MTHFR Gene Polymorphisms and Cancer Risk in Children and Adolescents: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
Data Synthesis and Statistical Analysis
3. Results
3.1. Acute Lymphoblastic Leukemia (ALL)
3.2. Acute Myeloblastic Leukemia (AML)
3.3. Central Nervous System (CNS) Tumors
3.4. Other Types of Cancer
3.5. Quality Assessment of the Included Studies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Planello, A.C.; Villela, D.; Loureiro, T. MTHFR Genetic Testing: Is There a Clinical Utility? Rev. Assoc. Med. Bras. 2024, 70, e20240215. [Google Scholar] [CrossRef] [PubMed]
- Weile, J.; Kishore, N.; Sun, S.; Maaieh, R.; Verby, M.; Li, R.; Fotiadou, I.; Kitaygorodsky, J.; Wu, Y.; Holenstein, A.; et al. Shifting Landscapes of Human MTHFR Missense-Variant Effects. Am. J. Hum. Genet. 2021, 108, 1283–1300. [Google Scholar] [CrossRef] [PubMed]
- Raghubeer, S.; Matsha, T.E. Methylenetetrahydrofolate (MTHFR), the One-Carbon Cycle, and Cardiovascular Risks. Nutrients 2021, 13, 4562. [Google Scholar] [CrossRef]
- Zarembska, E.; Ślusarczyk, K.; Wrzosek, M. The Implication of a Polymorphism in the Methylenetetrahydrofolate Reductase Gene in Homocysteine Metabolism and Related Civilisation Diseases. Int. J. Mol. Sci. 2023, 25, 193. [Google Scholar] [CrossRef]
- Mazokopakis, E.E.; Papadomanolaki, M.G.; Papadakis, J.A. Association of Methylene Tetrahydrofolate Reductase (MTHFR) Gene Polymorphisms with Serum Folate, Cobalanin and Homocysteine Concentrations in Greek Adults. Scand. J. Clin. Lab. Investig. 2023, 83, 69–73. [Google Scholar] [CrossRef]
- “MTHFR”[GENE]—ClinVar—NCBI. Available online: https://www.ncbi.nlm.nih.gov/clinvar (accessed on 23 December 2024).
- Cai, Y.; Liu, B.; Zhang, Y.; Zhou, Y. MTHFR Gene Polymorphisms in Diabetes Mellitus. Clin. Chim. Acta 2024, 561, 119825. [Google Scholar] [CrossRef]
- Botto, L.D.; Yang, Q. 5,10-Methylenetetrahydrofolate Reductase Gene Variants and Congenital Anomalies: A HuGE Review. Am. J. Epidemiol. 2000, 151, 862–877. [Google Scholar] [CrossRef]
- Graydon, J.S.; Claudio, K.; Baker, S.; Kocherla, M.; Ferreira, M.; Roche-Lima, A.; Rodríguez-Maldonado, J.; Duconge, J.; Ruaño, G. Ethnogeographic Prevalence and Implications of the 677C>T and 1298A>C MTHFR Polymorphisms in US Primary Care Populations. Biomark Med. 2019, 13, 649–661. [Google Scholar] [CrossRef]
- Liu, T.; Momin, M.; Zhou, H.; Zheng, Q.; Fan, F.; Jia, J.; Liu, M.; Bao, M.; Li, J.; Huo, Y.; et al. Exome-Wide Association Study Identifies East Asian-Specific Missense Variant MTHFR C136T Influencing Homocysteine Levels in Chinese Populations RH: ExWAS of THCY in a Chinese Population. Front. Genet. 2021, 12, 717621. [Google Scholar] [CrossRef]
- Byrska-Bishop, M.; Evani, U.S.; Zhao, X.; Basile, A.O.; Abel, H.J.; Regier, A.A.; Corvelo, A.; Clarke, W.E.; Musunuri, R.; Nagulapalli, K.; et al. High-Coverage Whole-Genome Sequencing of the Expanded 1000 Genomes Project Cohort Including 602 Trios. Cell 2022, 185, 3426–3440.e19. [Google Scholar] [CrossRef]
- Dean, L. Methylenetetrahydrofolate Reductase Deficiency. 8 March 2012 [Updated 4 November 2024]. In Medical Genetics Summaries; Pratt, V.M., Scott, S.A., Pirmohamed, M., Esquivel, B., Kattman, B.L., Malheiro, A.J., Eds.; National Center for Biotechnology Information (US): Bethesda, MD, USA, 2012. Available online: https://www.ncbi.nlm.nih.gov/books/NBK66131/ (accessed on 23 December 2024).
- Ledowsky, C.J.; Schloss, J.; Steel, A. Variations in Folate Prescriptions for Patients with the MTHFR Genetic Polymorphisms: A Case Series Study. Explor. Res. Clin. Social. Pharm. 2023, 10, 100277. [Google Scholar] [CrossRef]
- Golja, M.V.; Šmid, A.; Kuželički, N.K.; Trontelj, J.; Geršak, K.; Mlinarič-Raščan, I. Folate Insufficiency Due to MTHFR Deficiency Is Bypassed by 5-Methyltetrahydrofolate. J. Clin. Med. 2020, 9, 2836. [Google Scholar] [CrossRef] [PubMed]
- Carboni, L. Active Folate Versus Folic Acid: The Role of 5-MTHF (Methylfolate) in Human Health. Integr. Med. A Clinician’s J. 2022, 21, 36. [Google Scholar]
- Hoxha, B.; Hoxha, M.; Zappacosta, B.; Domi, E.; Gervasoni, J.; Persichilli, S.; Malaj, V. Folic Acid and Autism: A Systematic Review of the Current State of Knowledge. Cells 2021, 10, 1976. [Google Scholar] [CrossRef]
- Bennett, D.A.; Parish, S.; Millwood, I.Y.; Guo, Y.; Chen, Y.; Turnbull, I.; Yang, L.; Lv, J.; Yu, C.; Davey Smith, G.; et al. MTHFR and Risk of Stroke and Heart Disease in a Low-Folate Population: A Prospective Study of 156 000 Chinese Adults. Int. J. Epidemiol. 2023, 52, 1862–1869. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.M.; Jialal, I. Folic Acid Deficiency; StatPearls: Tampa, FL, USA, 2023. [Google Scholar]
- Shivkar, R.R.; Gawade, G.C.; Padwal, M.K.; Diwan, A.G.; Mahajan, S.A.; Kadam, C.Y. Association of MTHFR C677T (Rs1801133) and A1298C (Rs1801131) Polymorphisms with Serum Homocysteine, Folate and Vitamin B12 in Patients with Young Coronary Artery Disease. Indian J. Clin. Biochem. 2021, 37, 224. [Google Scholar] [CrossRef] [PubMed]
- Baghad, I.; Erreguibi, D.; Boufettal, R.; Eljai, S.R.; Chihab, F.; Nadifi, S. Association of Methylenetetrahydrofolate Reductase (MTHFR) C677T Polymorphism and the Risk of Sporadic Colorectal Cancer. Pan. Afr. Med. J. 2021, 38, 287. [Google Scholar] [CrossRef]
- Petrone, I.; Bernardo, P.S.; Dos Santos, E.C.; Abdelhay, E. MTHFR C677T and A1298C Polymorphisms in Breast Cancer, Gliomas and Gastric Cancer: A Review. Genes 2021, 12, 587. [Google Scholar] [CrossRef]
- Lal, H.; Sharma, B.; Sambyal, V.; Guleria, K.; Singh, N.R.; Uppal, M.S.; Manjari, M.; Sudan, M. Association of MTHFR 677C>T Polymorphism with Breast Cancer Risk: A Case-Control Study and Meta-Analysis. J. Cancer Res. Ther. 2022, 18, 1451–1460. [Google Scholar] [CrossRef]
- Nie, F.; Yu, M.; Zhang, K.; Yang, L.; Zhang, Q.; Liu, S.; Liu, M.; Shang, M.; Zeng, F.; Liu, W. Association of MTHFR Gene Polymorphisms with Pancreatic Cancer: Meta-Analysis of 17 Case-Control Studies. Int. J. Clin. Oncol. 2020, 25, 312–321. [Google Scholar] [CrossRef]
- Samii, A.; Aslani, S.; Imani, D.; Razi, B.; Samaneh Tabaee, S.; Jamialahmadi, T.; Sahebkar, A. MTHFR Gene Polymorphisms and Susceptibility to Myocardial Infarction: Evidence from Meta-Analysis and Trial Sequential Analysis. IJC Heart Vasc. 2023, 49, 101293. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Sharma, R.; Misra, S.; Nath, M.; Kumar, P. Relationship between Methylenetetrahydrofolate Reductase (MTHFR) Gene (A1298C) Polymorphism with the Risk of Stroke: A Systematic Review and Meta-Analysis. Neurol. Res. 2020, 42, 913–922. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Wang, J.; Wang, G.; Wang, J.; Wang, L.; Du, Y. MTHFR A1298C Gene Polymorphism on Stroke Risk: An Updated Meta-Analysis. Genes. Environ. 2021, 43, 40. [Google Scholar] [CrossRef]
- Liao, S.; Guo, S.; Ma, R.; He, J.; Yan, Y.; Zhang, X.; Wang, X.; Cao, B.; Guo, H. Association between Methylenetetrahydrofolate Reductase (MTHFR) C677T Polymorphism and H-Type Hypertension: A Systematic Review and Meta-Analysis. Ann. Hum. Genet. 2022, 86, 278–289. [Google Scholar] [CrossRef]
- El Alami, H.; Ouenzar, F.; Errafii, K.; Alidrissi, N.; Belyamani, L.; Ghazal, H.; Wakrim, L.; Abidi, O.; Naamane, A.; Daoud, R.; et al. Meta-Analysis of MTHFR C677T Polymorphism and Type 2 Diabetes Mellitus in MENA Region. Diabetes Metab. Syndr. 2024, 18, 102965. [Google Scholar] [CrossRef]
- Huo, Y.; Zhang, W.; Zhang, X.; Su, L.; Li, H.; Wang, F.; Zhang, Y. The Association of Methylenetetrahydrofolate Reductase (MTHFR) A1298C Gene Polymorphism with Susceptibility to Diabetic Nephropathy: A Meta-Analysis. Horm. Metab. Res. 2022, 54, 845–851. [Google Scholar] [CrossRef]
- Yang, R.; Pu, D.; Tan, R.; Wu, J. Association of Methylenetetrahydrofolate Reductase (MTHFR) Gene Polymorphisms (C677T and A1298C) with Thyroid Dysfunction: A Meta-Analysis and Trial Sequential Analysis. Arch. Endocrinol. Metab. 2022, 66, 551. [Google Scholar] [CrossRef]
- Fang, Y.; Cui, Y.; Yin, Z.; Hou, M.; Guo, P.; Wang, H.; Liu, N.; Cai, C.; Wang, M. Comprehensive Systematic Review and Meta-Analysis of the Association between Common Genetic Variants and Autism Spectrum Disorder. Gene 2023, 887, 147723. [Google Scholar] [CrossRef]
- Tabatabaei, R.S.; Fatahi-Meibodi, N.; Meibodi, B.; Javaheri, A.; Abbasi, H.; Hadadan, A.; Bahrami, R.; Mirjalili, S.R.; Karimi-Zarchi, M.; Neamatzadeh, H. Association of Fetal MTHFR C677T Polymorphism with Susceptibility to Neural Tube Defects: A Systematic Review and Update Meta-Analysis. Fetal Pediatr. Pathol. 2022, 41, 225–241. [Google Scholar] [CrossRef]
- Bahrami, R.; Schwartz, D.A.; Asadian, F.; Karimi-Zarchi, M.; Dastgheib, S.A.; Tabatabaie, R.S.; Meibodi, B.; Neamatzadeh, H. Association of MTHFR 677C>T Polymorphism with IUGR and Placental Abruption Risk: A Systematic Review and Meta-Analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 256, 130–139. [Google Scholar] [CrossRef]
- Alfaleh, A.; Alkattan, A.; Mahmoud, N.; Alfaleh, F.; Almutair, N.; Alanazi, A.; Kbbash, I.; Radwan, N. The Association Between MTHFR C677T Gene Polymorphism and Repeated Pregnancy Loss in Arabic Countries: A Systematic Review and Meta-Analysis. Reprod. Sci. 2023, 30, 2060–2068. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.; Vishvkarma, R.; Singh, K.; Rajender, S. MTHFR 1298A>C Substitution Is a Strong Candidate for Analysis in Recurrent Pregnancy Loss: Evidence from 14,289 Subjects. Reprod. Sci. 2022, 29, 1039–1053. [Google Scholar] [CrossRef] [PubMed]
- Raina, J.K.; Panjaliya, R.K.; Dogra, V.; Sharma, S.; Anupriya; Kumar, P. Association of MTHFR and MS/MTR Gene Polymorphisms with Congenital Heart Defects in North Indian Population (Jammu and Kashmir): A Case-Control Study Encompassing Meta-Analysis and Trial Sequential Analysis. BMC Pediatr. 2022, 22, 223. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.F.; Ding, B.; Zhang, J.Y.; Mei, X.F.; Li, F.; Wu, P.; Mei, C.H.; Zhou, Y.F.; Chen, T. Association Between MTHFR C677T Polymorphism and Congenital Heart Disease. Int. Heart J. 2020, 61, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Feng, D.; He, S.; Yang, H.; Su, Z.; Ye, H. Association of MTHFR 677C>T Gene Polymorphism with Neonatal Defects: A Meta-Analysis of 81444 Subjects. J. Obs. Gynaecol. 2022, 42, 1811–1822. [Google Scholar] [CrossRef]
- Akcılar, R.; Yalınbaş, E.E.; Mutlu, F. MTHFR 677C>T Gene Polymorphism Is Associated with Large for Gestational Age Infants. Fetal Pediatr. Pathol. 2024, 43, 234–245. [Google Scholar] [CrossRef]
- Aguilar-Lacasaña, S.; López-Flores, I.; González-Alzaga, B.; Giménez-Asensio, M.J.; Carmona, D.F.; Hernández, A.F.; Gallego, M.F.L.; Romero-Molina, D.; Lacasaña, M. Methylenetetrahydrofolate Reductase (MTHFR) Gene Polymorphism and Infant’s Anthropometry at Birth. Nutrients 2021, 13, 831. [Google Scholar] [CrossRef]
- Ginani, C.T.A.; da Luz, J.R.D.; de Medeiros, K.S.; Sarmento, A.C.A.; Coppedè, F.; das Graças Almeida, M. Association of C677T and A1298C Polymorphisms of the MTHFR Gene with Maternal Risk for Down Syndrome: A Meta-Analysis of Case-Control Studies. Mutat. Res./Rev. Mutat. Res. 2023, 792, 108470. [Google Scholar] [CrossRef]
- Li, Y.; Pei, Y.X.; Wang, L.N.; Liang, C.; Tang, Y.L.; Zhang, X.L.; Huang, L.B.; Luo, X.Q.; Ke, Z.Y. MTHFR-C677T Gene Polymorphism and Susceptibility to Acute Lymphoblastic Leukemia in Children: A Meta-Analysis. Crit. Rev. Eukaryot. Gene Expr. 2020, 30, 125–136. [Google Scholar] [CrossRef]
- Frikha, R. Assessment of the Relationship between Methylenetetrahydrofolate Reductase Polymorphism and Acute Lymphoblastic Leukemia: Evidence from an Updated Meta-Analysis. J. Oncol. Pharm. Pract. 2020, 26, 1598–1610. [Google Scholar] [CrossRef]
- Li, S.Y.; Ye, J.Y.; Liang, E.Y.; Zhou, L.X.; Yang, M. Association between MTHFR C677T Polymorphism and Risk of Acute Lymphoblastic Leukemia: A Meta-Analysis Based on 51 Case-Control Studies. Med. Sci. Monit. 2015, 21, 740–748. [Google Scholar] [CrossRef] [PubMed]
- Hasan, T.; Arora, R.; Bansal, A.K.; Bhattacharya, R.; Sharma, G.S.; Singh, L.R. Disturbed Homocysteine Metabolism Is Associated with Cancer. Exp. Mol. Med. 2019, 51, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kattner, P.; Strobel, H.; Khoshnevis, N.; Grunert, M.; Bartholomae, S.; Pruss, M.; Fitzel, R.; Halatsch, M.E.; Schilberg, K.; Siegelin, M.D.; et al. Compare and Contrast: Pediatric Cancer versus Adult Malignancies. Cancer Metastasis Rev. 2019, 38, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Alejandro Sweet-Cordero, E.; Biegel, J.A. The Genomic Landscape of Pediatric Cancers: Implications for Diagnosis and Treatment. Science 2019, 363, 1170–1175. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- Stang, A. Critical Evaluation of the Newcastle-Ottawa Scale for the Assessment of the Quality of Nonrandomized Studies in Meta-Analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef]
- Cumpston, M.S.; McKenzie, J.E.; Welch, V.A.; Brennan, S.E. Strengthening Systematic Reviews in Public Health: Guidance in the Cochrane Handbook for Systematic Reviews of Interventions, 2nd Edition. J. Public Health 2022, 44, E588–E592. [Google Scholar] [CrossRef]
- Cochrane Handbook for Systematic Reviews of Interventions|Cochrane Training. Available online: https://training.cochrane.org/handbook/current (accessed on 22 December 2024).
- Kamel, A. Synergistic Effect of Methyltetrahydrofolate Reductase (MTHFR) C677T and A1298C Polymorphism as Risk Modifiers of Pediatric Acute Lymphoblastic Leukemia. J. Egypt. Natl. Canc Inst. 2007, 19, 96–105. [Google Scholar]
- Gong, Y.; Luo, L.; Wang, L.; Chen, J.; Chen, F.; Ma, Y.; Xu, Z.; Sun, Y.; Luo, L.; Shi, C.; et al. Association of MTHFR and ABCB1 Polymorphisms with MTX-Induced Mucositis in Chinese Paediatric Patients with Acute Lymphoblastic Leukaemia, Lymphoma or Osteosarcoma-A Retrospective Cohort Study. J. Clin. Pharm. Ther. 2021, 46, 1557–1563. [Google Scholar] [CrossRef]
- Choi, R.; Sohn, I.; Kim, M.J.; Woo, H.I.; Lee, J.W.; Ma, Y.; Yi, E.S.; Koo, H.H.; Lee, S.Y. Pathway Genes and Metabolites in Thiopurine Therapy in Korean Children with Acute Lymphoblastic Leukaemia. Br. J. Clin. Pharmacol. 2019, 85, 1585–1597. [Google Scholar] [CrossRef]
- Mostafa-Hedeab, G.; Elborai, Y.; Ebid, G.T.A. Effects of Methylene Tetrahydro Folate Reductase Gene Polymorphisms on Methotrexate Toxicity in Egyptian Pediatric Acute Lymphocytic Leukaemia Patients. Iran. J. Pharm. Res. 2020, 19, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.M.; Yue, L.J.; Zhang, H.H.; Yang, C.L.; Xie, C. Association of Single Nucleotide Polymorphism of Methylenetetrahydrofolate Reductase Gene with Susceptibility to Acute Leukemia. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2013, 30, 451–455. [Google Scholar] [CrossRef]
- Frikha, R.; Turki, F.; Frikha, F.; Elloumi, M.; Rebai, T. Involvement of MTHFR Rs1801133 in the Susceptibility of Acute Lymphoblastic Leukemia: A Preliminary Study. J. Pediatr. Hematol. Oncol. 2021, 43, E816–E818. [Google Scholar] [CrossRef] [PubMed]
- Hur, M.; Park, J.Y.; Cho, H.C.; Lee, K.M.; Shin, H.Y.; Cho, H.I. Methylenetetrahydrofolate Reductase A1298C Genotypes Are Associated with the Risks of Acute Lymphoblastic Leukaemia and Chronic Myelogenous Leukaemia in the Korean Population. Clin. Lab. Haematol. 2006, 28, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.; Sun, C.; Ding, D.; Wen, Z.; Zhang, C.; Kong, J. Association between Micronutrients and Hyperhomocysteinemia: A Case-Control Study in Northeast China. Nutrients 2023, 15, 1895. [Google Scholar] [CrossRef]
- Waggiallah, H.A.; Mohieldeen, W.A.; Ahmed, A.; Elmosaad, Y.M.; Suliman, R.S.; Alfahed, A.; Hjazi, A.; Al Shmrany, H.; Hakami, N.; Hakami, M.A.; et al. Detection of Methylene Tetrahydrofolate Reductase (MTHFR C677T) Mutation among Acute Lymphoblastic Leukemia in Sudanese Patients. Rep. Biochem. Mol. Biol. 2023, 12, 458. Available online: http://rbmb.net/article-1-1260-en.html&sw=Detection+of+Methylene+Tetrahydrofolate+Reductase+%28mthfr+C677t%29+Mutation+Among+Acute+LymphoLymphob+Leukemia+in+Sudanese+Patients (accessed on 23 December 2024).
- Jiang, N.; Zhu, X.; Zhang, H.; Wang, X.; Zhou, X.; Gu, J.; Chen, B.; Ren, J. The Relationship between Methylenetetrahydrofolate Reductase Polymorphism and Hematological Malignancy. Clin. Lab. 2014, 60, 767–774. [Google Scholar] [CrossRef]
- Carvalho, D.C.; Wanderley, A.V.; Mello Junior, F.A.R.; dos Santos, A.M.R.; Leitão, L.P.C.; de Souza, T.P.; de Castro, A. de N.C.L.; de Magalhães, L.L.; Fernandes, M.R.; de Carvalho Junior, J.A.N.; et al. Association of Genes ARID5B, CEBPE and Folate Pathway with Acute Lymphoblastic Leukemia in a Population from the Brazilian Amazon Region. Leuk. Res. Rep. 2019, 13, 100188. [Google Scholar] [CrossRef]
- Chung-Filho, A.A.; Brisson, G.D.; Vieira, T.M.F.; Chagas-Neto, P.; Soares-Lima, S.C.; Pombo-de-Oliveira, M.S. MTHFR Rs1801133 Polymorphism Is Associated with Increased Risk of B-Cell Precursor Lymphoblastic Leukaemia with Recurrent Genetic Aberrations of Fetal Origin. Cancer Epidemiol. 2020, 65, 101693. [Google Scholar] [CrossRef]
- Vu Hoang, P.T.; Ambroise, J.; Dekairelle, A.F.; Durant, J.F.; Butoescu, V.; Dang Chi, V.L.; Huynh, N.; Nguyen, T.B.; Robert, A.; Vermylen, C.; et al. Comparative Pharmacogenetic Analysis of Risk Polymorphisms in Caucasian and Vietnamese Children with Acute Lymphoblastic Leukemia: Prediction of Therapeutic Outcome? Br. J. Clin. Pharmacol. 2015, 79, 429–440. [Google Scholar] [CrossRef]
- Alcasabas, P.; Ravindranath, Y.; Goyette, G.; Haller, A.; Del Rosario, L.; Lesaca-Medina, M.Y.; Darga, L.; Ostrea, E.M.; Taub, J.W.; Everson, R.B. 5,10-Methylenetetrahydrofolate Reductase (MTHFR) Polymorphisms and the Risk of Acute Lymphoblastic Leukemia (ALL) in Filipino Children. Pediatr. Blood Cancer 2008, 51, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Azhar, M.R.; Rahimi, Z.; Vaisi-Raygani, A.; Akramipour, R.; Madani, H.; Rahimi, Z.; Parsian, A. Lack of Association between MTHFR C677T and A1298C Polymorphisms and Risk of Childhood Acute Lymphoblastic Leukemia in the Kurdish Population from Western Iran. Genet. Test. Mol. Biomark. 2012, 16, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Bahari, G.; Hashemi, M.; Naderi, M.; Taheri, M. Association between Methylenetetrahydrofolate Reductase (MTHFR) Gene Polymorphisms and Susceptibility to Childhood Acute Lymphoblastic Leukemia in an Iranian Population. Int. J. Hematol. Oncol. Stem Cell Res. 2016, 10, 130. [Google Scholar] [PubMed]
- Balta, G.; Yuksek, N.; Ozyurek, E.; Ertem, U.; Hicsonmez, G.; Altay, C.; Gurgey, A. Characterization of MTHFR, GSTM1, GSTT1, GSTP1, and CYP1A1 Genotypes in Childhood Acute Leukemia. Am. J. Hematol. 2003, 73, 154–160. [Google Scholar] [CrossRef]
- Bohanec, G.P.; Jazbec, J.; Dolẑan, V. Gene-Gene Interactions in the Folate Metabolic Pathway Influence the Risk for Acute Lymphoblastic Leukemia in Children. Leuk. Lymphoma 2007, 48, 786–792. [Google Scholar] [CrossRef]
- Chan, J.Y.S.; Ugrasena, D.G.; Lum, D.W.K.; Lu, Y.; Yeoh, A.E.J. Xenobiotic and Folate Pathway Gene Polymorphisms and Risk of Childhood Acute Lymphoblastic Leukaemia in Javanese Children. Hematol. Oncol. 2011, 29, 116–123. [Google Scholar] [CrossRef]
- Chatzidakis, K.; Goulas, A.; Athanassiadou-Piperopoulou, F.; Fidani, L.; Koliouskas, D.; Mirtsou, V. Methylenetetrahydrofolate Reductase C677T Polymorphism: Association with Risk for Childhood Acute Lymphoblastic Leukemia and Response during the Initial Phase of Chemotherapy in Greek Patients. Pediatr. Blood Cancer 2006, 47, 147–151. [Google Scholar] [CrossRef]
- Damnjanovic, T.; Milicevic, R.; Novkovic, T.; Jovicic, O.; Bunjevacki, V.; Jekic, B.; Lukovic, L.; Novakovic, I.; Redzic, D.; Milasin, J. Association between the Methylenetetrahydrofolate Reductase Polymorphisms and Risk of Acute Lymphoblastic Leukemia in Serbian Children. J. Pediatr. Hematol. Oncol. 2010, 32, e148–e150. [Google Scholar] [CrossRef]
- De Jonge, R.; Tissing, W.J.E.; Hooijberg, J.H.; Jansen, G.; Kaspers, G.J.L.; Lindemans, J.; Peters, G.J.; Pieters, R. Polymorphisms in Folate-Related Genes and Risk of Pediatric Acute Lymphoblastic Leukemia. Blood 2009, 113, 2284–2289. [Google Scholar] [CrossRef]
- Feng, Y.; Wu, J. Relationship between Genetic Polymorphism of Methylenetetrahydrfolate Reductase and the Risk of Childhood Acute Lymphocytic Leukemia. J. Leuk. Lymphoma 2012, 12, 736–738. [Google Scholar] [CrossRef]
- Franco, R.F.; Simões, B.P.; Tone, L.G.; Gabellini, S.M.; Zago, M.A.; Falcão, R.P. The Methylenetetrahydrofolate Reductase C677T Gene Polymorphism Decreases the Risk of Childhood Acute Lymphocytic Leukaemia. Br. J. Haematol. 2001, 115, 616–618. [Google Scholar] [CrossRef] [PubMed]
- Giovannetti, E.; Ugrasena, D.G.; Supriyadi, E.; Vroling, L.; Azzarello, A.; de Lange, D.; Peters, G.J.; Veerman, A.J.P.; Cloos, J. Methylenetetrahydrofolate Reductase (MTHFR) C677T and Thymidylate Synthase Promoter (TSER) Polymorphisms in Indonesian Children with and without Leukemia. Leuk. Res. 2008, 32, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Gómez, Y.; Organista-Nava, J.; Villanueva-Flores, F.; Estrada-Brito, J.S.; Rivera-Ramírez, A.B.; Saavedra-Herrera, M.V.; Jiménez-López, M.A.; Illades-Aguiar, B.; Leyva-Vázquez, M.A. Association Between the 5,10-MTHFR 677C>T and RFC1 80G>A Polymorphisms and Acute Lymphoblastic Leukemia. Arch. Med. Res. 2019, 50, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Álvarez, O.; Lares-Asseff, I.; Galaviz-Hernández, C.; Reyes-Espinoza, E.A.; Almanza-Reyes, H.; Sosa-Macías, M.; Chairez Hernández, I.; Salas-Pacheco, J.M.; Bailón-Soto, C.E. Involvement of MTHFR and TPMT Genes in Susceptibility to Childhood Acute Lymphoblastic Leukemia (ALL) in Mexicans. Drug Metab. Pers. Ther. 2016, 31, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Van Den Heuvel-eibrink, M. Germline Variation in the MTHFR and MTRR Genes Determines the Nadir of Bone Density in Pediatric Acute Lymphoblastic Leukemia: A Prospective Study. Bone 2011, 48, 571–577. [Google Scholar]
- Kałuzna, E.M.; Strauss, E.; Światek-Kościelna, B.; Zajac-Spychała, O.; Gowin, E.; Nowak, J.S.; Rembowska, J.; Januszkiewicz-Lewandowska, D. The Methylenetetrahydrofolate Reductase 677T-1298C Haplotype Is a Risk Factor for Acute Lymphoblastic Leukemia in Children. Medicine 2017, 96, e9290. [Google Scholar] [CrossRef]
- Karathanasis, N.V.; Stiakaki, E.; Goulielmos, G.N.; Kalmanti, M. The Role of the Methylenetetrahydrofolate Reductase 677 and 1298 Polymorphisms in Cretan Children with Acute Lymphoblastic Leukemia. Genet Test Mol. Biomark. 2011, 15, 5–10. [Google Scholar] [CrossRef]
- Kim, N.K.; Chong, S.Y.; Jang, M.J.; Hong, S.H.; Kim, H.S.; Cho, E.K.; Lee, J.A.; Ahn, M.J.; Kim, C.S.; Oh, D. Association of the Methylenetetrahydrofolate Reductase Polymorphism in Korean Patients with Childhood Acute Lymphoblastic Leukemia. Anticancer. Res. 2006, 26, 2879–2881. [Google Scholar]
- Krajinovic, M.; Lamothe, S.; Labuda, D.; Lemieux-Blanchard, É.; Théorêt, Y.; Moqhrabi, A.; Sinnett, D. Role of MTHFR Genetic Polymorphisms in the Susceptibility to Childhood Acute Lymphoblastic Leukemia. Blood 2004, 103, 252–257. [Google Scholar] [CrossRef]
- Kreile, M.; Rots, D.; Piekuse, L.; Cebura, E.; Grutupa, M.; Kovalova, Z.; Lace, B. Lack of Association between Polymorphisms in Genes MTHFR and MDR1 with Risk of Childhood Acute Lymphoblastic Leukemia. Asian Pac. J. Cancer Prev. 2014, 15, 9707–9711. [Google Scholar] [CrossRef]
- Li, X.; Liao, Q.; Zhang, S.; Chen, M. Association of Methylenetetrahytrofolate Reductase (MTHFR) C677T and A1298C Polymorphisms with the Susceptibility of Childhood Acute Lymphoblastic Leukaemia (ALL) in Chinese Population. Eur. J. Med. Res. 2014, 19, 5. [Google Scholar] [CrossRef] [PubMed]
- Lightfoot, T.J.; Johnston, W.T.; Painter, D.; Simpson, J.; Roman, E.; Skibola, C.F.; Smith, M.T.; Allan, J.M.; Taylor, G.M. Genetic Variation in the Folate Metabolic Pathway and Risk of Childhood Leukemia. Blood 2010, 115, 3923–3929. [Google Scholar] [CrossRef] [PubMed]
- Metayer, C.; Scélo, G.; Chokkalingam, A.P.; Barcellos, L.F.; Aldrich, M.C.; Chang, J.S.; Guha, N.; Urayama, K.Y.; Hansen, H.M.; Block, G.; et al. Genetic Variants in the Folate Pathway and Risk of Childhood Acute Lymphoblastic Leukemia. Cancer Causes Control 2011, 22, 1243–1258. [Google Scholar] [CrossRef] [PubMed]
- Milne, E.; Greenop, K.R.; Scott, R.J.; Haber, M.; Norris, M.D.; Attia, J.; Jamieson, S.E.; Miller, M.; Bower, C.; Bailey, H.D.; et al. Folate Pathway Gene Polymorphisms, Maternal Folic Acid Use, and Risk of Childhood Acute Lymphoblastic Leukemia. Cancer Epidemiol. Biomark. Prev. 2015, 24, 48–56. [Google Scholar] [CrossRef]
- Mosaad, Y.M.; Abousamra, N.K.; Elashery, R.; Fawzy, I.M.; Eldein, O.A.S.; Sherief, D.M.; El Azab, H.M.M. Methylenetetrahydrofolate Reductase C677T and A1298C Polymorphism and Susceptibility to Acute Lymphoblastic Leukemia in a Cohort of Egyptian Children. Leuk. Lymphoma 2015, 56, 2699–2705. [Google Scholar] [CrossRef]
- Nikbakht, M.; MalekZadeh, K.; Kumar Jha, A.; Askari, M.; Marwaha, R.K.; Kaul, D.; Kaur, J. Polymorphisms of MTHFR and MTR Genes Are Not Related to Susceptibility to Childhood ALL in North India. Exp. Oncol. 2012, 34, 43–48. [Google Scholar]
- Oliveira, E.; Alves, S.; Quental, S.; Ferreira, F.; Norton, L.; Costa, V.; Amorim, A.; Prata, M.J. The MTHFR C677T and A1298C Polymorphisms and Susceptibility to Childhood Acute Lymphoblastic Leukemia in Portugal. J. Pediatr. Hematol. Oncol. 2005, 27, 425–429. [Google Scholar] [CrossRef]
- Pei, J.S.; Hsu, C.M.; Tsai, C.W.; Chang, W.S.; Ji, H.X.; Hsiao, C.L.; Miao, C.E.; Hsu, Y.N.; Bau, D.T. The Association of Methylenetetrahydrofolate Reductase Genotypes with the Risk of Childhood Leukemia in Taiwan. PLoS ONE 2015, 10, e0119776. [Google Scholar] [CrossRef]
- Reddy, H.; Jamil, K. Polymorphisms in the MTHFR Gene and Their Possible Association with Susceptibility to Childhood Acute Lymphocytic Leukemia in an Indian Population. Leuk. Lymphoma 2006, 47, 1333–1339. [Google Scholar] [CrossRef]
- Sadananda Adiga, M.N.; Chandy, S.; Ramachandra, N.; Appaji, L.; Aruna Kumari, B.S.; Ramaswamy, G.; Savithri, H.S.; Krishnamoorthy, L. Methylenetetrahydrofolate Reductase Gene Polymorphisms and Risk of Acute Lymphoblastic Leukemia in Children. Indian J. Cancer 2010, 47, 40–45. [Google Scholar] [CrossRef]
- Schnakenberg, E.; Mehles, A.; Cario, G.; Rehe, K.; Seidemann, K.; Schlegelberger, B.; Elsner, H.A.; Welte, K.H.; Schrappe, M.; Stanulla, M. Polymorphisms of Methylenetetrahydrofolate Reductase (MTHFR) and Susceptibility to Pediatric Acute Lymphoblastic Leukemia in a German Study Population. BMC Med. Genet. 2005, 6, 23. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.M.S.; Fontes, A.C.L.; Silva, K.A.; Sant’Ana, T.A.; Ramos, F.J.D.C.; Marques-Salles, T.D.J.; Pombo-De-Oliveira, M.S.; Muniz, M.T.C. Polymorphisms Involved in Folate Metabolism Pathways and the Risk of the Development of Childhood Acute Leukemia. Genet. Test. Mol. Biomark. 2013, 17, 147–152. [Google Scholar] [CrossRef]
- Sood, S.; Das, R.; Trehan, A.; Ahluwalia, J.; Sachdeva, M.U.; Varma, N.; Bansal, D.; Marwaha, R.K. Methylenetetrahydrofolate Reductase Gene Polymorphisms: Association with Risk for Pediatric Acute Lymphoblastic Leukemia in North Indians. Leuk. Lymphoma 2010, 51, 928–932. [Google Scholar] [CrossRef] [PubMed]
- Thirumaran, R.K.; Gast, A.; Flohr, T.; Burwinkel, B.; Bartram, C.; Hemminki, K.; Kumar, R.; Sinnett, D.; Labuda, D.; Krajinovic, M. MTHFR Genetic Polymorphisms and Susceptibility to Childhood Acute Lymphoblastic Leukemia. Blood 2005, 106, 2590–2591. [Google Scholar] [CrossRef] [PubMed]
- Tong, N.; Fang, Y.; Li, J.; Wang, M.; Lu, Q.; Wang, S.; Tian, Y.; Rong, L.; Sun, J.; Xu, J.; et al. Methylenetetrahydrofolate Reductase Polymorphisms, Serum Methylenetetrahydrofolate Reductase Levels, and Risk of Childhood Acute Lymphoblastic Leukemia in a Chinese Population. Cancer Sci. 2010, 101, 782–786. [Google Scholar] [CrossRef] [PubMed]
- Wiemels, J.L.; Smith, R.N.; Taylor, G.M.; Eden, O.B.; Alexander, F.E.; Greaves, M.F. Methylenetetrahydrofolate Reductase (MTHFR) Polymorphisms and Risk of Molecularly Defined Subtypes of Childhood Acute Leukemia. Proc. Natl. Acad. Sci. USA 2001, 98, 4004–4009. [Google Scholar] [CrossRef]
- Xia, X.; Duan, Y.; Cui, J.; Jiang, J.; Lin, L.; Peng, X.; Wang, Y.H.; Guo, B.; Liu, S.; Lei, X. Association of Methylenetetrahydrofolate Reductase Gene-Gene Interaction and Haplotype with Susceptibility to Acute Lymphoblastic Leukemia in Chinese Children. Leuk. Lymphoma 2017, 58, 1887–1892. [Google Scholar] [CrossRef]
- Yeoh, A.E.J.; Lu, Y.; Chan, J.Y.S.; Chan, Y.H.; Ariffin, H.; Kham, S.K.Y.; Quah, T.C. Genetic Susceptibility to Childhood Acute Lymphoblastic Leukemia Shows Protection in Malay Boys: Results from the Malaysia-Singapore ALL Study Group. Leuk. Res. 2010, 34, 276–283. [Google Scholar] [CrossRef]
- Zanrosso, C.W.; Hatagima, A.; Emerenciano, M.; Ramos, F.; Figueiredo, A.; Félix, T.M.; Segal, S.L.; Giugliani, R.; Muniz, M.T.C.; Pombo-De-Oliveira, M.S. The Role of Methylenetetrahydrofolate Reductase in Acute Lymphoblastic Leukemia in a Brazilian Mixed Population. Leuk. Res. 2006, 30, 477–481. [Google Scholar] [CrossRef]
- Zou, R.; He, X.; Wu, Y.; Tian, X.; You, Y.; Zheng, M.; Li, W.; Zou, H.; Liu, H.; Zhu, X.; et al. TS Gene Polymorphisms Correlate with Susceptibility to Acute Lymphocytic Leukemia in Children. Med. Sci. Monit. 2017, 23, 3095–3104. [Google Scholar] [CrossRef]
- da Costa Ramos, F.J.; Cartaxo Muniz, M.T.; Silva, V.C.; Araújo, M.; Leite, E.P.; Freitas, E.M.; Zanrosso, C.W.; Hatagima, A.; de Mello, M.P.; Yunes, J.A.; et al. Association between the MTHFR A1298C Polymorphism and Increased Risk of Acute Myeloid Leukemia in Brazilian Children. Leuk. Lymphoma 2006, 47, 2070–2075. [Google Scholar] [CrossRef] [PubMed]
- Bolufer, P.; Collado, M.; Barragán, E.; Cervera, J.; Calasanz, M.J.; Colomer, D.; Roman-Gómez, J.; Sanz, M.A. The Potential Effect of Gender in Combination with Common Genetic Polymorphisms of Drug-Metabolizing Enzymes on the Risk of Developing Acute Leukemia. Haematologica 2007, 92, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Sirachainan, N.; Wongruangsri, S.; Kajanachumpol, S.; Pakakasama, S.; Visudtibhan, A.; Nuchprayoon, I.; Lusawat, A.; Phudhicharoenrat, S.; Shuangshoti, S.; Hongeng, S. Folate Pathway Genetic Polymorphisms and Susceptibility of Central Nervous System Tumors in Thai Children. Cancer Detect. Prev. 2008, 32, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Salnikova, L.E.; Belopolskaya, O.B.; Zelinskaya, N.I.; Rubanovich, A.V. The Potential Effect of Gender in CYP1A1 and GSTM1 Genotype-Specific Associations with Pediatric Brain Tumor. Tumour Biol. 2013, 34, 2709–2719. [Google Scholar] [CrossRef]
- Greenop, K.R.; Scott, R.J.; Attia, J.; Bower, C.; De Klerk, N.H.; Norris, M.D.; Haber, M.; Jamieson, S.E.; Van Bockxmeer, F.M.; Gottardo, N.G.; et al. Folate Pathway Gene Polymorphisms and Risk of Childhood Brain Tumors: Results from an Australian Case-Control Study. Cancer Epidemiol. Biomark. Prev. 2015, 24, 931–937. [Google Scholar] [CrossRef] [PubMed]
- De Miranda, D.O.; Barros, J.E.X.S.; Vieira, M.M.S.; Lima, E.L.S.; Moraes, V.L.L.; Da Silva, H.A.; Garcia, H.L.B.O.; Lima, C.A.; Gomes, A.V.; Santos, N.; et al. Reduced Folate Carrier-1 G80a Gene Polymorphism Is Associated with Neuroblastoma’s Development. Mol. Biol. Rep. 2014, 41, 5069–5075. [Google Scholar] [CrossRef]
- De Lima, E.L.S.; Da Silva, V.C.; Da Silva, H.D.A.; Bezerra, A.M.; De Morais, V.L.L.; De Morais, A.L.; Cruz, R.V.; Barros, M.H.M.; Hassan, R.; De Freitas, A.C.; et al. MTR Polymorphic Variant A2756G and Retinoblastoma Risk in Brazilian Children. Pediatr. Blood Cancer 2010, 54, 904–908. [Google Scholar] [CrossRef]
- Soleimani, E.; Saliminejad, K.; Akbari, M.T.; Kamali, K.; Ahani, A. Association Study of the Common Polymorphisms in the Folate-Methionine Pathway with Retinoblastoma. Ophthalmic Genet. 2016, 37, 384–387. [Google Scholar] [CrossRef]
- Bisht, S.; Chawla, B.; Dada, R. Oxidative Stress and Polymorphism in MTHFR SNPs (677 and 1298) in Paternal Sperm DNA Is Associated with an Increased Risk of Retinoblastoma in Their Children: A Case–Control Study. J. Pediatr. Genet 2018, 7, 103. [Google Scholar] [CrossRef]
- Gohari, M.; Dastgheib, S.A.; Jafari-Nedooshan, J.; Akbarian-Bafghi, J.M.; Morovati-Sharifabad, M.; Mirjalili, R.S.; Neamatzadeh, H. Association of MTHFR 677C<T, 1298A<C and MTR 2756A<G Polymorphisms with Risk of Retinoblastoma. Klin. Onkol. 2019, 32, 375–379. [Google Scholar] [CrossRef]
- Stanulla, M.; Seidemann, K.; Schnakenberg, E.; Book, M.; Mehles, A.; Weite, K.; Schrappe, M.; Reiter, A. Methylenetetrahydrofolate Reductase (MTHFR) 677C>T Polymorphism and Risk of Pediatric Non-Hodgkin Lymphoma in a German Study Population. Blood 2005, 105, 906–907. [Google Scholar] [CrossRef] [PubMed]
- Patiño-García, A.; Zalacaín, M.; Marrodán, L.; San-Julián, M.; Sierrasesúmaga, L. Methotrexate in Pediatric Osteosarcoma: Response and Toxicity in Relation to Genetic Polymorphisms and Dihydrofolate Reductase and Reduced Folate Carrier 1 Expression. J. Pediatr. 2009, 154, 688–693. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, M.; Capozzi, L.; Russo, R. Impact of the MTHFR C677T Polymorphism on Risk of Wilms Tumor: Case-Control Study. J. Pediatr. Hematol. Oncol. 2009, 31, 256–258. [Google Scholar] [CrossRef] [PubMed]
- Koppen, I.J.N.; Hermans, F.J.R.; Kaspers, G.J.L. Folate Related Gene Polymorphisms and Susceptibility to Develop Childhood Acute Lymphoblastic Leukaemia. Br. J. Haematol. 2010, 148, 3–14. [Google Scholar] [CrossRef]
- Yan, J.; Yin, M.; Dreyer, Z.E.; Scheurer, M.E.; Kamdar, K.; Wei, Q.; Okcu, M.F. A Meta-Analysis of MTHFR C677T and A1298C Polymorphisms and Risk of Acute Lymphoblastic Leukemia in Children. Pediatr. Blood Cancer 2012, 58, 513–518. [Google Scholar] [CrossRef]
- Xiao, Y.; Deng, T.R.; Su, C.L.; Shang, Z. Methylenetetrahydrofolate Reductase Polymorphisms and Susceptibility to Acute Lymphoblastic Leukemia in a Chinese Population: A Meta-Analysis. Oncol. Res. Treat. 2014, 37, 576–582. [Google Scholar] [CrossRef]
- Zintzaras, E.; Doxani, C.; Rodopoulou, P.; Bakalos, G.; Ziogas, D.C.; Ziakas, P.; Voulgarelis, M. Variants of the MTHFR Gene and Susceptibility to Acute Lymphoblastic Leukemia in Children: A Synthesis of Genetic Association Studies. Cancer Epidemiol. 2012, 36, 169–176. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, W.; Yan, L.; Wang, D. The Association between MTHFR Gene C677T Polymorphism and ALL Risk Based on a Meta-Analysis Involving 17,469 Subjects. Clin. Chim. Acta 2017, 466, 85–92. [Google Scholar] [CrossRef]
- Lien, S.Y.A.; Young, L.; Gau, B.S.; Shiao, S.P.K. Meta-Prediction of MTHFR Gene Polymorphism-Mutations, Air Pollution, and Risks of Leukemia among World Populations. Oncotarget 2017, 8, 4387–4398. [Google Scholar] [CrossRef]
- Gohari, M.; Moghimi, M.; Aarafi, H.; Shajari, A.; Jafari-Nedooshan, J.; Lookzadeh, M.H.; Mirjalili, S.R.; Neamatzadeh, H. Association of MTHFR 677C>T, 1298A>C and MTR 2756A>G Polymorphisms with Susceptibility to Childhood Retinoblastoma: A Systematic Review and Met-Analysis. Fetal Pediatr. Pathol. 2021, 40, 612–625. [Google Scholar] [CrossRef]
- Qin, Y.T.; Zhang, Y.; Wu, F.; Su, Y.; Lu, G.N.; Wang, R.S. Association between MTHFR Polymorphisms and Acute Myeloid Leukemia Risk: A Meta-Analysis. PLoS ONE 2014, 9, 88823. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wu, Y.; Jing, Z.; Wen, R.; Song, Y.; Feng, Y.; Li, G.; Zou, X.; Huang, G.; Jia, Z.; et al. Association of MTHFR Gene Polymorphisms with Non-Hodgkin Lymphoma Risk: Evidence from 31 Articles. J. Cancer 2024, 15, 5277–5287. [Google Scholar] [CrossRef] [PubMed]
- Kawami, M.; Honda, N.; Hara, T.; Yumoto, R.; Takano, M. Investigation on Inhibitory Effect of Folic Acid on Methotrexate-Induced Epithelial-Mesenchymal Transition Focusing on Dihydrofolate Reductase. Drug Metab. Pharmacokinet. 2019, 34, 396–399. [Google Scholar] [CrossRef] [PubMed]
- Rahmayanti, S.U.; Amalia, R.; Rusdiana, T. Systematic Review: Genetic Polymorphisms in the Pharmacokinetics of High-Dose Methotrexate in Pediatric Acute Lymphoblastic Leukemia Patients. Cancer Chemother. Pharmacol. 2024, 94, 141–155. [Google Scholar] [CrossRef]
- Ramalingam, R.; Kaur, H.; Scott, J.X.; Sneha, L.M.; Arunkumar, G.; Srinivasan, A.; Paul, S.F.D. Evaluation of Cytogenetic and Molecular Markers with MTX-Mediated Toxicity in Pediatric Acute Lymphoblastic Leukemia Patients. Cancer Chemother. Pharmacol. 2022, 89, 393–400. [Google Scholar] [CrossRef]
- Zahra, F.T.; Nahid, N.A.; Islam, M.R.; Al-Mamun, M.M.A.; Apu, M.N.H.; Nahar, Z.; Kabir, A.L.; Biswas, S.K.; Ahmed, M.U.; Islam, M.S.; et al. Pharmacogenetic Variants in MTHFR Gene Are Significant Predictors of Methotrexate Toxicities in Bangladeshi Patients With Acute Lymphoblastic Leukemia. Clin. Lymphoma Myeloma Leuk. 2020, 20, e58–e65. [Google Scholar] [CrossRef]
- Razali, R.H.; Noorizhab, M.N.F.; Jamari, H.; James, R.J.; Teh, K.H.; Ibrahim, H.M.; Teh, L.K.; Salleh, M.Z. Association of ABCC2 with Levels and Toxicity of Methotrexate in Malaysian Childhood Acute Lymphoblastic Leukemia (ALL). Pediatr. Hematol. Oncol. 2020, 37, 185–197. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, L.; Chen, X.; Zhao, L.; Wang, X.; Zhao, Z.; Mei, S. A Systematic Review of Population Pharmacokinetic Models of Methotrexate. Eur. J. Drug Metab. Pharmacokinet. 2022, 47, 143–164. [Google Scholar] [CrossRef]
- Yang, F.Y.; Xu, L.H.; Wang, J.; Zhang, Y.T.; Lin, S.F.; Wang, K.M.; Zhou, D.H.; Fang, J.P. Relationship between MTHFR Gene Polymorphism(C677T) and Adverse Reactions of High-Dose Methotrexate in Pediatric Patients with Acute Lymphoblastic Leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2023, 31, 967–972. Available online: https://europepmc.org/article/MED/37551463 (accessed on 23 December 2024).
- Zhou, Y.; He, H.; Ding, L.; Wang, T.; Liu, X.; Zhang, M.; Zhang, A.; Fu, J. Effects of Gene Polymorphisms on Delayed MTX Clearance, Toxicity, and Metabolomic Changes after HD-MTX Treatment in Children with Acute Lymphoblastic Leukemia. Eur. J. Pediatr. 2024, 183, 581–590. [Google Scholar] [CrossRef]
- Chang, X.; Guo, Y.; Su, L.; Zhang, Y.; Hui, W.; Zhao, H.; Hu, R.; Sun, W. Influence of MTHFR C677T Polymorphism on High-Dose Methotrexate-Related Toxicity in Patients With Primary Central Nervous System Diffuse Large B-Cell Lymphoma. Clin. Lymphoma Myeloma Leuk. 2021, 21, 91–96. [Google Scholar] [CrossRef]
Author | Year | Country of Origin | Patient Group (n) | Control Group (n) | 677C>T Polymorphism | 1298A>C Polymorphism | ||||
---|---|---|---|---|---|---|---|---|---|---|
CC | CT | TT | AA | AC | CC | |||||
Ramos [105] | 2006 | Brazil | 182 | 315 | 1 | 0.88 (0.58–1.32) | 1.19 (0.62–2.27) | 1 | 1.09 (0.72–1.65) | 1.39 (0.66–2.93) |
Bolufer [106] | 2007 | Spain | 35 | 51 | 1 | 0.98 (0.64–1.50) | 0.87 (0.51–1.51) | - | - | - |
Lightfoot [86] | 2010 | U.K. | 58 | 378 | 1 | 0.51 (0.3–0.87) | 1 (0.50–2.01) | 1 | 0.67 (0.40–1.12) | 1.22 (0.60–2.48) |
Silva [96] | 2013 | Brazil | 33 | 224 | 1 | 1.8 (0.83–3.90) | 2.1 (0.45–9.71) | 1 | 0.55 (0.24–1.26) | 0.33 (0.10–1.04) |
Author | Year | Country of Origin | Type of Cancer | Patient Group (n) | Control Group (n) | 677C>T Polymorphism | 1298A>C Polymorphism | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
CC | CT | TT | AA | AC | CC | ||||||
Sirachainan [107] | 2008 | Thailand | Glial tumors + | 73 | 205 | 1 | 1.2 (0.6–2.1) | 2 (0.3–12.2) | 1 | 1 (0.5–1.7) | 1.6 (0.6–4.3) |
Salnikova [108] | 2013 | Russia | Glial and embryonic tumors ++ | 284 | 456 | 1 | 0.86 (0.64–1.16) | 0.80 (0.46–1.39) | - | - | - |
Greenop [109] | 2015 | Australia | Non-specified brain tumors | 321 | 552 | 1 | 0.95 (0.7–1.29) | 0.83 (0.51–1.36) | 1 | 0.95 (0.7–1.28) | 1.24 (0.73–2.09) |
De Miranda [110] | 2014 | Brazil | Neuroblastoma | 29 | 92 | 1 | 1.45 (0.58–3.63) | 1.76 (0.37–8.18) | - | - | - |
Santos de Lima [111] | 2010 | Brazil | Retinoblastoma | 72 | 97 | 1 | 1.76 (0.61–5.04) | 1.82 (0.65–5.07) | 1 | 0.99 (0.28–3.46) | 1.46 (0.39–5.39) |
Soleimani [112] | 2016 | Iran | Retinoblastoma | 96 | 204 | 1 | 0.51 (0.3–0.87) | 0.23 (0.03–0.91) | 1 | 1.11 (0.65–1.91) | 0.72 (0.34–1.49) |
Bisht [113] | 2018 | India | Retinoblastoma | 90 | 90 | 1 | 16.03 (8.9–28.8) | 0 | 1 | 10.2 (5.6–18.58) | 0 |
Gohari [114] | 2019 | Slovenia | Retinoblastoma | 66 | 99 | 1 | 0.91 (0.48–1.70) | 1.16 (0.46–2.94) | 1 | 0.813 (0.41–1.5) | 1.33 (0.42–4.17) |
Author | Year | Country of Origin | Type of Cancer | Patient Group (n) | Control Group (n) | 677C>T Polymorphism | 1298A>C Polymorphism | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
CC | CT | TT | AA | AC | CC | ||||||
Stanulla [115] | 2005 | Germany | Non-Hodgkin lymphoma | 487 | 379 | 1 | 1.26 (0.95–1.68) | 1.32 (0.86–2.04) | 1 | - | - |
Patîno–Garcia [116] | 2008 | Spain | Osteosarcoma | 96 | 110 | 1 | 0.87 (0.47–1.6) | 0.67 (0.3–1.5) | 1 | 1.26 (0.7–2.3) | 1.1 (0.36–3.1) |
Ferrara [117] | 2009 | Italy | Wilms’ tumors | 34 | 70 | 1 | 1.42 (0.62–3.27) | 3.22 (1.13–9.15) | 1 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolanis, S.; Kotanidou, E.P.; Tsinopoulou, V.R.; Georgiou, E.; Hatzipantelis, E.; Fidani, L.; Galli-Tsinopoulou, A. MTHFR Gene Polymorphisms and Cancer Risk in Children and Adolescents: A Systematic Review and Meta-Analysis. Children 2025, 12, 108. https://doi.org/10.3390/children12010108
Kolanis S, Kotanidou EP, Tsinopoulou VR, Georgiou E, Hatzipantelis E, Fidani L, Galli-Tsinopoulou A. MTHFR Gene Polymorphisms and Cancer Risk in Children and Adolescents: A Systematic Review and Meta-Analysis. Children. 2025; 12(1):108. https://doi.org/10.3390/children12010108
Chicago/Turabian StyleKolanis, Savvas, Eleni P. Kotanidou, Vasiliki Rengina Tsinopoulou, Elisavet Georgiou, Emmanuel Hatzipantelis, Liana Fidani, and Assimina Galli-Tsinopoulou. 2025. "MTHFR Gene Polymorphisms and Cancer Risk in Children and Adolescents: A Systematic Review and Meta-Analysis" Children 12, no. 1: 108. https://doi.org/10.3390/children12010108
APA StyleKolanis, S., Kotanidou, E. P., Tsinopoulou, V. R., Georgiou, E., Hatzipantelis, E., Fidani, L., & Galli-Tsinopoulou, A. (2025). MTHFR Gene Polymorphisms and Cancer Risk in Children and Adolescents: A Systematic Review and Meta-Analysis. Children, 12(1), 108. https://doi.org/10.3390/children12010108