Ultra-Processed Foods and Nutritional Intake of Children and Adolescents from Cantagalo, São Tomé and Príncipe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants Assessment
2.2. Sociodemographic Characterization and Lifestyle
2.3. Anthropometry
2.4. Dietary and Nutritional Intake
2.5. Degree of Food Processing
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fundo das Nações Unidas para a Infância (UNICEF). Relatório Anual do UNICEF São Tomé e Príncipe 2022; UNICEF: New York, NY, USA, 2022. [Google Scholar]
- The World Bank. The World Bank in Sao Tome and Principe. Available online: https://www.worldbank.org/en/country/saotome/overview (accessed on 21 June 2024).
- UNICEF. Análise da Situação das Crianças e das Mulheres em São Tomé e Príncipe 2015; UNICEF: New York, NY, USA, 2016. [Google Scholar]
- Associação Nacional das Emrpesas Metalúrgicas e Eletromecânicas. Estudo de Levantamento e Caracterização das Empresas Industriais de São Tomé e Príncipe; Associação Nacional das Emrpesas Metalúrgicas e Eletromecânicas: Lisboa, Portugal, 2018. [Google Scholar]
- Reardon, T.; Tschirley, D.; Liverpool-Tasie, L.S.O.; Awokuse, T.; Fanzo, J.; Minten, B.; Vos, R.; Dolislager, M.; Sauer, C.; Dhar, R.; et al. The Processed food revolution in African food systems and the Double Burden of Malnutrition. Glob. Food Sec. 2021, 28, 100466. [Google Scholar] [CrossRef] [PubMed]
- Mbogori, T.; Mucherah, W. Nutrition Transition in Africa: Consequences and Opportunities. Glob. J. Transform. Educ. 2019, 1, 5–10. [Google Scholar] [CrossRef]
- Steyn, N.P.; McHiza, Z.J. Obesity and the nutrition transition in Sub-Saharan Africa. Ann. N. Y. Acad. Sci. 2014, 1311, 88–101. [Google Scholar] [CrossRef] [PubMed]
- Nel, J.H.; Steyn, N.P. The Nutrition Transition and the Double Burden of Malnutrition in Sub-Saharan African Countries: How Do These Countries Compare with the Recommended Lancet Commission Global Diet? Int. J. Environ. Res. Public Health 2022, 19, 16791. [Google Scholar] [CrossRef]
- Poti, J.M.; Braga, B.; Qin, B. Ultra-processed Food Intake and Obesity: What Really Matters for Health-Processing or Nutrient Content? Curr. Obes. Rep. 2017, 6, 420–431. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.C.; Louzada, M.L.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Ultra-processed foods: What they are and how to identify them. Public Health Nutr. 2019, 22, 936–941. [Google Scholar] [CrossRef]
- Frank, T.; Ng, S.W.; Lowery, C.M.; Thow, A.M.; Swart, E.C. Dietary intake of low-income adults in South Africa: Ultra-processed food consumption a cause for concern. Public Health Nutr. 2024, 27, e41. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Z.; Yang, H.; Qiu, P.; Wang, H.; Wang, F.; Zhao, Q.; Fang, J.; Nie, J. Consumption of ultra-processed foods and health outcomes: A systematic review of epidemiological studies. Nutr. J. 2020, 19, 86. [Google Scholar] [CrossRef]
- Martini, D.; Godos, J.; Bonaccio, M.; Vitaglione, P.; Grosso, G. Ultra-Processed Foods and Nutritional Dietary Profile: A Meta-Analysis of Nationally Representative Samples. Nutrients 2021, 13, 3390. [Google Scholar] [CrossRef]
- Hall, K.D.; Ayuketah, A.; Brychta, R.; Cai, H.; Cassimatis, T.; Chen, K.Y.; Chung, S.T.; Costa, E.; Courville, A.; Darcey, V.; et al. Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake. Cell Metab. 2019, 30, 67–77.e3. [Google Scholar] [CrossRef]
- Lane, M.M.; Gamage, E.; Du, S.; Ashtree, D.N.; McGuinness, A.J.; Gauci, S.; Baker, P.; Lawrence, M.; Rebholz, C.M.; Srour, B.; et al. Ultra-processed food exposure and adverse health outcomes: Umbrella review of epidemiological meta-analyses. BMJ 2024, 384, e077310. [Google Scholar] [CrossRef] [PubMed]
- Godbharle, S.; Kesa, H.; Jeyakumar, A. Processed food consumption and risk of non-communicable diseases (NCDs) in South Africa: Evidence from Demographic and Health Survey (DHS) VII. J. Nutr. Sci. 2024, 13, e19. [Google Scholar] [CrossRef] [PubMed]
- Akombi, B.J.; Chitekwe, S.; Sahle, B.W.; Renzaho, A.M.N. Estimating the Double Burden of Malnutrition among 595,975 Children in 65 Low- and Middle-Income Countries: A Meta-Analysis of Demographic and Health Surveys. Int. J. Environ. Res. Public Health 2019, 16, 2886. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Child Growth Standards: Training Course on Child Growth Assessment. Available online: https://www.who.int/publications/i/item/9789241595070 (accessed on 12 June 2024).
- World Health Organization. WHO AnthroPlus for Personal Computers Manual: Software for Assessing Growth of the World’s Children and Adolescents; WHO: Geneva, Switzerland, 2009. [Google Scholar]
- World Health Organization. BMI-for-Age (5–19 Years). Available online: https://www.who.int/tools/growth-reference-data-for-5to19-years/indicators/bmi-for-age (accessed on 7 June 2024).
- Vincent, A.; Grande, F.; Compaoré, E.; Annor, G.A.; Addy, P.S.; Aburime, L.C.; Ahmed, D.; Loh, A.M.B.; Cabia, S.D.; Deflache, N.; et al. FAO/INFOODS Food Composition Table for Western Africa (2019); Food and Agriculture Organization for the United Nations: Rome, Italy, 2020. [Google Scholar]
- Instituto Nacional de Saúde Doutor Ricardo Jorge. Tabela da Composição de Alimentos. Available online: http://portfir.insa.pt/ (accessed on 16 June 2024).
- Goios, A.; Martins, M.L.; Oliveira, A.C.; Afonso, C.; Amaral, T. Pesos e Porções de Alimentos, 3rd ed.; U.Porto Press: Porto, Portugal, 2021; p. 255. [Google Scholar]
- Pisco, A.M.S.; Catarino, E. Álbum Fotográfico Para Quantificação de Alimentos—São Tomé e Príncipe; Helpo: Cascais, Portugal, 2015. [Google Scholar]
- Stevens, G.A.; Beal, T.; Mbuya, M.N.N.; Luo, H.; Neufeld, L.M.; Addo, O.Y.; Adu-Afarwuah, S.; Alayón, S.; Bhutta, Z.; Brown, K.H.; et al. Micronutrient deficiencies among preschool-aged children and women of reproductive age worldwide: A pooled analysis of individual-level data from population-representative surveys. Lancet Glob. Health 2022, 10, e1590–e1599. [Google Scholar] [CrossRef]
- Black, A.E. Critical evaluation of energy intake using the Goldberg cut-off for energy intake:basal metabolic rate. A practical guide to its calculation, use and limitations. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 1119–1130. [Google Scholar] [CrossRef]
- Schofield, W.N. Predicting basal metabolic rate, new standards and review of previous work. Hum. Nutr. Clin. Nutr. 1985, 39 (Suppl. 1), 5–41. [Google Scholar]
- Monteiro, C.A.; Levy, R.B.; Claro, R.M.; Castro, I.R.; Cannon, G. A new classification of foods based on the extent and purpose of their processing. Cad. Saúde Pública 2010, 26, 2039–2049. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Levy, R.; Moubarac, J.-C.; Jaime, P.; Martins, A.P.; Canella, D.; Louzada, M.; Parra, D. NOVA. The star shines bright. World Nutr. 2016, 7, 28–38. [Google Scholar]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1228S; discussion 1229S–1231S. [Google Scholar] [CrossRef]
- Neri, D.; Steele, E.M.; Khandpur, N.; Cediel, G.; Zapata, M.E.; Rauber, F.; Marrón-Ponce, J.A.; Machado, P.; da Costa Louzada, M.L.; Andrade, G.C.; et al. Ultraprocessed food consumption and dietary nutrient profiles associated with obesity: A multicountry study of children and adolescents. Obes. Rev. 2022, 23 (Suppl. 1), e13387. [Google Scholar] [CrossRef]
- Cediel, G.; Reyes, M.; da Costa Louzada, M.L.; Martinez Steele, E.; Monteiro, C.A.; Corvalán, C.; Uauy, R. Ultra-processed foods and added sugars in the Chilean diet (2010). Public Health Nutr. 2018, 21, 125–133. [Google Scholar] [CrossRef]
- Khandpur, N.; Cediel, G.; Obando, D.A.; Jaime, P.C.; Parra, D.C. Sociodemographic factors associated with the consumption of ultra-processed foods in Colombia. Rev. Saude Publica 2020, 54, 19. [Google Scholar] [CrossRef] [PubMed]
- Marrón-Ponce, J.A.; Sánchez-Pimienta, T.G.; Louzada, M.; Batis, C. Energy contribution of NOVA food groups and sociodemographic determinants of ultra-processed food consumption in the Mexican population. Public Health Nutr. 2018, 21, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Mescoloto, S.B.; Pongiluppi, G.; Domene, S. Ultra-processed food consumption and children and adolescents’ health. J. Pediatr. 2024, 100 (Suppl. 1), S18–S30. [Google Scholar] [CrossRef] [PubMed]
- Vimaleswaran, K.S. GeNuIne (gene-nutrient interactions) Collaboration: Towards implementing multi-ethnic population-based nutrigenetic studies of vitamin B(12) and D deficiencies and metabolic diseases. Proc. Nutr. Soc. 2021, 80, 435–445. [Google Scholar] [CrossRef]
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.F.H.; Weickert, M.O. The Health Benefits of Dietary Fibre. Nutrients 2020, 12, 3209. [Google Scholar] [CrossRef]
- Sekgala, M.D.; McHiza, Z.J.; Parker, W.A.; Monyeki, K.D. Dietary Fiber Intake and Metabolic Syndrome Risk Factors among Young South African Adults. Nutrients 2018, 10, 504. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Moubarac, J.C.; Cannon, G.; Ng, S.W.; Popkin, B. Ultra-processed products are becoming dominant in the global food system. Obes. Rev. 2013, 14 (Suppl. 2), 21–28. [Google Scholar] [CrossRef]
- Khoury, N.; Martínez, M.; Garcidueñas-Fimbres, T.E.; Pastor-Villaescusa, B.; Leis, R.; de Las Heras-Delgado, S.; Miguel-Berges, M.L.; Navas-Carretero, S.; Portoles, O.; Pérez-Vega, K.A.; et al. Ultraprocessed Food Consumption and Cardiometabolic Risk Factors in Children. JAMA Netw. Open 2024, 7, e2411852. [Google Scholar] [CrossRef]
- Schönenberger, K.A.; Huwiler, V.V.; Reber, E.; Mühlebach, S.; Stanga, Z.; Pestoni, G.; Faeh, D. Dietary fibre intake and its association with ultraprocessed food consumption in the general population of Switzerland: Analysis of a population-based, cross-sectional national nutrition survey. BMJ Nutr. Prev. Health 2024, 7, e000727. [Google Scholar] [CrossRef]
- Reynolds, A.N.; Diep Pham, H.T.; Montez, J.; Mann, J. Dietary fibre intake in childhood or adolescence and subsequent health outcomes: A systematic review of prospective observational studies. Diabetes Obes. Metab. 2020, 22, 2460–2467. [Google Scholar] [CrossRef]
- Dreher, M.L. Overview of the Health Benefits of Adequate Fiber Intake. In Dietary Fiber in Health and Disease; Dreher, M.L., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 19–40. [Google Scholar]
- Cena, H.; Calder, P.C. Defining a Healthy Diet: Evidence for the Role of Contemporary Dietary Patterns in Health and Disease. Nutrients 2020, 12, 334. [Google Scholar] [CrossRef]
- Menezes, C.A.; Magalhães, L.B.; da Silva, J.T.; da Silva Lago, R.M.R.; Gomes, A.N.; Ladeia, A.M.T.; Vianna, N.A.; Oliveira, R.R. Ultra-Processed Food Consumption Is Related to Higher Trans Fatty Acids, Sugar Intake, and Micronutrient-Impaired Status in Schoolchildren of Bahia, Brazil. Nutrients 2023, 15, 381. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.A.; Cannon, G.; Lawrence, M.; Louzada, M.L.d.C.; Machado, P.P. Ultra-Processed Foods, Diet Quality, and Health Using the NOVA Classification System; FAO: Rome, Italy, 2019. [Google Scholar]
- Louzada, M.L.; Martins, A.P.; Canella, D.S.; Baraldi, L.G.; Levy, R.B.; Claro, R.M.; Moubarac, J.C.; Cannon, G.; Monteiro, C.A. Impact of ultra-processed foods on micronutrient content in the Brazilian diet. Rev. Saude Publica 2015, 49, 45. [Google Scholar] [CrossRef] [PubMed]
- Elgormus, Y.; Okuyan, O.; Dumur, S.; Sayili, U.; Uzun, H. The Epidemiology of Deficiency of Vitamin B12 in Preschool Children in Turkey. Medicina 2023, 59, 1809. [Google Scholar] [CrossRef] [PubMed]
- Lowe, N.M.; Hall, A.G.; Broadley, M.R.; Foley, J.; Boy, E.; Bhutta, Z.A. Preventing and Controlling Zinc Deficiency Across the Life Course: A Call to Action. Adv. Nutr. 2024, 15, 100181. [Google Scholar] [CrossRef]
- Berhe, K.; Gebrearegay, F.; Gebremariam, H. Prevalence and associated factors of zinc deficiency among pregnant women and children in Ethiopia: A systematic review and meta-analysis. BMC Public Health 2019, 19, 1663. [Google Scholar] [CrossRef]
- Bielemann, R.M.; Motta, J.V.; Minten, G.C.; Horta, B.L.; Gigante, D.P. Consumption of ultra-processed foods and their impact on the diet of young adults. Rev. Saude Publica 2015, 49, 28. [Google Scholar] [CrossRef]
- Hyun, T.; Choi, M.K.; Heo, Y.R.; Ro, H.; Han, Y.H.; Lee, Y.K. Comparison between 24-hour diet recall and 24-hour urine collection for estimating sodium and potassium intakes and their ratio among Korean adults. Nutr. Res. Pract. 2023, 17, 284–296. [Google Scholar] [CrossRef]
- McLean, R.; Cameron, C.; Butcher, E.; Cook, N.R.; Woodward, M.; Campbell, N.R.C. Comparison of 24-hour urine and 24-hour diet recall for estimating dietary sodium intake in populations: A systematic review and meta-analysis. J. Clin. Hypertens. 2019, 21, 1753–1762. [Google Scholar] [CrossRef]
- Calcaterra, V.; Cena, H.; Rossi, V.; Santero, S.; Bianchi, A.; Zuccotti, G. Ultra-Processed Food, Reward System and Childhood Obesity. Children 2023, 10, 804. [Google Scholar] [CrossRef]
- Oyebode, O.; Oti, S.; Chen, Y.F.; Lilford, R.J. Salt intakes in sub-Saharan Africa: A systematic review and meta-regression. Popul. Health Metr. 2016, 14, 1. [Google Scholar] [CrossRef]
- Yang, L.; Magnussen, C.G.; Yang, L.; Bovet, P.; Xi, B. Elevated Blood Pressure in Childhood or Adolescence and Cardiovascular Outcomes in Adulthood: A Systematic Review. Hypertension 2020, 75, 948–955. [Google Scholar] [CrossRef]
- Leyvraz, M.; Chatelan, A.; da Costa, B.R.; Taffé, P.; Paradis, G.; Bovet, P.; Bochud, M.; Chiolero, A. Sodium intake and blood pressure in children and adolescents: A systematic review and meta-analysis of experimental and observational studies. Int. J. Epidemiol. 2018, 47, 1796–1810. [Google Scholar] [CrossRef]
- Global Nutrition Report. Country Nutrition Profile—Sao Tome and Principe. Available online: https://globalnutritionreport.org/resources/nutrition-profiles/africa/middle-africa/sao-tome-and-principe/ (accessed on 3 June 2024).
- Coyle, D.H.; Huang, L.; Shahid, M.; Gaines, A.; Di Tanna, G.L.; Louie, J.C.Y.; Pan, X.; Marklund, M.; Neal, B.; Wu, J.H.Y. Socio-economic difference in purchases of ultra-processed foods in Australia: An analysis of a nationally representative household grocery purchasing panel. Int. J. Behav. Nutr. Phys. Act. 2022, 19, 148. [Google Scholar] [CrossRef]
- Passos, C.M.D.; Maia, E.G.; Levy, R.B.; Martins, A.P.B.; Claro, R.M. Association between the price of ultra-processed foods and obesity in Brazil. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 589–598. [Google Scholar] [CrossRef]
- Foster, E.; Bradley, J. Methodological considerations and future insights for 24-hour dietary recall assessment in children. Nutr. Res. 2018, 51, 1–11. [Google Scholar] [CrossRef]
- Shim, J.S.; Oh, K.; Kim, H.C. Dietary assessment methods in epidemiologic studies. Epidemiol. Health 2014, 36, e2014009. [Google Scholar] [CrossRef]
- Savitz, D.A.; Wellenius, G.A. Can Cross-Sectional Studies Contribute to Causal Inference? It Depends. Am. J. Epidemiol. 2023, 192, 514–516. [Google Scholar] [CrossRef]
- Ortega, R.M.; Pérez-Rodrigo, C.; López-Sobaler, A.M. Dietary assessment methods: Dietary records. Nutr. Hosp. 2015, 31 (Suppl. 3), 38–45. [Google Scholar] [CrossRef]
Children/Adolescents’ Characteristics | Total | Low UPF Intake | High UPF Intake | p-Value |
---|---|---|---|---|
Sex, n (%) | 0.123 | |||
Female | 263 (48.2) | 122 (44.7) | 141 (51.6) | |
Male | 283 (51.8) | 151 (55.3) | 132 (48.4) | |
Age, years, mean ± SD | 10.82 ± 1.17 | 10.92 ± 1.22 | 10.72 ± 1.10 | 0.037 |
BMI (Kg/m2), mean ± SD | 16.33 ± 1.93 | 16.27 ± 1.92 | 16.38 ± 1.95 | 0.238 |
Z-score BMI/age, mean ± SD | −0.66 ± 0.98 | −0.72 ± 0.93 | −0.61 ± 1.02 | 0.039 |
Categories of z-score BMI/age, n (%) | 0.465 | |||
Severe thinness | 5 (0.9) | 3 (1.1) | 2 (0.7) | |
Moderate thinness | 32 (5.9) | 15 (5.6) | 17 (6.3) | |
Mild thinness | 147 (27.3) | 74 (27.4) | 73 (27.1) | |
Normal weight | 331 (61.4) | 173 (64.1) | 158 (58.7) | |
Overweight | 19 (3.5) | 2 (0.7) | 17 (6.3) | |
Obesity | 5 (0.9) | 3 (1.1) | 2 (0.7) | |
Daily time of physical activity, sport, and/or active play (in minutes), mean ± SD | 132.13 ± 130.22 | 131.10 ± 124.11 | 133.14 ± 136.22 | 0.599 |
Nutritional Status | Female | Male | p |
---|---|---|---|
Nutritional Status Categories | 0.072 | ||
Severe thinness, n (%) | 0 (0.0) | 5 (1.8) | |
Moderate thinness, n (%) | 20 (7.6) | 12 (4.3) | |
Mild thinness, n (%) | 71 (27.1) | 76 (27.4) | |
Normal weight, n (%) | 156 (59.5) | 175 (63.2) | |
Overweight, n (%) | 11 (4.2) | 8 (2.9) | |
Obesity, n (%) | 4 (1.5) | 1 (0.4) |
Household Characteristics | Total | Low UPF Intake | High UPF Intake | p-Value |
---|---|---|---|---|
Sex, n (%) | 0.364 | |||
Female | 478 (87.5%) | 243 (89.0%) | 235 (86.1%) | |
Male | 68 (12.5%) | 30 (11.0%) | 38 (13.9%) | |
Relationship of the guardian, n (%) | 0.850 | |||
Mother | 398 (72.9%) | 205 (75.1%) | 193 (70.7%) | |
Father | 50 (9.2%) | 23 (8.4%) | 27 (9.9%) | |
Grandfather/grandmother | 29 (5.2%) | 12 (4.8%) | 16 (5.9%) | |
Uncle/aunt | 35 (6.4%) | 16 (5.9%) | 19 (7.0%) | |
Other | 34 (6.2%) | 16 (5.9%) | 18 (6.6%) | |
Education, n (%) | 0.231 | |||
No education | 13 (2.5%) | 6 (2.3%) | 7 (2.6%) | |
1st or 2nd cycle of BE | 321 (60.6%) | 155 (58.5%) | 166 (62.6%) | |
3rd cycle BE or secondary | 190 (35.8%) | 103 (38.9%) | 87 (32.8%) | |
Higher education | 6 (1.1%) | 1 (0.4%) | 5 (1.9%) | |
Occupation, n (%) | 0.344 | |||
Student | 13 (2.4%) | 5 (1.8%) | 8 (3.0%) | |
Houseworker | 187 (34.4%) | 91 (33.5%) | 96 (35.4%) | |
Farmer | 19 (3.5%) | 7 (2.6%) | 12 (4.4%) | |
State employee | 66 (12.2%) | 33 (12.1%) | 33 (12.2%) | |
Private/public company | 24 (4.4%) | 14 (5.1%) | 10 (3.7%) | |
Self-employed | 156 (28.7%) | 84 (30.9%) | 72 (26.6%) | |
Unpaid worker | 27 (5.0%) | 14 (5.1%) | 13 (4.8%) | |
Unemployed | 45 (8.3%) | 24 (8.8%) | 21 (7.7%) | |
Retired | 6 (1.1%) | 0 (0.0%) | 6 (2.2%) | |
Are you the primary caregiver? n (%) | 0.654 | |||
No | 49 (9.0%) | 23 (8.4%) | 26 (9.5%) | |
Yes | 497 (91.0%) | 250 (91.6%) | 247 (90.5%) | |
Household members, mean ± SD | 5.87 ± 1.92 | 5.94 ± 1.86 | 5.80 ± 1.98 | 0.671 |
Monthly household income, n (%) | 0.631 | |||
<1000 STN | 76 (17.8%) | 41 (19.4%) | 35 (16.2%) | |
1000–2000 STN | 113 (26.5%) | 52 (24.6%) | 61 (28.2%) | |
2000–3000 STN | 135 (31.6%) | 70 (33.2%) | 65 (30.1%) | |
>3000 STN | 103 (24.1%) | 48 (22.7%) | 55 (25.5%) | |
Income spent on food, n (%) | 0.507 | |||
<100 STN | 159 (30.9%) | 79 (31.0%) | 80 (30.9%) | |
100–200 STN | 284 (55.3%) | 135 (52.9%) | 149 (57.5%) | |
>200 STN | 71 (13.8%) | 41 (16.1%) | 30 (11.6%) |
Total | Female | Male | |
---|---|---|---|
Energy (kcal) | 1485.48 ± 574.67 | 1481.60 ± 568.94 | 1489.26 ± 580.93 |
UPF (kcal) | 140.18 ± 208.64 | 146.75 ± 213.42 | 134.07 ± 204.28 |
UPF (%) | 9.0 ± 12.6 | 9.5 ± 13.0 | 8.5 ± 12.3 |
Nutritional Intake | Total | Low UPF Intake | High UPF Intake | Crude p-Value | Adjusted p-Value * |
---|---|---|---|---|---|
Girls | |||||
Energy (kcal) | 1481.40 ± 568.94 | 1370.67 ± 542.12 | 1577.22 ± 576.05 | <0.001 | |
Total lipids (g) | 51.62 ± 27.91 | 47.18 ± 28.01 | 55.27 ± 27.37 | 0.004 | 0.940 |
Saturated fatty acids (g) | 9.90 ± 6.14 | 9.18 ± 5.15 | 10.51 ± 6.83 | 0.126 | 0.364 |
Total carbohydrates (g) | 202.16 ± 81.20 | 187.73 ± 75.79 | 214.65 ± 83.88 | 0.003 | 0.916 |
Total sugars (g) | 46.86 ± 37.19 | 39.99 ± 35.52 | 52.81 ± 37.69 | 0.002 | 0.081 |
Protein (g) | 44.24 ± 17.60 | 40.55 ± 16.92 | 47.44 ± 17.62 | <0.001 | 0.175 |
Dietary fiber (g) | 14.11 ± 7.91 | 14.66 ± 8.26 | 13.63 ± 7.58 | 0.340 | 0.046 |
Vitamin A (µg) | 147.15 ± 122.84 | 157.39 ± 121.28 | 138.29 ± 123.93 | 0.092 | 0.021 |
Vitamin B12 (µg) | 3.95 ± 3.48 | 4.23 ± 3.65 | 3.70 ± 3.32 | 0.138 | 0.010 |
Vitamin C (mg) | 61.61 ± 49.87 | 63.39 ± 52.33 | 60.07 ± 47.78 | 0.349 | 0.068 |
Vitamin D (µg) | 7.99 ± 7.20 | 8.61 ± 7.54 | 7.44 ± 6.87 | 0.110 | 0.004 |
Folate (µg) | 101.02 ± 82.49 | 97.20 ± 87.37 | 104.33 ± 78.19 | 0.169 | 0.979 |
Calcium (mg) | 215.15 ± 148.05 | 198.09 ± 122.64 | 229.91 ± 165.97 | 0.275 | 0.991 |
Iron (mg) | 4.57 ± 2.16 | 4.31 ± 2.01 | 4.79 ± 2.27 | 0.047 | 0.898 |
Magnesium (mg) | 151.89 ± 65.28 | 155.15 ± 68.95 | 149.06 ± 62.04 | 0.713 | 0.002 |
Sodium (mg) | 1489.46 ± 1076.12 | 1107.20 ± 580.66 | 1820.22 ± 1279.94 | <0.001 | <0.001 |
Zinc (mg) | 3.50 ± 1.77 | 3.45 ± 1.71 | 3.54 ± 1.82 | 0.640 | 0.015 |
Boys | |||||
Energy (kcal) | 1489.26 ± 580.93 | 1379.38 ± 479.49 | 1614.95 ± 658.32 | 0.004 | |
Total lipids (g) | 48.97 ± 27.25 | 43.37 ± 22.91 | 55.36 ± 30.32 | <0.001 | 0.091 |
Saturated fatty acids (g) | 9.07 ± 5.38 | 8.22 ± 5.14 | 10.04 ± 5.49 | <0.001 | 0.208 |
Total carbohydrates (g) | 210.01 ± 87.21 | 198.93 ± 77.13 | 222.69 ± 96.22 | 0.046 | 0.074 |
Total sugars (g) | 47.50 ± 42.99 | 39.52 ± 41.56 | 56.61 ± 42.93 | <0.001 | 0.032 |
Protein (g) | 43.86 ± 17.14 | 40.46 ± 14.13 | 47.74 ± 19.37 | 0.002 | 0.168 |
Dietary fiber (g) | 13.29 ± 8.97 | 13.05 ± 8.32 | 13.56 ± 9.68 | 0.980 | 0.231 |
Vitamin A (µg) | 147.50 ± 131.93 | 148.12 ± 137.20 | 146.78 ± 126.14 | 0.864 | 0.442 |
Vitamin B12 (µg) | 4.07 ± 3.53 | 4.07 ± 3.37 | 4.07 ± 3.72 | 0.602 | 0.090 |
Vitamin C (mg) | 63.57 ± 61.11 | 63.94 ± 56.43 | 63.14 ± 66.28 | 0.252 | 0.040 |
Vitamin D (µg) | 8.76 ± 7.65 | 8.53 ± 7.04 | 9.03 ± 8.31 | 0.978 | 0.246 |
Folate (µg) | 98.90 ± 67.18 | 100.83 ± 76.79 | 96.69 ± 54.35 | 0.967 | 0.098 |
Calcium (mg) | 211.32 ± 179.97 | 201.77 ± 76.79 | 222.24 ± 157.55 | 0.047 | 0.494 |
Iron (mg) | 4.43 ± 2.23 | 4.22 ± 1.58 | 4.67 ± 2.78 | 0.363 | 0.067 |
Magnesium (mg) | 154.62 ± 73.76 | 155.31 ± 62.21 | 153.83 ± 85.33 | 0.219 | <0.001 |
Sodium (mg) | 1367.02 ± 977.04 | 1062.09 ± 603.90 | 1715.86 ± 1186.41 | <0.001 | <0.001 |
Zinc (mg) | 3.54 ± 1.77 | 3.50 ± 1.62 | 3.59 ± 1.94 | 0.990 | 0.001 |
High UPF Intake | p-Value | |
---|---|---|
Sex of child/adolescent (Ref.: male) | 0.994 (0.589; 1.677) | 0.981 |
Age of child/adolescent | 0.964 (0.756; 1.230) | 0.769 |
Z-score BMI/age | 1.147 (0.888; 1.480) | 0.294 |
Daily time of physical activity, sport, and/or active play (min) | 1.000 (0.998; 1.002) | 0.871 |
Sex of household members (Ref.: male) | 0.535 (0.247; 1.159) | 0.113 |
Education (Ref.: not studied, 1st or 2nd cycle EB) | 0.651 (0.372; 1.139) | 0.132 |
Occupation (Ref.: non-remunerated) | 0.579 (0.337; 0.993) | 0.047 |
Household size | 0.925 (0.796; 1.075) | 0.307 |
Monthly household income (Ref.: <1000 STN) | 0.692 | |
1000–2000 STN | 1.319 (0.556; 3.127) | 0.529 |
2000–3000 STN | 0.991 (0.438; 2.238) | 0.982 |
>3000 STN | 1.452 (0.560; 3.767) | 0.443 |
Amount dispensed for food (Ref.: <100 STN) | 0.709 | |
100–200 STN | 0.848 (0.437; 1.643) | 0.624 |
>200 STN | 0.675 (0.266; 1.712) | 0.407 |
Total lipids (g) | 0.913 (0.809; 1.031) | 0.168 |
Saturated fatty acids (g) | 1.053 (0.974; 1.138) | 0.353 |
Total carbohydrates (g) | 0.976 (0.928; 1.027) | 0.382 |
Total sugars (g) | 1.003 (0.996; 1.011) | 0.141 |
Protein (g) | 1.043 (0.982; 1.108) | 0.196 |
Fiber (g) | 0.932 (0.872; 0.996) | 0.036 |
Vitamin A (µg) | 1.000 (0.997; 1.003) | 0.970 |
Vitamin B12 (µg) | 0.812 (0.668; 0.985) | 0.035 |
Vitamin D (µg) | 0.971 (0.894; 1.055) | 0.488 |
Folate (µg) | 0.996 (0.991; 1.001) | 0.122 |
Iron (mg) | 1.479 (1.065; 2.055) | 0.020 |
Sodium (mg) | 1.001 (1.000; 1.001) | 0.001 |
Zinc (mg) | 0.443 (0.308; 0.639) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morais, R.; Rodrigues, M.; Ferreira, F.; Barros, R.; Padrão, P.; Ortigão, M.; Tavares, M.; Moreira, P. Ultra-Processed Foods and Nutritional Intake of Children and Adolescents from Cantagalo, São Tomé and Príncipe. Children 2024, 11, 1089. https://doi.org/10.3390/children11091089
Morais R, Rodrigues M, Ferreira F, Barros R, Padrão P, Ortigão M, Tavares M, Moreira P. Ultra-Processed Foods and Nutritional Intake of Children and Adolescents from Cantagalo, São Tomé and Príncipe. Children. 2024; 11(9):1089. https://doi.org/10.3390/children11091089
Chicago/Turabian StyleMorais, Rita, Mónica Rodrigues, Francisca Ferreira, Renata Barros, Patrícia Padrão, Madalena Ortigão, Maria Tavares, and Pedro Moreira. 2024. "Ultra-Processed Foods and Nutritional Intake of Children and Adolescents from Cantagalo, São Tomé and Príncipe" Children 11, no. 9: 1089. https://doi.org/10.3390/children11091089
APA StyleMorais, R., Rodrigues, M., Ferreira, F., Barros, R., Padrão, P., Ortigão, M., Tavares, M., & Moreira, P. (2024). Ultra-Processed Foods and Nutritional Intake of Children and Adolescents from Cantagalo, São Tomé and Príncipe. Children, 11(9), 1089. https://doi.org/10.3390/children11091089