Growth Stunting and Nutritional Deficiencies among Children and Adolescents with Celiac Disease in Kuwait: A Case–Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
Justification for Choice of Controls
2.2. Study Questionnaire
2.3. Nutritional Assessment
2.3.1. Anthropometric Measurements
2.3.2. Adherence to GFD
2.3.3. Biochemical Tests
2.4. Statistical Analysis
2.5. Sample Size Calculations
3. Results
3.1. Demographic Characteristics
3.2. Clinical Characteristics
3.3. Nutritional Status: Anthropometric Assessment
3.4. GFD Compliance
3.5. Biochemical Assessment
3.6. Factors Associated with CD and Growth Stunting
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dunne, M.R.; Byrne, G.; Chirdo, F.G.; Feighery, C. Coeliac disease pathogenesis: The uncertainties of a well-known immune-mediated disorder. Front. Immunol. 2020, 11, 1374. [Google Scholar] [CrossRef]
- Szajewska, H.; Shamir, R.; Mearin, L.; Ribes-Koninckx, C.; Catassi, C.; Domellöf, M.; Fewtrell, M.S.; Husby, S.; Papadopoulou, A.; Vandenplas, Y.; et al. Gluten introduction and the risk of coeliac disease: A position paper by the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition. J. Pediatr. Gastroenterol. Nutr. 2016, 62, 507–513. [Google Scholar] [CrossRef]
- Farage, P.; Zandonadi, R. The gluten-free diet: Difficulties celiac disease patients have to face daily. Austin J. Nutr. Food Sci. 2014, 2, 1027. [Google Scholar]
- Rajani, S.; Alzaben, A.; Shirton, L.; Persad, R.; Huynh, H.Q.; Mager, D.R.; Turner, J.M. Exploring anthropometric and laboratory differences in children of varying ethnicities with celiac disease. Can. J. Gastroenterol. Hepatol. 2014, 28, 351–354. [Google Scholar] [CrossRef]
- Tortora, R.; Capone, P.; De Stefano, G.; Imperatore, N.; Gerbino, N.; Donetto, S.; Monaco, V.; Caporaso, N.; Rispo, A. Metabolic syndrome in patients with coeliac disease on a gluten-free diet. Aliment. Pharmacol. Ther. 2015, 41, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Al-Qabandi, W.; Buhamrah, E.; Al-Abdulrazzaq, D.; Hamadi, K.; Al Refaee, F. Celiac disease in children: Is it a problem in Kuwait? Clin. Exp. Gastroenterol. 2015, 8, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Boguszewski, M.C.; Cardoso-Demartini, A.; Geiger Frey, M.C.; Celli, A. Celiac disease, short stature and growth hormone deficiency. Transl. Gastrointest. Cancer 2015, 4, 69–75. [Google Scholar] [CrossRef]
- Weiss, B.; Skourikhin, Y.; Modan-Moses, D.; Broide, E.; Fradkin, A.; Bujanover, Y. Is the adult height of patients with celiac disease influenced by delayed diagnosis? Am. J. Gastroenterol. 2008, 103, 1770–1774. [Google Scholar] [CrossRef]
- Kreutz, J.M.; Heynen, L.; Vreugdenhil, A.C.E. Nutrient deficiencies in children with celiac disease during long term follow-up. Clin. Nutr. 2023, 42, 1175–1180. [Google Scholar] [CrossRef]
- Moya, D.A.; Nugent, C.A.; Baker, R.D.; Baker, S.S. Celiac Disease Nutritional Status and Poor Adherence to Follow-up. Clin. Pediatr. 2020, 59, 649–655. [Google Scholar] [CrossRef]
- Allowaymi, S.S.; Binobead, M.A.; Alshammari, G.M.; Alrasheed, A.; Mohammed, M.A.; Yahya, M.A. Nutritional Status of Saudi Children with Celiac Disease Following the Ministry of Health’s Gluten-Free Diet Program. Nutrients 2022, 14, 2792. [Google Scholar] [CrossRef]
- Assiri, A.M. Isolated short stature as a presentation of celiac disease in Saudi children. Pediatr. Rep. 2010, 2, e4. [Google Scholar] [CrossRef]
- Husby, S.; Koletzko, S.; Korponay-Szabó, I.R.; Mearin, M.L.; Phillips, A.; Shamir, R.; Troncone, R.; Giersiepen, K.; Branski, D.; Catassi, C.; et al. European Society for Pediatric Gastroenterology, Hepatology and Nutrition guidelines for the diagnosis of coeliac disease. J. Pediatr. Gastroenterol. Nutr. 2012, 54, 136–160. [Google Scholar] [CrossRef] [PubMed]
- Mędza, A.; Szlagatys-Sidorkiewicz, A. Nutritional Status and Metabolism in Celiac Disease: Narrative Review. J. Clin. Med. 2023, 12, 5107. [Google Scholar] [CrossRef]
- Pinto-Sanchez, M.I.; Blom, J.J.; Gibson, P.R.; Armstrong, D. Nutrition Assessment and Management in Celiac Disease. Gastroenterology 2024, 167, 116–131.e1. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.W.; Handu, D. Nutrition Assessment, Interventions, and Monitoring for Patients with Celiac Disease: An Evidence Analysis Center Scoping Review. J. Acad. Nutr. Diet. 2020, 120, 1381–1406. [Google Scholar] [CrossRef] [PubMed]
- Abdi, F.; Zuberi, S.; Blom, J.J.; Armstrong, D.; Pinto-Sanchez, M.I. Nutritional Considerations in Celiac Disease and Non-Celiac Gluten/Wheat Sensitivity. Nutrients 2023, 15, 1475. [Google Scholar] [CrossRef]
- Pinto-Sanchez, M.I.; Bai, J.C. Toward New Paradigms in the Follow Up of Adult Patients With Celiac Disease on a Gluten-Free Diet. Front. Nutr. 2019, 6, 153. [Google Scholar] [CrossRef]
- Dennis, M.; Lee, A.R.; McCarthy, T. Nutritional Considerations of the Gluten-Free Diet. Gastroenterol. Clin. N. Am. 2019, 48, 53–72. [Google Scholar] [CrossRef]
- Kuczmarski, R.J.; Kuczmarski, M.F.; Roche, A.F. 2000 CDC growth charts. Top. Clin. Nutr. 2002, 17, 15–26. [Google Scholar] [CrossRef]
- Ferreira, H.D.S. Anthropometric assessment of children’s nutritional status: A new approach based on an adaptation of Waterlow’s classification. BMC Pediatr. 2020, 20, 65. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Hemoglobin Concentrations for the Diagnosis of Anemia and Assessment of Severity. Available online: https://www.who.int/publications/i/item/WHO-NMH-NHD-MNM-11.1 (accessed on 21 July 2021).
- World Health Organization. Serum Ferritin Concentrations for the Assessment of Iron Status and Iron Deficiency in Populations. Available online: https://www.who.int/publications/i/item/9789240008526 (accessed on 14 May 2021).
- De Benoist, B. Conclusions of a WHO technical consultation on folate and vitamin B12 deficiencies. Food Nutr. Bull. 2008, 29, S238–S244. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine (IOM). Dietary Reference Intakes for Calcium and Vitamin D; The National Academy Press: Washington, DC, USA, 2011. [Google Scholar]
- Kelsey, J.L.; Whittemore, A.S.; Evans, A.S.; Thompson, W.D. Methods in Observational Epidemiology; Oxford University Press: Oxford, UK, 1996. [Google Scholar]
- Dehbozorgi, M.; Honar, N.; Ekramzadeh, M.; Saki, F. Clinical manifestations and associated disorders in children with celiac disease in southern Iran. BMC Pediatr. 2020, 20, 256. [Google Scholar] [CrossRef] [PubMed]
- Setavand, Z.; Ekramzadeh, M.; Honar, N. Evaluation of malnutrition status and clinical indications in children with celiac disease: A cross-sectional study. BMC Pediatr. 2021, 21, 147. [Google Scholar] [CrossRef]
- Al-Taiar, A.; Al Qaoud, N.; Sharaf Alddin, R.; Alanezi, F.; Subhakaran, M.; Dumadag, A.; Albatineh, A.N. Stunting and combined overweight with stunting among school children in Kuwait: Trends over 13 years. Med. Princ. Pract. 2021, 30, 515–521. [Google Scholar] [CrossRef]
- Singh, A.D.; Singh, P.; Farooqui, N.; Strand, T.; Ahuja, V.; Makharia, G.K. Prevalence of celiac disease in patients with short stature: A systematic review and meta-analysis. J. Gastroenterol. Hepatol. 2021, 36, 44–54. [Google Scholar] [CrossRef]
- Masood, J.; Rehman, H.; Anjum, Z.M.; Iqbal, I.; Zafar, S.; Ayesha, H. Prevalence of celiac disease in idiopathic short stature children presenting in OPD of children hospital, Faisalabad. Ann. Punjab. Coll. 2020, 14, 9–12. [Google Scholar] [CrossRef]
- Kozioł-Kozakowska, A.; Salamon, D.; Grzenda-Adamek, Z.; Krawczyk, A.; Duplaga, M.; Gosiewski, T.; Kowalska-Duplaga, K. Changes in diet and anthropometric parameters in children and adolescents with celiac disease-one year of follow-up. Nutrients 2021, 13, 4306. [Google Scholar] [CrossRef]
- Hoffman, D.J.; Sawaya, A.L.; Verreschi, I.; Tucker, K.L.; Roberts, S.B. Why are nutritionally stunted children at increased risk of obesity? Studies of metabolic rate and fat oxidation in shantytown children from São Paulo, Brazil. Am. J. Clin. Nutr. 2000, 72, 702–707. [Google Scholar] [CrossRef]
- Popkin, B.M.; Richards, M.K.; Montiero, C.A. Stunting is associated with overweight in children of four nations that are undergoing the nutrition transition. J. Nutr. 1996, 126, 3009–3016. [Google Scholar] [CrossRef]
- Fernald, L.C.; Neufeld, L.M. Overweight with concurrent stunting in very young children from rural Mexico: Prevalence and associated factors. Eur. J. Clin. Nutr. 2007, 61, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Bain, L.E.; Awah, P.K.; Geraldine, N.; Kindong, N.P.; Sigal, Y.; Bernard, N.; Tanjeko, A.T. Malnutrition in Sub-Saharan Africa: Burden, causes and prospects. Pan. Afr. Med. J. 2013, 15, 120. [Google Scholar] [CrossRef] [PubMed]
- Atsu, B.K.; Guure, C.; Laar, A.K. Determinants of overweight with concurrent stunting among Ghanaian children. BMC Pediatr. 2017, 17, 177. [Google Scholar] [CrossRef] [PubMed]
- Pettifor, J.M. Combined stunting and overweight in young children—A paradox? S. Afr. J. Clin. Nutr. 2006, 19, 98–100. [Google Scholar] [CrossRef]
- Sunguya, B.F.; Ong, K.I.; Dhakal, S.; Mlunde, L.B.; Shibanuma, A.; Yasuoka, J.; Jimba, M. Strong nutrition governance is a key to addressing nutrition transition in low and middle-income countries: A review of countries’ nutrition policies. Nutr. J. 2014, 13, 65. [Google Scholar] [CrossRef]
- Al-Taiar, A.; Alqaoud, N.; Ziyab, A.H.; Alanezi, F.; Subhakaran, M.; Sharaf Alddin, R.; Anna Jeng, H.; Akpinar-Elci, M. Time trends of overweight and obesity among schoolchildren in Kuwait over a 13-year period (2007–2019): Repeated cross-sectional study. Public Health Nutr. 2021, 24, 5318–5328. [Google Scholar] [CrossRef]
- Dibaise, J.K.; Frank, D.N.; Mathur, R. Impact of the gut microbiota on the development of obesity: Current concepts. Am. J. Gastroenterol. Suppl. 2012, 1, 22–27. [Google Scholar] [CrossRef]
- Baothman, O.A.; Zamzami, M.A.; Taher, I.; Abubaker, J.; Abu-Farha, M. The role of gut microbiota in the development of obesity and diabetes. Lipids Health Dis. 2016, 15, 108. [Google Scholar] [CrossRef]
- Reilly, N.R.; Aguilar, K.; Hassid, B.G.; Cheng, J.; Defelice, A.R.; Kazlow, P.; Bhagat, G.; Green, P.H. Celiac disease in normal-weight and overweight children: Clinical features and growth outcomes following a gluten-free diet. J. Pediatr. Gastroenterol. Nutr. 2011, 53, 528–531. [Google Scholar] [CrossRef]
- Freeman, H.J. Iron deficiency anemia in celiac disease. World J. Gastroenterol. 2015, 21, 9233–9238. [Google Scholar] [CrossRef]
- Mazza, G.A.; Marrazzo, S.; Gangemi, P.; Battaglia, E.; Giancotti, L.; Miniero, R. Oral iron absorption test with ferrous bis-glycinate chelate in children with celiac disease. Minerva Pediatr. 2019, 71, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Talarico, V.; Giancotti, L.; Mazza, G.A.; Miniero, R.; Bertini, M. Iron deficiency anemia in celiac disease. Nutrients 2021, 13, 1695. [Google Scholar] [CrossRef] [PubMed]
- Stefanelli, G.; Viscido, A.; Longo, S.; Magistroni, M.; Latella, G. Persistent iron deficiency anemia in patients with celiac disease despite a gluten-free diet. Nutrients 2020, 12, 2176. [Google Scholar] [CrossRef] [PubMed]
- Alkazemi, D.; Rahman, A.; Habra, B. Alterations in glutathione redox homeostasis among adolescents with obesity and anemia. Sci. Rep. 2021, 11, 3034. [Google Scholar] [CrossRef]
- Sanseviero, M.T.; Mazza, G.A.; Pullano, M.N.; Oliveiro, A.C.; Altomare, F.; Pedrelli, L.; Dattilo, B.; Miniero, R.; Meloni, G.; Giancotti, L.; et al. Iron deficiency anemia in newly diagnosed celiac disease in children. Minerva Pediatr. 2016, 68, 1–4. [Google Scholar]
- Dickey, W.; Kearney, N. Overweight in celiac disease: Prevalence, clinical characteristics, and effect of a gluten-free diet. Am. J. Gastroenterol. 2006, 101, 2356–2359. [Google Scholar] [CrossRef]
- Rondanelli, M.; Faliva, M.A.; Gasparri, C.; Peroni, G.; Naso, M.; Picciotto, G.; Riva, A.; Nichetti, M.; Infantino, V.; Alalwan, T.A.; et al. Micronutrients dietary supplementation advices for celiac patients on a long-term gluten-free diet with good compliance: A review. Medicina 2019, 55, 337. [Google Scholar] [CrossRef]
- Caruso, R.; Pallone, F.; Stasi, E.; Romeo, S.; Monteleone, G. Appropriate nutrient supplementation in celiac disease. Ann. Med. 2013, 45, 522–531. [Google Scholar] [CrossRef]
- Friedman, A. Micronutrient deficiencies in pediatric celiac disease. Infant Child Adolesc. Nutr. 2012, 4, 156–167. [Google Scholar] [CrossRef]
- Rotondi Aufiero, V.; Fasano, A.; Mazzarella, G. Non-celiac gluten sensitivity: How its gut immune activation and potential dietary management differ from celiac disease. Mol. Nutr. Food Res. 2018, 62, e1700854. [Google Scholar] [CrossRef]
- Zanobini, P.; Lorini, C.; Lastrucci, V.; Minardi, V.; Possenti, V.; Masocco, M.; Garofalo, G.; Mereu, G.; Bonaccorsi, G. Health literacy, socio-economic determinants, and healthy behaviours: Results from a large representative sample of Tuscany region, Italy. Int. J. Environ. Res. Public Health. 2021, 18, 12432. [Google Scholar] [CrossRef] [PubMed]
- Wessels, M.M.; van Veen, I.I.; Vriezinga, S.L.; Putter, H.; Rings, E.H.; Mearin, M.L. Complementary serologic investigations in children with celiac disease is unnecessary during follow-up. J. Pediatr. 2016, 169, 55–60. [Google Scholar] [CrossRef] [PubMed]
Characteristics; n (%) | Variable | Patients with CD (n = 77) | Healthy Controls (n = 30) | Univariate Logistic Regression |
---|---|---|---|---|
Sex | Female | 42 (54.5) | 15 (50.0) | p = 0.672 |
Male | 35 (45.5) | 15 (50.0) | ||
Age group, years | <5 | 5 (6.5) | - | p = 0.418 |
5–9 | 27 (35.1) | 11 (36.7) | ||
10–14 | 36 (46.8) | 15 (50.0) | ||
15–19 | 9 (11.7) | 4 (13.3) | ||
Type of CD case | Follow-up | 56 (72.7) | - | |
Newly diagnosed | 21 (27.2) | - | ||
Nationality | Kuwaiti | 44 (57.1) | 26 (86.7) | OR, 4.875 (1.55–15.33); p = 0.007 |
Non-Kuwaiti | 33 (42.9) | 4 (13.3) | ||
Participating hospital | Al-Amiri | 45 (58.4) | 11 (36.7) | p = 0.102 |
Mubarak Al-Kabeer | 14 (18.2) | 5 (16.7) | ||
Al-Adan | 10 (13.0) | 9 (30.0) | ||
Al-Sabah | 8 (10.4) | 5 (16.7) | ||
Respondent | Mother | 11 (14.3) | - | |
Father | 3 (3.9) | - | ||
Both | 60 (77.9) | 30 (100) | ||
Others | 3 (3.9) | - | ||
Educational attainment, mother | Less than Secondary | 9 (11.7) | - | OR, 0.442 (0.245–0.798); p = 0.007 |
Secondary School | 16 (20.8) | - | ||
Diploma | 18 (23.4) | 12 (40) | ||
BSc and above | 34 (44.2) | 18 (60) | ||
Educational attainment, father | Less than Secondary | 8 (10.4) | - | OR, 0.556 (0.327–0.945); p = 0.030 |
Secondary School | 16 (20.8) | 2 (6.7) | ||
Diploma | 16 (20.8) | 10 (38.5) | ||
BSc and above | 37 (48.1) | 18 (32.7) | ||
Socioeconomic status (total monthly family income) | KD < 500 | 7 (9.1) | - | OR, 0.339 (0.202–0.571); p < 0.001 |
KD 500–1000 | 13 (16.9) | - | ||
KD 1001–1500 | 25 (32.5) | 5 (16.7) | ||
KD 1501–2000 | 16 (20.8) | 6 (20.0) | ||
KD > 2000 | 16 (20.8) | 19 (63.3) |
Characteristics n (%) | Variable | Patients with Celiac Disease n = 77 | Healthy Controls n = 30 | p-Value |
---|---|---|---|---|
Reported Symptoms | Yes | 65 (84.4) | 2 (6.7) | <0.001 |
No | 12 (15.6) | 28 (93.3) | ||
Constipation | Yes | 30 (39.0) | 1 (3.3) | <0.001 |
No | 47 (61.0) | 29 (96.7) | ||
Diarrhea | Yes | 25 (32.5) | -- | |
No | 52 (67.5) | 30 (100) | ||
Bloody stool | Yes | 14 (18.2) | -- | |
No | 63 (81.8) | 30 (100) | ||
Fatigue | Yes | 12 (15.6) | -- | |
No | 65 (84.4) | 30 (100) | ||
Vomiting | Yes | 21 (27.3) | -- | |
No | 56 (72.7) | 30 (100) | ||
Abdominal pain | Yes | 38 (49.4) | -- | |
No | 39 (50.6) | 30 (100) | ||
Bloating | Yes | 33 (42.9) | 1 (3.3) | <0.001 |
No | 44 (57.1) | 29 (96.7) | ||
Itchy skin lesions | Yes | 5 (6.5) | 1 (3.3) | |
No | 72 (93.5) | 29 (96.7) | ||
T1DM a | Yes | 21 (27.3) | -- | |
No | 56 (72.7) | 30 (100) | ||
Anemia b | Yes | 15 (19.5) | 1 (3.3) | 0.037 |
No | 62 (80.5) | 29 (96.7) | ||
Hypothyroidism | Yes | 2 (2.6%) | 0 (0%) | |
No | 75 (97.4%) | 30 (100%) | ||
Medication | Yes | 32 (41.6) | -- | |
No | 45 (58.4) | 30 (100) |
Category, n (%) | Patients with CD (n = 77) | Healthy Controls (n = 30) | Univariate Logistic Regression | |
---|---|---|---|---|
Stature-for-age 1 | Short stature | 24 (31) | - | p = 0.997 |
Normal | 46 (59.7) | 30 b (100) | ||
Tall stature | 7 (9.1) | - | ||
BMI-for-age 2 | Underweight | 16 a (20.8) | 1 b (3.30) | p = 0.871 |
Normal weight | 35 a (45.5) | 23 b (76.6) | ||
Overweight | 5 (6.5) | - | ||
Obese | 21 (27.3) | 6 (20.1) | ||
Nutritional status 3 | Undernutrition/growth stunting only | 17 (22.1) | - | |
Undernutrition/wasting only | 12 (15.6) | 1 (3.3) | ||
Concurrent stunting and wasting | 4 (5.2) | - | ||
Stunting and overweight | 3 (3.9) | - | ||
Overweight only | 23 (29.9) | 6 (20) | ||
Normal eutrophic | 18 (23.4) | 23 (76.7) | ||
IDA | Yes | 28 (36.4) | 2 (6.7) | OR, 8.00 (1.771–36.135); p = 0.007 |
No | 49 (63.3) | 28 (93.3) | ||
Iron deficiency | Low ferritin | 30 (41.1) | - | p = 0.998 |
Normal ferritin | 43 (58.9) | 30 (100) | ||
Vitamin D status | Deficiency | 49 (65.3) | 8 (26.7) | OR, 6.65 (1.91–16.71); p = 0.002 |
Insufficiency | 13 (17.3) | 10 (33.3) | p = 0.754 | |
Normal | 13 (17.3) | 12 (40) | One ref | |
Vitamin B12 status | Deficiency | 28 (46.7) | - | p = 0.996 |
Megaloblastic anemia | 9 (15) | - | ||
Normal | 23 (38.3) | 30 (100) |
Characteristics | Patients with CD (n = 77) | Healthy Controls (n = 30) | p-Value | Mann–Whitney U Test | Univariate Logistic Regression |
---|---|---|---|---|---|
Height, cm | 134.4 ± 19.3 | 145.0 ± 16.8 | 0.010 | ||
133 (122.75–149.30) | 144.50 (130.75–160.25) | X2 = 4.490; df = 1; p = 0.034 | OR = 0.969 (0.946–0.993); p = 0.013 | ||
Stature-for-age percentile | 39.9 ± 36.4 | 60.4 ± 22.3 | 0.005 | ||
26.44 (3.84–76.96) | 61.60 (47.01–79.27) | X2 = 8.170; df = 1; p = 0.004 | OR = 0.982 (0.969–0.995); p = 0.007 | ||
Weight, kg | 37.7 ± 22.5 | 42.2 ± 16.1 | 0.326 | ||
30.00 (23.00–45.00) | 39.00 (29.23–52.750 | X2 = 3.990; df = 1; p = 0.046 | p = 0.326 | ||
Weight-for-age percentile | 47.5 ± 39.2 | 64.2 ± 25.3 | 0.033 | ||
36.69 (8.69–91.92) | 66.79 (47.71–85.44) | X2 = 5.895; df = 1; p = 0.015 | OR = 0.987 (0.975–0.999); p = 0.036 | ||
BMI, kg/m2 | 19.4 ± 6.2 | 19.3 ± 3.8 | 0.981 | ||
50.10 (8.15–92.80) | 18.75 (16.58–21.38) | p = 0.256 | p = 0.981 | ||
BMI-for-age percentile | 50.8 ± 38.9 | 61.5 ± 23.9 | 0.164 | ||
123.00 (113.00–131.00) | 61.0 (44.85–79.48) | p = 0.480 | p = 0.164 | ||
Hemoglobin | 122.9 ± 12.9 | 129.6 ± 8.3 | 0.01 | ||
123.00 (113.00–131.00) | 129.50 (124.25–135.00) | p = 0.091 | OR = 0.943 (0.905–0.984); p = 0.006 | ||
Ferritin | 35.5 ± 37.3 | 35.3 ± 18.8 | 0.985 | ||
21.00 (8.91–50.54) | 30.0 (19.80–47.25) | p = 0.251 | p = 0.998 | ||
Serum vitamin D | 179 ± 101.5 | 288.8 ± 71.9 | <0.001 | ||
33.00 (22.00–67.00) | 67.50 (43.75–112.25) | X2 = 10.905; df = 1; p < 0.001 | OR = 0.414 (0.245–0.701); p = 0.001 | ||
Serum vitamin B12 | 48.9 ± 39.3 | 80.2 ± 48.8 | 0.001 | ||
167.00 (100.25–224.00) | 281.00 (237.75–333.50) | X2 = 26.450; df = 1; p < 0.001 | OR = 0.988 (0.982–0.993); p < 0.001 |
Independent Variables | B | SE | Wald | df | p-Value | Exp(B) | 95% CI for Exp(B) | R = 0.509 | |
Lower | Upper | ||||||||
Age group | −1.26 | 0.47 | 7.33 | 1 | 0.007 | 0.28 | 0.11 | 0.71 | |
Monthly family income | −1.18 | 0.31 | 14.53 | 1 | <0.001 | 0.31 | 0.17 | 0.57 | |
Anemia categories | 2.69 | 0.93 | 8.48 | 1 | 0.004 | 14.76 | 2.41 | 90.36 | |
Serum vitamin D | −0.996 | 0.36 | 7.52 | 1 | 0.006 | 0.37 | 0.18 | 0.75 | |
Constant | 7.54 | 2.24 | 11.36 | 1 | <0.001 | 1880.11 |
Categorical Characteristics | With Growth Stunting *, % (n) | p-Value | |
---|---|---|---|
Mother’s education | Secondary school or less | 14 (56.0) | <0.001 |
College diploma and higher | 10 (12.2) | ||
Father’s education | Secondary school or less | 10 (38.5) | 0.032 |
College diploma and higher | 14 (17.3) | ||
Nationality | Kuwaiti | 8 (11.4) | <0.001 |
Non-Kuwaiti | 24 (22.4) | ||
Monthly family income | KD < 500 | 5 (71.4) | <0.001 |
KD 500–1000 | 7 (53.8) | ||
KD 1001–1500 | 8 (26.7) | ||
KD 1501–2000 | 4 (18.2) | ||
KD > 2000 | 0 | ||
Weight status | Underweight | 4 (23.5) | 0.164 |
Normal Weight | 17 (29.3) | ||
Overweight | 1 (20.0) | ||
Obese | 2 (7.4) | ||
Vitamin D deficiency | Deficient | 15 (26.3) | 0.353 |
Insufficient | 5 (21.7) | ||
Sufficient | 3 (12.0) | ||
Anemia | Yes | 8 (33.3) | 0.339 |
No | 16 (66.7) | ||
Ferritin | <12 ng/mL (low) | 14 (46.7) | <0.001 |
12–306.8 ng/mL (normal) | 9 (12.3) | ||
ATTGa | Negative (compliant) | 14 (18.2) | 0.122 |
Positive (non-compliant) | 10 (33.3) | ||
Vitamin B12 | 180–914 ng/mL (normal) | 10 (18.9) | 0.337 |
150 to <180 ng/mL (megaloblastic anemia) | 3 (33.3) | ||
<150 ng/mL (deficiency) | 9 (32.1) |
Independent Variables | B | SE | Wald | df | p-Value | Exp(B) | 95% CI for Exp(B) | R = 0.516 | |
Lower | Upper | ||||||||
Mother’s education | −0.97 | 0.39 | 6.15 | 1 | 0.013 | 0.38 | 0.18 | 0.82 | |
Monthly family income | −0.78 | 0.34 | 5.24 | 1 | 0.022 | 0.46 | 0.24 | 0.89 | |
Ferritin | −1.49 | 0.68 | 4.76 | 1 | 0.029 | 0.23 | 0.06 | 0.86 | |
Constant | 6.63 | 1.79 | 13.82 | 1 | <0.001 | 760.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almahmoud, E.; Alkazemi, D.U.Z.; Al-Qabandi, W. Growth Stunting and Nutritional Deficiencies among Children and Adolescents with Celiac Disease in Kuwait: A Case–Control Study. Children 2024, 11, 1042. https://doi.org/10.3390/children11091042
Almahmoud E, Alkazemi DUZ, Al-Qabandi W. Growth Stunting and Nutritional Deficiencies among Children and Adolescents with Celiac Disease in Kuwait: A Case–Control Study. Children. 2024; 11(9):1042. https://doi.org/10.3390/children11091042
Chicago/Turabian StyleAlmahmoud, Esraa, Dalal Usamah Zaid Alkazemi, and Wafaa Al-Qabandi. 2024. "Growth Stunting and Nutritional Deficiencies among Children and Adolescents with Celiac Disease in Kuwait: A Case–Control Study" Children 11, no. 9: 1042. https://doi.org/10.3390/children11091042
APA StyleAlmahmoud, E., Alkazemi, D. U. Z., & Al-Qabandi, W. (2024). Growth Stunting and Nutritional Deficiencies among Children and Adolescents with Celiac Disease in Kuwait: A Case–Control Study. Children, 11(9), 1042. https://doi.org/10.3390/children11091042