiab]) AND (Anxiety[mh] OR Anxiety[tiab] OR Nervousness[tiab] OR “Pain, Procedural”[mh] OR Pain Procedural[tiab] OR Procedural Pain[tiab]) AND (Child[mh] OR Child[tiab] OR Children[tiab] OR Adolescent[mh] OR Adolescent[tiab] OR Adolescents[tiab] OR Adolescence[tiab] OR Teen*[tiab] OR Teenager*[tiab] OR Youth*[tiab]) | No filters: 36 With filters: 23 | Title: 13 Abstract: 1 Full text: 1 | 8 |
CINAHL Complete | (MH “Treatment Outcomes” OR AB “Treatment Effectiveness” OR AB “Treatment Efficacy” OR AB “Clinical Effectiveness” OR AB “Clinical Efficacy”) AND (MH “Virtual Reality” OR AB “Virtual Reality” OR AB “Reality Virtual”) AND (MH “Anxiety” OR AB “Nervousness” OR MH “Pain, Procedural” OR AB “Procedural Pain”) AND (MH “Child” OR AB “Children” OR MH “Adolescence” AB “Adolescent*” OR AB “Teen*” OR AB “Teenager*” OR AB “Youth*”) | No filters: 15 With filters: 5 | Title: 2 Abstract: 0 Full text: 0 | 3 |
SCOPUS | (“Treatment Outcome” OR “Treatment Effectiveness” OR “Treatment Efficacy” OR “Clinical Effectiveness” OR “Clinical Efficacy”) AND (“Virtual Reality” OR “Reality Virtual”) AND (Anxiety OR Nervousness OR “Pain, Procedural” OR “Procedural Pain”) AND (Child OR Children OR Adolescent OR Adolescents OR Adolescence OR Teen* OR Teenager* OR Youth*) | No filters: 80 With filters: 63 | Title: 49 Abstract: 1 Full text: 1 | 12 |
WOS | TS = (“treatment outcome*”) AND TS = (“Virtual Reality”) AND TS = (Anxiety OR “Pain, Procedural”) AND TS = (Child* OR Adolescent) | No filters: 65 With filters: 0 | Title: 0 Abstract: 0 Full text: 0 | 0 |
PROQUEST | (MESH “Treatment Outcome” OR AB “Treatment Effectiveness” OR AB “Treatment Efficacy” OR AB “Clinical Effectiveness” OR AB “Clinical Efficacy”) AND (MESH “Virtual Reality” OR AB “Reality Virtual”) AND (MESH Anxiety OR AB Nervousness OR MESH “Pain, Procedural” OR AB “Procedural Pain”) AND (MESH Child OR AB Children OR MESH Adolescent OR AB Adolescents OR AB Adolescence OR AB Teen* OR AB Teenager* OR AB Youth*) | No filters:562 With filters: 8 | Title: 8 Abstract: 0 Full text: 0 | 0 |
CUIDEN PLUS | (“Realidad Virtual”) AND (“Dolor Asociado a Procedimientos Médicos” OR “Ansiedad”) AND (“Niño” OR “Adolescente”) | No filters: 1 With filters: 1 | Title: 0 Abstract: 0 Full text: 1 | 0 |
ÍnDICEs-CSIC | “realidad virtual” AND “dolor” | No filters: 10 With filters: 10 | Title: 6 Abstract: 1 Full text: 3 | 0 |
Investigation | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 IC% | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|---|
Gershon, J. et al., 2004 [12] | Yes | Yes | Yes | No | NM | Yes | η2 = 0.09 | NM | No | Yes | Yes |
Gold, J.I. et al., 2006 [15] | Yes | Yes | Yes | No | Yes | Yes | rxy = 0.68–0.96 | NM | No | Yes | Yes |
Chan, E. et al., 2019 [19] | Yes | Yes | Yes | No | Yes | Yes | NM | 95 | No | Yes | Yes |
Schlechter, A.K. et al., 2021 [20] | Yes | Yes | Yes | No | Yes | Yes | NM | NM | No | Yes | Yes |
Özalp, G. et al., 2020 [21] | Yes | Yes | Yes | No | Yes | Yes | R2 = 0.041–0.341 | NM | No | Yes | Yes |
Lee, H.N. et al., 2021 [22] | Yes | No | - | - | - | - | - | - | - | - | - |
Clerc, P.G.B. et al., 2021 [23] | Yes | Yes | Yes | No | Yes | Yes | R2N = 0.077; 0.092 | 95 | No | Yes | Yes |
Eijlers, R. et al., 2019 [24] | Yes | Yes | Yes | No | Yes | Yes | NM | NM | No | Yes | Yes |
Jung, M.J. et al., 2021 [25] | Yes | Yes | Yes | No | Yes | Yes | NM | 95; 97.5 | No | Yes | Yes |
Liu, K.Y. et al., 2021 [26] | Yes | Yes | Yes | No | Yes | Yes | rxy = 0.28–0.75 | NM | No | Yes | Yes |
Jeffs, D. et al., 2014 [27] | Yes | Yes | Yes | No | Yes | Yes | NM | 95 | No | Yes | Yes |
Das, D.A. et al., 2005 [28] | Yes | No | - | - | - | - | - | - | - | - | - |
Russo, L. et al., 2022 [29] | Yes | No | - | - | - | - | - | - | - | - | - |
Chang, Z.Y. et al., 2022 [30] | Yes | Yes | Yes | No | Yes | Yes | NM | 95 | No | Yes | Yes |
Goldman, R.D. et al., 2021 [31] | Yes | Yes | Yes | No | Yes | Yes | NM | NM | No | Yes | Yes |
Article | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|---|
Gershon, J. et al., 2004 [12] | Yes p.2 | Yes p.2 | Yes p.2 | Yes p.3 | No p.6 | No p.6 | No p.6 | Yes p.4 | Yes p.4 | Yes p.4 | Yes p.4 |
Gold, J.I. et al., 2006 [15] | Yes p.2 | Yes p.2 | Yes p.2 | Yes p.3 | No | No | No | Yes p.4 | Yes p.4 | Yes p.4 | Yes p.4 |
Chan, E. et al., 2019 [19] | Yes p.2 | Yes p.2 | Yes p.2 | Yes p.3 | No p.2 | No p.2 | No p.2 | Yes p.4 | Yes p.4 | Yes p.4 | Yes p.4 |
Schlechter, A.K. et al., 2021 [20] | Yes p.2 | Yes p.2 | Yes p.2 | Yes p.3 | No p.4 | No p.4 | No p.4 | Yes p.3 | Yes p.3 | Yes p.3 | No |
Özalp, G. et al., 2020 [21] | Yes p.6 | Yes p.6 | Yes p.6 | Yes p.10 | No p.8 | No p.8 | No p.8 | Yes p.11 | Yes p.11 | Yes p.11 | Yes p.11 |
Clerc, P.G.B. et al., 2021 [23] | Yes p.2 | Yes p.2 | Yes p.2 | Yes p.4 | No | No | No | Yes p.4 | Yes p.4 | Yes p.4 | Yes p.4 |
Eijlers, R. et al., 2019 [24] | Yes p.2 | Yes p.2 | Yes p.2 | Yes p.5 | No | No | No | Yes p.6 | Yes p.6 | Yes p.6 | No |
Jung, M.J. et al., 2021 [25] | Yes p.3 | Yes p.3 | Yes p.3 | Yes p.6 | No p.8 | No p.8 | No p.8 | Yes p.6 | Yes p.6 | Yes p.6 | Yes p.6 |
Liu, K.Y. et al., 2020 [26] | Yes p.2 | Yes p.3 | Yes p.3 | Yes p.8 | No p.7 | No p.7 | No p.7 | Yes p.3 | Yes p.3 | Yes p.3 | Yes p.3 |
Jeffs, D. et al., 2014 [27] | Yes p.3 | Yes p.3 | Yes p.3 | Yes p.6 | No p.10 | No p.10 | No p.10 | Yes p.6 | Yes p.6 | Yes p.6 | Yes p.7 |
Chang, Z.Y. et al., 2022 [30] | Yes p.3 | Yes p.4 | Yes p.4 | Yes p.7 | No p.9 | No p.9 | No p.9 | Yes p.7 | Yes p.7 | Yes p.7 | Yes p.8 |
Goldman, R.D. et al., 2021 [31] | Yes p.1 | Yes p.2 | Yes p.2 | Yes p.3 | No | No | No | Yes p.2 | Yes p.2 | Yes p.2 | No |
Intervention | Authors and Year | Design | n | Main Results |
---|---|---|---|---|
Venipuncture | Chan et al., 2019 [19] | RCT | 123 | The VR group reported lower levels of pain (−1.78 †; 95% CI, [−3.24, −0.32]; p = 0.018) and anxiety (−1.75 †; 95% CI: [−3.09, −0.40]; p = 0.01) after venipuncture compared to the SOC group. Caregivers of subjects assigned to the VR group scored children’s distress lower compared to those in the SOC group (VR vs. SOC: 1.0 vs. 4.0; p = 0.02). |
Schlechter et al., 2021 [20] | RCT | 115 | There were no significant differences (p > 0.05) in the number of venipuncture attempts, time of venipuncture, changes in pain, and anxiety of children and their parents between the time before and after the procedure between the control and RV groups. The mean age of those children who did not tolerate VR was 7.4 [6.2, 11.1] vs. 12.6 [9.3, 15.6] of those who did (p = 0.02). | |
Özalp et al., 2020 [21] | RCT | 136 | Children in the VR-roller coaster and VR-ocean reef groups reported and showed less pain (p = 0.00), fear, and anxiety (p = 0.00) before and after blood collection compared to the control group. No differences were found between both VR groups (p > 0.05). | |
Gold et al., 2006 [15] | RCT | 20 | The control group reported a statistically significant increase in pain due to venipuncture (t = −1.00; p > 0.05), while the VR group did not (t = −3.25; p < 0.05). A significant relationship was established between the use of VR and pain intensity (r = 0.82; p < 0.01). | |
Surgical intervention | Clerc et al., 2021 [23] | RCT | 64 | No statistical significance was found in the levels of pain (p = 0.60) and anxiety (p = 0.19) of both groups between pre- and post-QI values. There was a statistical significance in the duration of IQ (VR vs. SOC: 22 min vs. 29 min; p = 0.002). |
Eijlers et al., 2019 [24] | RCT | 121 | No significant differences were found between the VR and SOC groups for the variables of pain, anxiety, and postoperative delirium in the children, as well as anxiety in the parents (p > 0.05). | |
Jung et al., 2021 [25] | RCT | 71 | The control group reported greater increases in anxiety upon entering the operating room (5.0 †; 97.5% CI: [2.0, 8.0]; p < 0.001) and during induction to general anesthesia (13.3 †; 97.5% CI: [3.7, 23.0]; p < 0.001) than the VR group, compared to the measurements taken in the preoperative area. | |
Liu et al., 2020 [26] | RCT | 53 | Subjects in the VR group perceived less pain (p = 0.018), anxiety (p = 0.0002), and distress (p = 0.0001) during endoscopy, and reported greater satisfaction (p = 0.0002) than the control group. Caregivers in the RV group reported less anxiety during the procedure (p = 0.041). | |
Burn care | Jeffs et al., 2014 [27] | RCT | 28 | The passive distraction group reported higher levels of pain during wound care than the VR group (+23.7 mm †; 95% CI: [2.4, 45.0]; p = 0.029), while the SOC group did not show a significant difference (p = 0.32). The VR group was the only group that reported less pain before the procedure than during the procedure. |
Subcutaneous access to central line | Gershon et al., 2004 [12] | RCT | 59 | Children distracted with VR showed lower heart rate during access to the implanted device port, and the nursing staff observed fewer signs of pain (p < 0.05). The control group showed more signs of distress than the VR group and the no-VR group (p < 0.05). |
Vaccination | Chang et al., 2022 [30] | RCT | 30 | Children’s reported pain (p = 0.04) and fear (p = 0.02), as well as their parents’ perceived anxiety (p = 0.009) about vaccination were significantly lower in the VR group in the per-protocol analysis. There was no change in nursing staff anxiety between groups (p = 0.81). |
Closure by second intention | Goldman et al., 2021 [31] | RCT | 62 | No differences were found between the children in the VR group and those in the SOC group for the variables of pain (p = 0.458) and anxiety (p = 0.890) after suturing their wounds. The control group made more positive and fewer negative comments than the VR group (p = 0.10). |
Authors and Year | VR Features | Coste |
---|---|---|
Chan, E. et al., 2019 [19] | Google Pixel XL + Google Daydream. Underwater adventure software. | ND |
Schlechter, A.K. et al., 2021 [20] | VR headset + VR glasses + iPhone + headphones. VR Software. | 899$ |
Özalp, G. et al., 2020 [21] | Samsung Galaxy S5 Note + HMD Samsung Gear Oculus mobile phone. Roller Coaster software or Ocean Rift software. | ND |
Gold, J.I. et al., 2006 [15] | 5DT HMD 800 + control + headset + laptop. Street Luge software. | ND |
Clerc, P.G.B. et al., 2021 [23] | HMD VOX+ Z3 3D + mobile phone Asus Zenfone 2 ZE551ML. Roller Coaster software. | * 30$ |
Eijlers, R. et al., 2019 [24] | HTC Vive HMD + computer. Customized software with virtual operating room environment. | ND |
Jung, M.J. et al., 2021 [25] | Samsung Gear VR. Interactive game. | ND |
Liu, K.Y. et al., 2020 [26] | Oculus Go VR Glasses + controller + headset. SpaceBurgers™ software. | ND |
Jeffs, D. et al., 2014 [27] | VR Glasses Kaiser Optics SR80a + Headset Bose Quiet Comfort 3+ Kensington orbit trackball + PC + tripod; 80° vision. 2003 version SnowWorld software. | ND |
Gershon, J. et al., 2004 [12] | VR device + headset + joystick + monitor. Virtual Gorilla software. | ND |
Chang, Z.Y. et al., 2022 [30] | HMD Oculus Quest. Viewing angle 100°. SILVER 2 min software. | ND |
Goldman, R.D. et al., 2021 [31] | ReTrak Utopia 360 HMD VR + Asus Zenfone 2 ZE551ML mobile phone. VR Roller Coaster application. | 220$ |
Questionnaire or Scale | Chan, E. et al., 2019 [19] | Schlechter, A.K. et al., 2021 [20] | Özalp, G. et al., 2020 [21] | Gold, J.I. et al., 2006 [15] | Clerc, P.G.B. et al., 2021 [23] | Eijlers, R. et al., 2019 [24] | Jung, M.J. et al., 2021 [25] | Liu, K.Y. et al., 2020 [26] | Jeffs, D. et al., 2014 [27] | Gershon, J. et al., 2004 [12] | Chang, Z.Y. et al., 2022 [30] | Goldman, R.D. et al., 2021 [31] | Frequency of Use in Variables (f1); Tests (f2) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FPS-R | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 9; 8 | |||||
1 | |||||||||||||
VAT | 2 | 1 | 3; 3 | ||||||||||
EVA | 2 | 1 | 1 | 2 | * 2 | 12; 6 | |||||||
4 | |||||||||||||
WB faces | 1 | 1 | 1 | 6; 3 | |||||||||
3 | |||||||||||||
CASI | 1 | 1; 1 | |||||||||||
SUDS | 1 | 2; 1 | |||||||||||
* 1 | |||||||||||||
CEMS | 1 | 1; 1 | |||||||||||
mYPAS | 1 | 1 | 2; 2 | ||||||||||
STAIC | * 1 | * 1 | † 1 | 3; 3 | |||||||||
VSA | 1 | 1 | 2; 2 | ||||||||||
APPT-WGRS | 1 | 1; 1 | |||||||||||
CFS | 1 | 1 | 2; 2 | ||||||||||
Likert Scale | 1 | 2; 1 | |||||||||||
1 | |||||||||||||
FLACC | 1 | 1; 1 | |||||||||||
CHEOPS | 1 | 1; 1 |
Article | Evidence |
---|---|
Gershon, J. et al., 2004 [12] | Low |
Gold, J.I. et al., 2006 [15] | Moderate |
Chan, E. et al., 2019 [19] | Moderate |
Schlechter, A.K. et al., 2021 [20] | Low |
Özalp, G. et al., 2020 [21] | Low |
Clerc, P.G.B. et al., 2021 [23] | Moderate |
Eijlers, R. et al., 2019 [24] | Low |
Jung, M.J. et al., 2021 [25] | Moderate |
Liu, K.Y. et al., 2021 [26] | Moderate |
Jeffs, D. et al., 2014 [27] | Low |
Chang, Z.Y. et al., 2022 [30] | Moderate |
Goldman, R.D. et al., 2021 [31] | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Caballero, E.; Ortega-Donaire, L.; Sanz-Martos, S. Immersive Virtual Reality for Pain and Anxiety Management Associated with Medical Procedures in Children and Adolescents: A Systematic Review. Children 2024, 11, 975. https://doi.org/10.3390/children11080975
Sánchez-Caballero E, Ortega-Donaire L, Sanz-Martos S. Immersive Virtual Reality for Pain and Anxiety Management Associated with Medical Procedures in Children and Adolescents: A Systematic Review. Children. 2024; 11(8):975. https://doi.org/10.3390/children11080975
Chicago/Turabian StyleSánchez-Caballero, Eloy, Lucía Ortega-Donaire, and Sebastián Sanz-Martos. 2024. "Immersive Virtual Reality for Pain and Anxiety Management Associated with Medical Procedures in Children and Adolescents: A Systematic Review" Children 11, no. 8: 975. https://doi.org/10.3390/children11080975
APA StyleSánchez-Caballero, E., Ortega-Donaire, L., & Sanz-Martos, S. (2024). Immersive Virtual Reality for Pain and Anxiety Management Associated with Medical Procedures in Children and Adolescents: A Systematic Review. Children, 11(8), 975. https://doi.org/10.3390/children11080975