Body Composition Changes and Associations in Infants and Mothers During the First Year: Insights from a Pilot Study of the Baby-bod Project
Abstract
:1. Background
- Changes in body composition of infants from birth to 1 year of age;
- Changes in weight and BMI in mothers from preconception to 1 year postpartum to determine the association between prepregnancy BMI and body composition at the 1-year mark;
- Associations between body composition of infants and mothers at 1 year postpartum.
2. Methods
2.1. Participant Recruitment
2.2. Data Collection
2.2.1. Infants
2.2.2. Mothers
2.3. Statistical Analysis
3. Results
3.1. Participants
3.2. Changes in Body Composition of Infants from Birth to 1 Year
3.3. Changes in Weight and BMI of Mothers from Preconception to 1 Year Postpartum
3.4. Maternal Postpartum Body Composition and Its Relationship with Prepregnancy BMI
3.5. Associations Between Body Composition of Infants and Mothers at 12 Months Post-Childbirth
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
ADP | air displacement plethysmography |
BMI | body mass index |
FFM | fat-free mass |
FM | fat mass |
%FM | percent fat mass |
OW/OB | overweight/obesity |
References
- Mameli, C.; Mazzantini, S.; Zuccotti, G.V. Nutrition in the First 1000 Days: The Origin of Childhood Obesity. Int. J. Environ. Res. Public Health 2016, 13, 838. [Google Scholar] [CrossRef]
- Fall, C.H.D.; Kumaran, K. Metabolic programming in early life in humans. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2019, 374, 20180123. [Google Scholar] [CrossRef]
- Wells, J.C.K. Toward Body Composition Reference Data for Infants, Children, and Adolescents. Adv. Nutr. 2014, 5, 320S–329S. [Google Scholar] [CrossRef] [PubMed]
- Kajale, N.A.; Khadilkar, V.V.; Mughal, Z.; Chiplonkar, S.A.; Khadilkar, A.V. Changes in body composition of Indian lactating women: A longitudinal study. Asia. Pac. J. Clin. Nutr. 2016, 25, 556–562. [Google Scholar]
- Baird, J.; Jacob, C.; Barker, M.; Fall, C.H.; Hanson, M.; Harvey, N.C.; Inskip, H.M.; Kumaran, K.; Cooper, C. Developmental Origins of Health and Disease: A Lifecourse Approach to the Prevention of Non-Communicable Diseases. Healthcare 2017, 5, 14. [Google Scholar] [CrossRef]
- Bander, A.; Murphy-Alford, A.J.; Owino, V.O.; Loechl, C.U.; Wells, J.C.; Gluning, I.; Kerac, M. Childhood body composition and BMI as a predictor of cardiometabolic non-communicable diseases in adulthood: A systematic review. medRxiv 2021. [Google Scholar] [CrossRef] [PubMed]
- Makama, M.; Skouteris, H.; Moran, L.J.; Lim, S. Reducing Postpartum Weight Retention: A Review of the Implementation Challenges of Postpartum Lifestyle Interventions. J. Clin. Med. 2021, 10, 1891. [Google Scholar] [CrossRef]
- Cho, G.J.; Yoon, H.J.; Kim, E.-J.; Oh, M.-J.; Seo, H.-S.; Kim, H.-J. Postpartum Changes in Body Composition. Obesity 2011, 19, 2425–2428. [Google Scholar] [CrossRef] [PubMed]
- Téllez-Rojo, M.M.; Trejo-Valdivia, B.; Roberts, E.; Muñoz-Rocha, T.V.; Bautista-Arredondo, L.F.; Peterson, K.E. Influence of post-partum BMI change on childhood obesity and energy intake. PLoS ONE 2019, 14, e0224830. [Google Scholar] [CrossRef]
- Starling, A.P.; Brinton, J.T.; Glueck, D.H.; Shapiro, A.L.; Harrod, C.S.; Lynch, A.M.; Dabelea, D. Associations of maternal BMI and gestational weight gain with neonatal adiposity in the Healthy Start study. Am. J. Clin. Nutr. 2015, 101, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Andersson-Hall, U.K.; Järvinen, E.A.J.; Bosaeus, M.H.; Gustavsson, C.E.; Hårsmar, E.J.; Niklasson, C.A.; Albertsson-Wikland, K.G.; Holmäng, A.B. Maternal obesity and gestational diabetes mellitus affect body composition through infancy: The PONCH study. Pediatr. Res. 2019, 85, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Breij, L.; Steegers-Theunissen, R.; Briceno, D.; Hokken-Koelega, A. Maternal and Fetal Determinants of Neonatal Body Composition. Horm. Res. Paediatr. 2015, 84, 388–395. [Google Scholar] [CrossRef]
- Castillo-Laura, H.; Santos, I.S.; Quadros, L.C.; Matijasevich, A. Maternal obesity and offspring body composition by indirect methods: A systematic review and meta-analysis. Cad Saude Publica 2015, 31, 2073–2092. [Google Scholar] [CrossRef]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic; WHO: Geneva, Switzerland, 2000. [Google Scholar]
- Butte, N.; Ellis, K.; Wong, W.; Hopkinson, J.; Smith, E. Composition of gestational weight gain impacts maternal fat retention and infant birth weight. Am. J. Obstet. Gynecol. 2003, 189, 1423–1432. [Google Scholar] [CrossRef]
- Pomeroy, J.; Renstrom, F.; Gradmark, A.M.; Mogren, I.; Persson, M.; Bluck, L.; Wright, A.; Kahn, S.E.; Domellöf, M.; Franks, P.W. Maternal physical activity and insulin action in pregnancy and their relationships with infant body composition. Diabetes Care. 2013, 36, 267–269. [Google Scholar] [CrossRef]
- AIHW (Australian Institute of Health and Welfare). Australia’s Mothers and Babies: National Perinatal Data Collection Annual Update 2021; AIHW: Canberra, Australia, 2023. [Google Scholar]
- Herath, M.P.; Ahuja, K.D.K.; Beckett, J.M.; Jayasinghe, S.; Byrne, N.M.; Hills, A.P. Determinants of Infant Adiposity across the First 6 Months of Life: Evidence from the Baby-bod study. J. Clin. Med. 2021, 10, 1770. [Google Scholar] [CrossRef] [PubMed]
- Jayasinghe, S.; Herath, M.P.; Beckett, J.M.; Ahuja, K.D.K.; Byrne, N.M.; Hills, A.P. WHO Child Growth Standards in context: The Baby–bod Project—Observational study in Tasmania. BMJ Paediatr. Open 2021, 5, e001123. [Google Scholar] [CrossRef]
- Murphy-Alford, A.J.; Johnson, W.; Nyati, L.H.; Santos, I.S.; Hills, A.P.; Ariff, S.; Wickramasinghe, V.P.; Kuriyan, R.; Lucas, M.; Costa, C.S.; et al. Body composition reference charts for infants from birth to 24 months: Multicenter Infant Body Composition Reference Study. Am. J. Clin. Nutr. 2023, 117, 1262–1269. [Google Scholar] [CrossRef]
- Ma, G.; Yao, M.; Liu, Y.; Lin, A.; Zou, H.; Urlando, A.; Wong, W.W.; Nommsen-Rivers, L.; Dewey, K.G. Validation of a new pediatric air-displacement plethysmograph for assessing body composition in infants. Am. J. Clin. Nutr. 2004, 79, 653–660. [Google Scholar] [CrossRef]
- Urlando, A.; Dempster, P.; Aitkens, S. A new air displacement plethysmograph for the measurement of body composition in infants. Pediatr. Res. 2003, 53, 486–492. [Google Scholar] [CrossRef]
- Fomon, S.J.; Haschke, F.; Ziegler, E.E.; Nelson, S.E. Body composition of reference children from birth to age 10 years. Am. J. Clin. Nutr. 1982, 35 (Suppl. S5), 1169–1175. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Introduction to Body Composition Assessment Using the Deuterium Dilution Technique with Analysis of Saliva Samples by Fourier Transform Infrared Spectrometry; International Atomic Energy Agency: Vienna, Austria, 2010. [Google Scholar]
- International Atomic Energy Agency. Stable Isotope Technique to Assess Intake of Human Milk in Breastfed Infants; IAEA Human Health Series No. 7; IAEA: Vienna, Austria, 2010. [Google Scholar]
- Siri, W.E. Body composition from fluid spaces and density: Analysis of methods. 1961. Nutrition 1993, 9, 480–491; discussion 92. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Fields, D.A.; Gilchrist, J.M.; Catalano, P.M.; Gianni, M.L.; Roggero, P.M.; Mosca, F. Longitudinal body composition data in exclusively breast-fed infants: A multicenter study. Obesity 2011, 19, 1887–1891. [Google Scholar] [CrossRef] [PubMed]
- Sotunde, O.F.; Gallo, S.; Vanstone, C.A.; Weiler, H.A. Normative Data for Lean Mass and Fat Mass in Healthy Predominantly Breast-Fed Term Infants From 1 Month to 1 Year of Age. J. Clin. Densitom. 2018, 23, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Norris, T.; Ramel, S.E.; Catalano, P.; Caoimh, C.N.; Roggero, P.; Murray, D.; Fields, D.A.; Demerath, E.W.; Johnson, W. New charts for the assessment of body composition, according to air-displacement plethysmography, at birth and across the first 6 mo of life. Am. J. Clin. Nutr. 2019, 109, 1353–1360. [Google Scholar] [CrossRef]
- Gale, C.; Logan, K.M.; Santhakumaran, S.; Parkinson, J.R.; Hyde, M.J.; Modi, N. Effect of breastfeeding compared with formula feeding on infant body composition: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2012, 95, 656–669. [Google Scholar] [CrossRef]
- Hull, H.R.; Thornton, J.C.; Ji, Y.; Paley, C.; Rosenn, B.; Mathews, P.; Navder, K.; Yu, A.; Dorsey, K.; Gallagher, D. Higher infant body fat with excessive gestational weight gain in overweight women. Am. J. Obstet. Gynecol. 2011, 205, 211.e1–211.e7. [Google Scholar] [CrossRef]
- Henriksson, P.; Löf, M.; Forsum, E. Parental fat-free mass is related to the fat-free mass of infants and maternal fat mass is related to the fat mass of infant girls. Acta Paediatr. 2015, 104, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Dahly, D.L.; Li, X.; Smith, H.A.; Khashan, A.S.; Murray, D.M.; Kiely, M.E.; O’B Hourihane, J.; McCarthy, F.P.; Kenny, L.C.; Kearney, P.M.; et al. Associations between maternal lifestyle factors and neonatal body composition in the Screening for Pregnancy Endpoints (Cork) cohort study. Int. J. Epidemiol. 2017, 47, 131–145. [Google Scholar] [CrossRef]
- Desoye, G.; Herrera, E. Adipose tissue development and lipid metabolism in the human fetus: The 2020 perspective focusing on maternal diabetes and obesity. Prog. Lipid Res. 2021, 81, 101082. [Google Scholar] [CrossRef] [PubMed]
- Lingwood, B.E.; Henry, A.M.; d’Emden, M.C.; Fullerton, A.M.; Mortimer, R.H.; Colditz, P.B.; Cao, K.-A.L.; Callaway, L.K. Determinants of Body Fat in Infants of Women with Gestational Diabetes Mellitus Differ with Fetal Sex. Diabetes Care 2011, 34, 2581–2585. [Google Scholar] [CrossRef] [PubMed]
- Herring, S.J.; Rich-Edwards, J.W.; Oken, E.; Rifas-Shiman, S.L.; Kleinman, K.P.; Gillman, M.W. Association of postpartum depression with weight retention 1 year after childbirth. Obesity 2008, 16, 1296–1301. [Google Scholar] [CrossRef] [PubMed]
- Gunderson, E.P.; Abrams, B.; Selvin, S. The relative importance of gestational gain and maternal characteristics associated with the risk of becoming overweight after pregnancy. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 1660–1668. [Google Scholar] [CrossRef]
- Amorim Adegboye, A.R.; Linne, Y.M. Diet or exercise, or both, for weight reduction in women after childbirth. Cochrane Database Syst. Rev. 2013, 2013, Cd005627. [Google Scholar] [CrossRef]
- Nehring, I.; Schmoll, S.; Beyerlein, A.; Hauner, H.; von Kries, R. Gestational weight gain and long-term postpartum weight retention: A meta-analysis. Am. J. Clin. Nutr. 2011, 94, 1225–1231. [Google Scholar] [CrossRef] [PubMed]
- Ketterl, T.G.; Dundas, N.J.; Roncaioli, S.A.; Littman, A.J.; Phipps, A.I. Association of Pre-pregnancy BMI and Postpartum Weight Retention Before Second Pregnancy, Washington State, 2003–2013. Matern. Child Health J. 2018, 22, 1339–1344. [Google Scholar] [CrossRef]
- Baker, J.L.; Gamborg, M.; Heitmann, B.L.; Lissner, L.; Sørensen, T.I.; Rasmussen, K.M. Breastfeeding reduces postpartum weight retention. Am. J. Clin. Nutr. 2008, 88, 1543–1551. [Google Scholar] [CrossRef]
- Butte, N.F.; Hopkinson, J.M. Body composition changes during lactation are highly variable among women. J. Nutr. 1998, 128 (Suppl. S2), 381s–385s. [Google Scholar] [CrossRef]
- Diaz, E.C.; Cleves, M.A.; Dicarlo, M.; Sobik, S.R.; Ruebel, M.L.; Thakali, K.M.; Sims, C.R.; Dajani, N.K.; Krukowski, R.A.; Børsheim, E.; et al. Parental adiposity differentially associates with newborn body composition. Pediatr. Obes. 2019, 15, e12596. [Google Scholar] [CrossRef]
- Henry, S. Factors Influencing Both Maternal and Infant Body Composition at Two Years Postpartum. Master’s Thesis, School of Kinesiology, Recreation & Sport, Bowling Green, Kentucky, 2020. [Google Scholar]
- Herath, M.P.; Beckett, J.M.; Jayasinghe, S.; Byrne, N.M.; Ahuja, K.D.K.; Hills, A.P. Body composition assessment in 6-month-old infants: A comparison of two- and three-compartment models using data from the Baby-bod study. Eur. J. Clin. Nutr. 2023, 78, 963–969. [Google Scholar] [CrossRef] [PubMed]
Variable | Mean ± SD or n/N (%) |
---|---|
Mothers | |
Age at delivery (years) | 29.89 ± 4.43 |
Caucasian ethnicity | 27/29 (93.1%) |
Prepregnancy weight (kg) | 73.30 ± 15.50 |
Height (m) | 1.65 ± 0.05 |
Prepregnancy BMI (kg/m2) | 26.85 ± 5.59 |
Prepregnancy weight status: overweight/obese | 18/29 (62%) |
Primiparous pregnancy | 14/29 (48.3%) |
Caesarean delivery | 8/29 (27.6%) |
Gestational diabetes | 3/29 (10.3%) |
Gestation length (weeks) | 39.9 ± 1.32 |
Infants | |
Sex: male | 22/29 (75.9%) |
Birthweight (kg) | 3.34 ± 0.45 |
Length at birth (cm) | 49.69 ± 2.10 |
Continued breastfeeding until 12 months | 16/25 (64%) |
Maternal Body Composition Variable | Unadjusted Analysis | Adjusted Analysis | ||
---|---|---|---|---|
β (95% CI) | p-Value | β (95% CI) | p-Value | |
Maternal %FM at 12 months postpartum | 0.20 (−0.03, 0.45) | 0.083 | 0.30 (0.01, 0.59) | 0.040 |
Maternal prepregnancy BMI | −0.01 (−0.35, 0.37) | 0.967 | −0.24 (−0.65, 0.18) | 0.251 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herath, M.P.; Ahuja, K.D.K.; Beckett, J.M.; Jayasinghe, S.; Byrne, N.M.; Hills, A.P. Body Composition Changes and Associations in Infants and Mothers During the First Year: Insights from a Pilot Study of the Baby-bod Project. Children 2025, 12, 97. https://doi.org/10.3390/children12010097
Herath MP, Ahuja KDK, Beckett JM, Jayasinghe S, Byrne NM, Hills AP. Body Composition Changes and Associations in Infants and Mothers During the First Year: Insights from a Pilot Study of the Baby-bod Project. Children. 2025; 12(1):97. https://doi.org/10.3390/children12010097
Chicago/Turabian StyleHerath, Manoja P., Kiran D. K. Ahuja, Jeffrey M. Beckett, Sisitha Jayasinghe, Nuala M. Byrne, and Andrew P. Hills. 2025. "Body Composition Changes and Associations in Infants and Mothers During the First Year: Insights from a Pilot Study of the Baby-bod Project" Children 12, no. 1: 97. https://doi.org/10.3390/children12010097
APA StyleHerath, M. P., Ahuja, K. D. K., Beckett, J. M., Jayasinghe, S., Byrne, N. M., & Hills, A. P. (2025). Body Composition Changes and Associations in Infants and Mothers During the First Year: Insights from a Pilot Study of the Baby-bod Project. Children, 12(1), 97. https://doi.org/10.3390/children12010097