Clinical Characteristics and Influencing Factors of Feeding Intolerance After Surgery for Neonatal Necrotizing Enterocolitis
Abstract
:1. Introduction
2. Methods
2.1. Study Design, Setting, and Participant Selection
2.2. Definitions
- (1)
- Feeding intolerance (FI): this is defined as the interruption of feeding due to the following conditions: abdominal distension, color changes, visible bowel loops or pain, abnormal gastric residuals (gastric residuals greater than 100% of the previous feed, or the presence of bile, blood, or stool-like substances), vomiting and/or reflux, abnormal stools (such as mucus or blood), and related cardiopulmonary events [17].
- (2)
- Small for gestational age infant (SGA): this is defined as birth weight < 10th percentile according to the Fetal Medicine Foundation (FMF) fetal and neonatal population weight charts [18].
- (3)
- (4)
- Bronchopulmonary dysplasia (BPD): according to the NIH 2018 diagnostic criteria for BPD, preterm infants born at <32 weeks of gestation who require supplemental oxygen (FiO2 > 21%) for at least three consecutive days within the first 28 days after birth, and continue to need oxygen or respiratory support at 34 weeks of corrected gestational age, can be diagnosed with BPD [21].
- (5)
- Retinopathy of prematurity (ROP): this is based on International Classification of Retinopathy of Prematurity, Third Edition [22].
- (6)
- Short bowel syndrome (SBS): this is defined as patients requiring parenteral nutrition for more than 42 days due to the extensive resection of the intestine or residual small bowel length of less than 25% predicted by gestational age [23].
- (7)
- Extrauterine growth restriction (EUGR): weight at discharge less than the 10th centile (cross-sectional definition) [24].
- (8)
- Intraventricular hemorrhage (IVH): this is based on the ultrasound and evaluated according to the original classification system proposed by Papile et al., which categorizes the hemorrhage into four grades based on the location and extent of the bleeding [25].
- (9)
- Sepsis and septic shock: this is based on the Phoenix sepsis criteria [26].
- (10)
- Surgical strategies are as follows: (1) primary anastomosis resection: limited NEC disease, with stable internal environment; (2) intestine resection and ostomy: when faced with multi-focal disease; and (3) primary peritoneal drainage: unstable to undergo laparotomy, with the goal of stabilizing the patient until laparotomy can be performed [27].
2.3. Data Collection
2.4. Statistical Analysis
3. Results
3.1. Demographic Characteristics
3.2. Postoperative Characteristics
3.3. Analysis of Influencing Factors Associated with Feeding Intolerance
3.4. Sensitivity Analysis
3.5. Prognosis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roberts, A.G.; Younge, N.; Greenberg, R.G. Neonatal Necrotizing Enterocolitis: An Update on Pathophysiology, Treatment, and Prevention. Paediatr. Drugs 2024, 26, 259–275. [Google Scholar] [CrossRef] [PubMed]
- Alsaied, A.; Islam, N.; Thalib, L. Global incidence of Necrotizing Enterocolitis: A systematic review and Meta-analysis. BMC Pediatr. 2020, 20, 344. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Seo, J.M. Necrotizing Enterocolitis. N. Engl. J. Med. 2020, 383, 2461. [Google Scholar] [CrossRef]
- Cui, C.; Qiu, L.; Li, L.; Chen, F.L.; Liu, X.; Sun, H.; Liu, X.C.; Bao, L.; Li, L.Q. A time series algorithm to predict surgery in neonatal necrotizing enterocolitis. BMC Med. Inform. Decis. Mak. 2024, 24, 304. [Google Scholar] [CrossRef]
- Jones, I.H.; Hall, N.J. Contemporary Outcomes for Infants with Necrotizing Enterocolitis-A Systematic Review. J. Pediatr. 2020, 220, 86–92.e83. [Google Scholar] [CrossRef] [PubMed]
- Ljungqvist, O.; Scott, M.; Fearon, K.C. Enhanced Recovery After Surgery: A Review. JAMA Surg. 2017, 152, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Die, X.; Cui, M.; Feng, W.; Hou, J.; Chen, P.; Liu, W.; Wu, F.; Guo, Z. Applications of indocyanine greenenhanced fluorescence in the laparoscopic treatment of colonic stricture after necrotizing enterocolitis. BMC Pediatr. 2023, 23, 635. [Google Scholar] [CrossRef] [PubMed]
- Muff, J.L.; Sokolovski, F.; Walsh-Korb, Z.; Choudhury, R.A.; Dunn, J.C.Y.; Holland-Cunz, S.G.; Vuille-Dit-Bille, R.N. Surgical Treatment of Short Bowel Syndrome-The Past, the Present and the Future, a Descriptive Review of the Literature. Children 2022, 9, 1024. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, Y.; Wang, Z.; Chu, D.; Xiao, D.; Zhu, L.; Guan, A.; Liao, Q.; Liu, J.; Li, J.; et al. Correlation analysis of feeding intolerance and defecation after primary anastomosis for neonatal intestinal atresia. Pediatr. Surg. Int. 2023, 40, 26. [Google Scholar] [CrossRef]
- Owens, J.; Qiu, H.; Knoblich, C.; Gerjevic, L.; Izard, J.; Xu, L.; Lee, J.; Kollala, S.S.; Murry, D.J.; Riethoven, J.J.; et al. Feeding intolerance after pediatric cardiac surgery is associated with dysbiosis, barrier dysfunction, and reduced short-chain fatty acids. Am. J. Physiol. Gastrointest. Liver Physiol. 2024, 327, G685–G696. [Google Scholar] [CrossRef] [PubMed]
- Kirolos, A.; Goyheneix, M.; Kalmus Eliasz, M.; Chisala, M.; Lissauer, S.; Gladstone, M.; Kerac, M. Neurodevelopmental, cognitive, behavioural and mental health impairments following childhood malnutrition: A systematic review. BMJ Glob. Health 2022, 7, e009330. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Xiao, D.; Xiao, S.; Yang, L.; Shi, H.; He, Q.; Xu, H.; Zhu, X.; Zhong, W.; Yu, J. Early enteral feeding versus traditional feeding in neonatal congenital gastrointestinal malformation undergoing intestinal anastomosis: A randomized multicenter controlled trial of an enhanced recovery after surgery (ERAS) component. J. Pediatr. Surg. 2021, 56, 1479–1484. [Google Scholar] [CrossRef] [PubMed]
- Battersby, C.; Santhalingam, T.; Costeloe, K.; Modi, N. Incidence of neonatal necrotising enterocolitis in high-income countries: A systematic review. Arch. Dis. Child. Fetal Neonatal Ed. 2018, 103, F182–F189. [Google Scholar] [CrossRef]
- Ou, J.; Courtney, C.M.; Steinberger, A.E.; Tecos, M.E.; Warner, B.W. Nutrition in Necrotizing Enterocolitis and Following Intestinal Resection. Nutrients 2020, 12, 520. [Google Scholar] [CrossRef]
- Oddie, S.J.; Young, L.; McGuire, W. Slow advancement of enteral feed volumes to prevent necrotising enterocolitis in very low birth weight infants. Cochrane Database Syst. Rev. 2021, 8, CD001241. [Google Scholar] [CrossRef]
- Christian, V.J.; Polzin, E.; Welak, S. Nutrition Management of Necrotizing Enterocolitis. Nutr. Clin. Pract. 2018, 33, 476–482. [Google Scholar] [CrossRef]
- Kim, Y.J.; Yoon, S.A. Risk factors associated with anemia of prematurity requiring red blood cell transfusion in very low birth weight infants: A retrospective study. BMC Pediatr. 2024, 24, 623. [Google Scholar] [CrossRef]
- Nicolaides, K.H.; Wright, D.; Syngelaki, A.; Wright, A.; Akolekar, R. Fetal Medicine Foundation fetal and neonatal population weight charts. Ultrasound Obstet. Gynecol. 2018, 52, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Florez, I.D.; Tamayo, M.E.; Mbuagbaw, L.; Vanniyasingam, T.; Veroniki, A.A.; Zea, A.M.; Zhang, Y.; Sadeghirad, B.; Thabane, L. Association of Placebo, Indomethacin, Ibuprofen, and Acetaminophen With Closure of Hemodynamically Significant Patent Ductus Arteriosus in Preterm Infants: A Systematic Review and Meta-analysis. JAMA 2018, 319, 1221–1238. [Google Scholar] [CrossRef]
- Maron, J.L. Patent Ductus Arteriosus—To Close or Not to Close? N. Engl. J. Med. 2024, 390, 370–371. [Google Scholar] [CrossRef]
- Gilfillan, M.; Bhandari, A.; Bhandari, V. Diagnosis and management of bronchopulmonary dysplasia. BMJ 2021, 375, n1974. [Google Scholar] [CrossRef] [PubMed]
- Chiang, M.F.; Quinn, G.E.; Fielder, A.R.; Ostmo, S.R.; Paul Chan, R.V.; Berrocal, A.; Binenbaum, G.; Blair, M.; Peter Campbell, J.; Capone, A., Jr.; et al. International Classification of Retinopathy of Prematurity, Third Edition. Ophthalmology 2021, 128, e51–e68. [Google Scholar] [CrossRef] [PubMed]
- Wales, P.W.; de Silva, N.; Kim, J.H.; Lecce, L.; Sandhu, A.; Moore, A.M. Neonatal short bowel syndrome: A cohort study. J. Pediatr. Surg. 2005, 40, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez Lopez, C.; Solis Sanchez, G.; Fernandez Colomer, B.; Mantecon Fernandez, L.; Lareu Vidal, S.; Arias Llorente, R.P.; Ibanez Fernandez, A.; Gonzalez Garcia, L.G.; Suarez Rodriguez, M. Extrauterine growth restriction in very-low-birthweight infants: Prevalence and concordance according to Fenton, Olsen, and INTERGROWTH-21st growth charts in a multicenter Spanish cohort. Eur. J. Pediatr. 2024, 183, 4073–4083. [Google Scholar] [CrossRef] [PubMed]
- Papile, L.A.; Burstein, J.; Burstein, R.; Koffler, H. Incidence and evolution of subependymal and intraventricular hemorrhage: A study of infants with birth weights less than 1500 gm. J. Pediatr. 1978, 92, 529–534. [Google Scholar] [CrossRef]
- Schlapbach, L.J.; Watson, R.S.; Sorce, L.R.; Argent, A.C.; Menon, K.; Hall, M.W.; Akech, S.; Albers, D.J.; Alpern, E.R.; Balamuth, F.; et al. International Consensus Criteria for Pediatric Sepsis and Septic Shock. JAMA 2024, 331, 665–674. [Google Scholar] [CrossRef] [PubMed]
- Thakkar, H.S.; Lakhoo, K. The surgical management of necrotising enterocolitis (NEC). Early Hum. Dev. 2016, 97, 25–28. [Google Scholar] [CrossRef] [PubMed]
- Bevan, M.G.; Asrani, V.M.; Pendharkar, S.A.; Goodger, R.L.; Windsor, J.A.; Petrov, M.S. Nomogram for predicting oral feeding intolerance in patients with acute pancreatitis. Nutrition 2017, 36, 41–45. [Google Scholar] [CrossRef]
- He, F.J.; Wang, M.J.; Yang, K.; Chen, X.L.; Jin, T.; Zhu, L.L.; Zhuang, W. Effects of Preoperative Oral Nutritional Supplements on Improving Postoperative Early Enteral Feeding Intolerance and Short-Term Prognosis for Gastric Cancer: A Prospective, Single-Center, Single-Blind, Randomized Controlled Trial. Nutrients 2022, 14, 1472. [Google Scholar] [CrossRef]
- Zheng, X.; Lei, W.; Zhang, Y.; Jin, H.; Han, C.; Wu, F.; Jia, C.; Zeng, R.; Chen, Z.; Zhang, Y.; et al. Neuropilin-1(high) monocytes protect against neonatal inflammation. Cell. Mol. Immunol. 2024, 21, 575–588. [Google Scholar] [CrossRef] [PubMed]
- Moore, T.A.; Wilson, M.E. Feeding intolerance: A concept analysis. Adv. Neonatal Care 2011, 11, 149–154. [Google Scholar] [CrossRef]
- Johnson, G.J.; Salmanian, B.; Denning, S.G.; Belfort, M.A.; Sundgren, N.C.; Clark, S.L. Relationship Between Umbilical Cord Gas Values and Neonatal Outcomes: Implications for Electronic Fetal Heart Rate Monitoring. Obstet. Gynecol. 2021, 138, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Indrio, F.; Riezzo, G.; Cavallo, L.; Di Mauro, A.; Francavilla, R. Physiological basis of food intolerance in VLBW. J. Matern. Fetal Neonatal Med. 2011, 24 (Suppl. S1), 64–66. [Google Scholar] [CrossRef] [PubMed]
- Salvatore, S.; Baldassarre, M.E.; Di Mauro, A.; Laforgia, N.; Tafuri, S.; Bianchi, F.P.; Dattoli, E.; Morando, L.; Pensabene, L.; Meneghin, F.; et al. Neonatal Antibiotics and Prematurity Are Associated with an Increased Risk of Functional Gastrointestinal Disorders in the First Year of Life. J. Pediatr. 2019, 212, 44–51. [Google Scholar] [CrossRef]
- Liu, L.; Ao, D.; Cai, X.; Huang, P.; Cai, N.; Lin, S.; Wu, B. Early gut microbiota in very low and extremely low birth weight preterm infants with feeding intolerance: A prospective case-control study. J. Microbiol. 2022, 60, 1021–1031. [Google Scholar] [CrossRef]
- Reyman, M.; van Houten, M.A.; Watson, R.L.; Chu, M.; Arp, K.; de Waal, W.J.; Schiering, I.; Plotz, F.B.; Willems, R.J.L.; van Schaik, W.; et al. Effects of early-life antibiotics on the developing infant gut microbiome and resistome: A randomized trial. Nat. Commun. 2022, 13, 893. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.R.; Rellinger, E.J.; Hatch, L.D.; Weitkamp, J.H.; Speck, K.E.; Danko, M.; Blakely, M.L. Surgical necrotizing enterocolitis. Semin. Perinatol. 2017, 41, 70–79. [Google Scholar] [CrossRef]
- Eaton, S.; Ganji, N.; Thyoka, M.; Shahroor, M.; Zani, A.; Pleasants-Terashita, H.; Ghazzaoui, A.E.; Sivaraj, J.; Loukogeorgakis, S.; De Coppi, P.; et al. STAT trial: Stoma or intestinal anastomosis for necrotizing enterocolitis: A multicentre randomized controlled trial. Pediatr. Surg. Int. 2024, 40, 279. [Google Scholar] [CrossRef]
- Haricharan, R.N.; Gallimore, J.P.; Nasr, A. Primary anastomosis or ostomy in necrotizing enterocolitis? Pediatr. Surg. Int. 2017, 33, 1139–1145. [Google Scholar] [CrossRef] [PubMed]
- Raval, M.V.; Brockel, M.A.; Kolacek, S.; Simpson, K.E.; Spoede, E.; Starr, K.N.P.; Wulf, K.L. Key Strategies for Optimizing Pediatric Perioperative Nutrition-Insight from a Multidisciplinary Expert Panel. Nutrients 2023, 15, 1270. [Google Scholar] [CrossRef] [PubMed]
- Behera, B.K.; Misra, S.; Tripathy, B.B. Systematic review and meta-analysis of safety and efficacy of early enteral nutrition as an isolated component of Enhanced Recovery After Surgery [ERAS] in children after bowel anastomosis surgery. J. Pediatr. Surg. 2022, 57, 1473–1479. [Google Scholar] [CrossRef]
- Loganathan, A.K.; Joselyn, A.S.; Babu, M.; Jehangir, S. Implementation and outcomes of enhanced recovery protocols in pediatric surgery: A systematic review and meta-analysis. Pediatr. Surg. Int. 2022, 38, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Alshaikh, B.N.; Sproat, T.D.R.; Wood, C.; Spence, J.M.; Knauff, M.; Hamilton, C.; Roy, M. A Quality Improvement Initiative to Reduce Necrotizing Enterocolitis in Very Preterm Infants. Pediatrics 2023, 152, e2023061273. [Google Scholar] [CrossRef]
- Shang, Q.; Geng, Q.; Zhang, X.; Xu, H.; Guo, C. The impact of early enteral nutrition on pediatric patients undergoing gastrointestinal anastomosis a propensity score matching analysis. Medicine 2018, 97, e0045. [Google Scholar] [CrossRef]
- Riddle, S.; Karpen, H. Special Populations-Surgical Infants. Clin. Perinatol. 2023, 50, 715–728. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Infants, No. (%) (N = 519) | p Value | |
---|---|---|---|
Feeding Intolerance (n = 155) | Feeding Tolerance (n = 364) | ||
Maternal characteristics | |||
Gestational hypertension | 19 (12.3%) | 37 (10.2%) | 0.482 |
Gestational diabetes | 13 (8.4%) | 31 (8.5%) | 0.994 |
Umbilical abnormality | 11 (7.1%) | 25 (6.9%) | 0.925 |
Placental abnormality | 11 (7.1%) | 19 (5.2%) | 0.396 |
Amniotic fluid abnormality | 6 (3.9%) | 11 (3.0%) | 0.623 |
Antenatal corticosteroids | 12 (7.7%) | 16 (4.4%) | 0.124 |
Multiple pregnancy | 60 (38.7%) | 115 (32.5%) | 0.117 |
Neonatal characteristics | |||
Male sex | 92 (59.4%) | 197 (54.1%) | 0.272 |
Gestational age, median (IQR), wk | 30.4 (28.4, 33.0) | 32.9 (30.3, 35.6) | <0.001 |
Birth weight, median (IQR), g | 1450 (1179, 1760) | 1780 (1400, 2400) | <0.001 |
SGA | 24 (15.5%) | 42 (11.5%) | 0.221 |
Cesarean delivery | 98 (63.2%) | 247 (67.9%) | 0.287 |
5 min Apgar < 7 | 13 (10.0%) | 4 (1.5%) | <0.001 |
PDA medication | 16/60 (26.7%) | 20/73 (27.4%) | 0.928 |
PDA ligation | 5/60 (8.3%) | 9/73 (12.3%) | 0.455 |
Surfactant use | 59 (38.1%) | 77 (21.2%) | <0.001 |
Intubation in delivery room | 9 (5.8%) | 22 (6.0%) | 0.917 |
One week after birth | |||
Days of mechanical ventilation, median (IQR), d | 4 (0, 7) | 1 (0, 6) | <0.001 |
Days of antibiotic exposure, median (IQR), d | 5 (3, 7) | 4 (0, 7) | <0.001 |
Sepsis | 67 (43.2%) | 161 (44.2%) | 0.833 |
Age of onset, median (IQR), d | 14 (9, 23) | 13 (7, 22) | 0.182 |
Characteristics | Infants, No. (%) (N = 519) | p Value | |
---|---|---|---|
Feeding Intolerance (n = 155) | Feeding Tolerance (n = 364) | ||
Interval days between diagnosis and surgery, median (IQR), d | 2 (1, 5) | 3 (1, 21) | 0.002 |
Surgical approach | |||
Primary anastomosis resection | 22 (14.2%) | 166 (45.6%) | 0.000 |
Intestine resection and ostomy | 122 (78.7%) | 166 (45.6%) | 0.000 |
Non-intestine resection and ostomy | 7 (4.5%) | 28 (7.7%) | 0.187 |
Primary peritoneal drainage | 4 (2.6%) | 4 (1.1%) | 0.210 |
Length of residual bowel, median (IQR), cm | 79 (65, 100) | 90 (72, 115) | 0.004 |
Necrosis area | |||
Small intestine | 84/120 (70.0%) | 98/171 (57.3%) | 0.036 |
Both large intestine and small intestine | 29/120 (24.2%) | 53/171 (31.0%) | 0.197 |
Postoperative fasting time > 5 days | 137 (88.4%) | 273 (65.1%) | 0.001 |
Variables * | B | OR | 95% CI | p Value |
---|---|---|---|---|
5 min Apgar < 7 | 1.567 | 4.794 | 1.339–17.156 | 0.016 |
Interval days between diagnosis and surgery | −0.027 | 0.973 | 0.947–1.000 | 0.048 |
Primary anastomosis resection | −1.281 | 0.278 | 0.139–0.555 | 0.000 |
Prognosis | Infants, No. (%) (N = 519) | p Value | |
---|---|---|---|
Feeding Intolerance (n = 155) | Feeding Tolerance (n = 364) | ||
Days of ventilation support, median (IQR), d | 2 (1, 5) | 1 (1, 2) | <0.001 |
Days of oxygen supplementation, median (IQR), d | 10 (1, 36) | 1 (1, 5) | <0.001 |
Days of antibiotic treatment, median (IQR), d | 28 (19, 40) | 20 (15, 31) | <0.001 |
Duration of parenteral nutrition, median (IQR), d | 38 (25, 60) | 13 (8, 22) | <0.001 |
Stoma closure age, median (IQR), d | 129 (94, 185) | 106 (85, 140) | 0.005 |
BPD | 23 (14.8%) | 34 (9.3%) | 0.070 |
ROP | 35 (22.6%) | 25 (6.9%) | <0.001 |
Septic shock | 20 (12.9%) | 23 (6.3%) | 0.013 |
PVL | 2 (1.3%) | 5 (1.4%) | 0.941 |
IVH | 35 (22.6%) | 43 (11.8%) | 0.002 |
IFALD | 49 (31.6%) | 45 (12.4%) | <0.001 |
SBS | 10 (6.5%) | 8 (2.2%) | 0.016 |
Discharge situation | |||
Age, median (IQR), d | 77 (57, 105) | 52.5 (40, 75) | <0.001 |
Weight, median (IQR), g | 3285 (2680, 3530) | 3030 (2580, 3500) | 0.181 |
Length, median (IQR), cm | 49.5 (47, 52) | 49 (46, 50) | 0.035 |
Head circumference, median (IQR), cm | 34.5 (33.5, 36.0) | 34 (32.5, 35.5) | 0.064 |
EUGR | 31 (20.0%) | 56 (15.4%) | 0.634 |
Breast feeding | 38 (24.5%) | 95 (26.1%) | 0.656 |
Amino acid-based formula | 74 (47.7%) | 117 (32.1%) | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, M.; Wu, F.; Fu, Z.; Zhang, Y.; Ju, X.; Chen, Z.; Ma, X.; Zhang, Y.; Shi, W. Clinical Characteristics and Influencing Factors of Feeding Intolerance After Surgery for Neonatal Necrotizing Enterocolitis. Children 2025, 12, 127. https://doi.org/10.3390/children12020127
Hu M, Wu F, Fu Z, Zhang Y, Ju X, Chen Z, Ma X, Zhang Y, Shi W. Clinical Characteristics and Influencing Factors of Feeding Intolerance After Surgery for Neonatal Necrotizing Enterocolitis. Children. 2025; 12(2):127. https://doi.org/10.3390/children12020127
Chicago/Turabian StyleHu, Mengting, Fan Wu, Zhikai Fu, Yasi Zhang, Xinmin Ju, Zheng Chen, Xiaolu Ma, Yuanyuan Zhang, and Wei Shi. 2025. "Clinical Characteristics and Influencing Factors of Feeding Intolerance After Surgery for Neonatal Necrotizing Enterocolitis" Children 12, no. 2: 127. https://doi.org/10.3390/children12020127
APA StyleHu, M., Wu, F., Fu, Z., Zhang, Y., Ju, X., Chen, Z., Ma, X., Zhang, Y., & Shi, W. (2025). Clinical Characteristics and Influencing Factors of Feeding Intolerance After Surgery for Neonatal Necrotizing Enterocolitis. Children, 12(2), 127. https://doi.org/10.3390/children12020127