Repetitive Sprinting and Running Fatigue in Children with Different Levels of Motor Competence
Abstract
:1. Introduction
1.1. Development of Running
1.2. Running with DCD
1.3. Repetitive Sprinting and Fatigue
- (1)
- To confirm that children with lower MABC-2 scores are slower in repetitive sprinting. To test if this lower performance is already present in young children (6–9 years) or only in older ones (10–12 years).
- (2)
- To examine if induced fatigue (decay in performance) during repetitive sprinting (CRISP test) is larger in children who score lower on the classification of the MABC-2. If so, to test if the increase in running time and reduction in power are age group-dependent (6–9 years versus 10–12 years).
- (3)
- To study if BMI, functional strength (power lower and upper extremities), agility (ladder run, ladder step, and side jump), and motor performance (MABC-2) are important explanatory factors for the level of fatigue on the CRISP.
2. Materials and Methods
2.1. Study Design
2.2. Participant Selection
2.3. Measurements
2.3.1. Movement Assessment Battery for Children Test-2 (MABC-2 Test)
2.3.2. The Children’s Repetitive and Intermittent Sprinting Performance (CRISP) Test
2.3.3. Performance and Fitness (PERF-FIT) Battery Power and Agility Subscale
- Ladder tasks required the child to run accurately in an agility ladder with specified dimensions (3.5 m + 0.5 m for the turn) [12] and consisted of 2 items (running with 1 step per square and stepping with 2 steps per square).
- The side jump item involved jumping sideways in the squares of the agility ladder (each square 35 cm by 35 cm) for 15 s. Each participant was instructed to jump as fast as possible from square to square without any mistakes. It measured both muscular endurance and dynamic balance.
- Overhead throw: Throw item involved throwing a 2 kg sandbag for maximum distance from a kneeling position, as a measure of upper body strength and power.
- Standing long jump: The standing long jump was used to determine explosive leg power, and the participants should aim to jump as far as possible from the starting position and must land on their feet without falling backward or forward.
2.3.4. Body Mass Index (BMI)
2.4. Procedure
2.5. Data Analyses
3. Results
3.1. Participant Characterictics
3.2. Comparison Between Groups on the Sprint Times of the CRISP Test
3.3. Comparison Between Groups on the Power of the CRISP Test
3.4. Comparison of Fatigue Indexes Between Groups
3.5. Associations Between BMI, Agility, Strength, Motor Proficiency, and Fatigue Indexes
4. Discussion
4.1. Motor Proficiency and Sprinting Performance
4.2. Age-Related Differences in Fatigue
4.3. Running Patterns and Mechanical Factors
4.4. Power Output and Muscular Endurance
4.5. Predictors of Fatigue
4.6. Implications for Future Research and Interventions
4.7. Practical, Scientific, and Theoretical Applications
4.8. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smits-Engelsman, B.; Denysschen, M.; Lust, J.; Coetzee, D.; Valtr, L.; Schoemaker, M.; Verbecque, E. Which Outcomes Are Key to the Pre-Intervention Assessment Profile of a Child with Developmental Coordination Disorder? A Systematic Review and Meta-Analysis. Biomed. J. 2024, 100768. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, G.D.; Aertssen, W.F.M.; Rameckers, E.A.A.; Jelsma, J.; Smits-Engelsman, B.C.M. Physical Fitness in Children with Developmental Coordination Disorder: Measurement Matters. Res. Dev. Disabil. 2014, 35, 1087–1097. [Google Scholar] [CrossRef] [PubMed]
- Van der Hoek, F.D.M.; Stuive, I.M.P.; Reinders-Messelink, H.A.P.; Holty, L.P.T.; de Blécourt, A.C.E.; Maathuis, C.G.; van Weert, E. Health-Related Physical Fitness in Dutch Children with Developmental Coordination Disorder. J. Dev. Behav. Pediatr. 2012, 33, 649. [Google Scholar] [CrossRef]
- Schott, N.; Alof, V.; Hultsch, D.; Meermann, D. Physical Fitness in Children with Developmental Coordination Disorder. Res. Q. Exerc. Sport 2007, 78, 438–450. [Google Scholar] [CrossRef] [PubMed]
- Farhat, F.; Hsairi, I.; Baiti, H.; Cairney, J.; Mchirgui, R.; Masmoudi, K.; Padulo, J.; Triki, C.; Moalla, W. Assessment of Physical Fitness and Exercise Tolerance in Children with Developmental Coordination Disorder. Res. Dev. Disabil. 2015, 45–46, 210–219. [Google Scholar] [CrossRef]
- Farhat, F.; Denysschen, M.; Mezghani, N.; Kammoun, M.M.; Gharbi, A.; Rebai, H.; Moalla, W.; Smits-Engelsman, B. Activities of Daily Living, Self-Efficacy and Motor Skill Related Fitness and the Interrelation in Children with Moderate and Severe Developmental Coordination Disorder. PLoS ONE 2024, 19, e0299646. [Google Scholar] [CrossRef]
- Nascimento, R.O.; Ferreira, L.F.; Goulardins, J.B.; Freudenheim, A.M.; Marques, J.C.B.; Casella, E.B.; Oliveira, J.A. Health-Related Physical Fitness in Children with Severe and Moderate Developmental Coordination Disorder. Res. Dev. Disabil. 2013, 34, 4222–4231. [Google Scholar] [CrossRef]
- Rivilis, I.; Hay, J.; Cairney, J.; Klentrou, P.; Liu, J.; Faught, B. Physical Activity and Fitness in Children with Developmental Coordination Disorder: A Systematic Review. Res. Dev. Disabil. 2011, 32, 894–911. [Google Scholar] [CrossRef] [PubMed]
- Denysschen, M.; Coetzee, D.; Smits-Engelsman, B.C.M. Children with Poor Motor Skills Have Lower Health-Related Fitness Compared to Typically Developing Children. Children 2021, 8, 867. [Google Scholar] [CrossRef]
- Aertssen, W.F.M.; Ferguson, G.D.; Smits-Engelsman, B.C.M. Performance on Functional Strength Measurement and Muscle Power Sprint Test Confirm Poor Anaerobic Capacity in Children with Developmental Coordination Disorder. Res. Dev. Disabil. 2016, 59, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Braaksma, P.; Stuive, I.; Jelsma, D.; Van der Sluis, C.K.; Dekker, R.; Schoemaker, M.M. Effectiveness and Feasibility of We12BFit!: Improving Physical Fitness and Lifestyle Physical Activity in Children with Developmental Coordination Disorder in a Paediatric Rehabilitation Setting–A Small Sample Field Study. BMJ Open 2022, 12, e044626. [Google Scholar] [CrossRef] [PubMed]
- Smits-Engelsman, B.C.M.; Bonney, E. Children’s Repetitive and Intermittent Sprinting Performance (CRISP) Test: A New Field-Based Test for Assessing Anaerobic Power and Repeated Sprint Performance in Children with Developmental Coordination Disorder. Res. Dev. Disabil. 2019, 93, 103461. [Google Scholar] [CrossRef]
- Zwiren, L.D. Anaerobic and Aerobic Capacities of Children. Pediatr. Exerc. Sci. 1989, 1, 31–44. [Google Scholar] [CrossRef]
- Schmidt, R.A.; Wrisberg, C.A. Motor Learning and Performance, 3rd ed.; Human Kinetics: Champaign, IL, USA, 2004; p. 381. [Google Scholar]
- Brewer, J. Run Smart: Using Science to Improve Performance and Expose Marathon Runnings Greatest Myths; Bloomsbury Sport: London, UK, 2017; p. 191. [Google Scholar]
- Beach, P.S.; Perreault, M.E.; Brain, A.S.; Collier, D.H. Motor Learning and Development, 3rd ed.; Human Kinetics: Champaign, IL, USA, 2024; p. 499. [Google Scholar]
- Auxter, D.; Pyfer, J.; Zittel, L.; Roth, K. Principles and Methods of Adapted Physical Education and Recreation, 11th ed.; McGraw Hill: New-York, NY, USA, 2010; p. 613. [Google Scholar]
- Gallahue, D.L.; Ozmun, J.C. Understanding Motor Development: Infants, Children, Adolescents, Adults, 6th ed.; McGraw-Hill: New York, NY, USA, 2006; p. 524. [Google Scholar]
- Haywood, K.M.; Getchell, N. Life Span Motor Development, 6th ed.; Human Kinetics: Champaign, IL, USA, 2014. [Google Scholar]
- Dewolf, A.H.; Mesquital, R.M.; Willems, P.A. Intra-limb and muscular coordination during walking on slopes. Eur. J. Appl. Physiol. 2020, 120, 1841–1854. [Google Scholar] [CrossRef]
- Phinyomark, A.; Petri, G.; Ibáñez-Marcelo, E.; Osis, S.T.; Ferber, R. Analysis of Big Data in Gait Biomechanics: Current Trends and Future Directions. J. Med. Biol. Eng. 2018, 38, 244–260. [Google Scholar] [CrossRef]
- Roberts, A.; Roscoe, D.; Hulse, D.; Bennett, A.N.; Dixon, S. Biomechanical differences between cases with suspected chronic exertional compartment syndrome and asymptomatic controls during running. Gait Posture 2017, 58, 374–379. [Google Scholar] [CrossRef]
- Van Hooren, B.; Fuller, J.T.; Buckley, J.D.; Miller, J.R.; Sewell, K.; Rao, G.; Barton, B.; Bishop, C.; Willy, R.W. Is Motorized Treadmill Running Biomechanically Comparable to Overground Running? A Systematic Review and Meta-Analysis of Cross-Over Studies. Sports Med. 2020, 50, 785–813. [Google Scholar] [CrossRef] [PubMed]
- Lubans, D.; Morgan, P.; Cliff, D.; Barnett, L.M.; Okely, A.D. Review of the Relationship between Motor Competence and Physical Activity in Children and Adolescents. Res. Q. Exerc. Sport 2010, 81, 102–115. [Google Scholar]
- Smith, M.; Ward, E.; Williams, C.M.; Banwell, H.A. Differences in Walking and Running Gait in Children with and without Developmental Coordination Disorder: A Systematic Review and Meta-Analysis. Gait Posture 2021, 83, 177–184. [Google Scholar] [CrossRef]
- Diamond, N.; Downs, J.; Morris, S. “The Problem with Running”—Comparing the Propulsion Strategy of Children with Developmental Coordination Disorder and Typically Developing Children. Gait Posture 2014, 39, 547–552. [Google Scholar] [CrossRef]
- Goetschalckx, M.; Moumdjian, L.; Feys, P.; Rameckers, E. Interlimb Coordination and Spatiotemporal Variability during Walking and Running in Children with Developmental Coordination Disorder and Typically Developing Children. Hum. Mov. Sci 2024, 96, 103252. [Google Scholar] [CrossRef] [PubMed]
- Deconinck, F.J.A.; De Clercq, D.; Savelsbergh, G.J.P.; Van Coster, R.; Oostra, A.; Dewitte, G.; Lenoir, M. Differences in Gait between Children with and without Developmental Coordination Disorder. Motor Control 2006, 10, 125–142. [Google Scholar] [CrossRef] [PubMed]
- Rosengren, K.S.; Deconinck, F.J.A.; DiBerardino, L.A.; Polk, J.D.; Spencer-Smith, J.; De Clercq, D.; Lenoir, M. Differences in Gait Complexity and Variability between Children with and without Developmental Coordination Disorder. Gait Posture 2009, 29, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Cairney, J.; Hay, J.A.; Faught, B.E.; Wade, T.J.; Corna, L.; Flouris, A. Developmental Coordination Disorder, Generalized Self-Efficacy toward Physical Activity, and Participation in Organized and Free Play Activities. J. Pediatr. 2005, 147, 515–520. [Google Scholar] [CrossRef]
- Bishop, D.; Girard, O.; Mendez-Villanueva, A. Repeated-Sprint Ability. Part II: Recommendations for Training. Sports Med. 2011, 41, 741–756. [Google Scholar] [CrossRef]
- Waldron, M.; Highton, J. Fatigue and Pacing in High-Intensity Intermittent Team Sport: An Update. Sports Med. 2014, 44, 1645–1658. [Google Scholar] [CrossRef] [PubMed]
- Bestwick-Stevenson, T.; Toone, R.; Neupert, E.; Edwards, K.; Kluzek, S. Assessment of Fatigue and Recovery in Sport: Narrative Review. Int. J. Sports Med. 2022, 43, 1151–1162. [Google Scholar] [CrossRef] [PubMed]
- Cairney, J.; Hay, J.A.; Faught, B.E.; Flouris, A.; Klentrou, P. Developmental Coordination Disorder and Cardiorespiratory Fitness in Children. Pediatr. Exerc. Sci. 2007, 19, 20–28. [Google Scholar] [CrossRef]
- Cantell, M.; Crawford, S.G.; Doyle-Baker, P.K. Physical Fitness and Health Indices in Children, Adolescents, and Adults with High or Low Motor Competence. Hum. Mov. Sci. 2008, 27, 344–362. [Google Scholar] [CrossRef]
- Hendrix, C.G.; Prins, M.R.; Dekkers, H. Developmental Coordination Disorder and Overweight and Obesity in Children: A Systematic Review. Obes. Rev. 2014, 15, 408–423. [Google Scholar] [CrossRef]
- Santayana De Souza, M.; Nobre, G.C.; Valentini, N.C. Effect of a Motor Skill-Based Intervention in the Relationship of Individual and Contextual Factors in Children with and without Developmental Coordination Disorder from Low-Income Families. Psychol. Sport Exerc. 2023, 67, 102406. [Google Scholar] [CrossRef] [PubMed]
- Joshi, D.; Missiuna, C.; Hanna, S.; Hay, J.; Faught, B.E.; Cairney, J. Relationship between BMI, Waist Circumference, Physical Activity, and Probable Developmental Coordination Disorder over Time. Hum. Mov. Sci. 2015, 40, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Graf, C.; Koch, B.; Kretschmann-Kandel, E.; Falkowski, G.; Christ, H.; Coburger, S.; Lehmacher, W.; Bjarnason-Wehrens, B.; Platen, P.; Tokarski, W.; et al. Correlation between BMI, Leisure Habits, and Motor Abilities in Childhood (CHILT-Project). Int. J. Obes. Relat. Metab. Disord. 2004, 28, 22–36. [Google Scholar] [CrossRef] [PubMed]
- Barros, W.M.A.; da Silva, K.G.; Silva, R.K.P.; Souza, A.P.d.S.; da Silva, A.B.J.; Silva, M.R.M.; Fernandes, M.S.d.S.; de Souza, S.L.; Souza, V.d.O.N. Effects of Overweight/Obesity on Motor Performance in Children: A Systematic Review. Front. Endocrinol. 2021, 20, 759165. [Google Scholar] [CrossRef] [PubMed]
- Haapala, E.A.; Väistö, J.; Lintu, N.; Tompuri, T.; Brage, S.; Westgate, K.; Ekelund, U.; Lampinen, E.-K.; Sääkslahti, A.; Lindi, V.; et al. Adiposity, Physical Activity, and Neuromuscular Performance in Children. J. Sports Sci. 2016, 34, 1699–1706. [Google Scholar] [CrossRef]
- Wearing, S.C.; Hennig, E.M.; Byrne, N.M.; Steele, J.R.; Hills, A.P. The Impact of Childhood Obesity on Musculoskeletal Form. Obes. Rev. 2006, 7, 209–218. [Google Scholar] [CrossRef]
- Henderson, S.E.; Sugden, D.A.; Barnett, A.L. Movement Assessment Battery for Children-2 (MABC-2), 2nd ed.; The Psychological Corporation: London, UK, 2007. [Google Scholar]
- Geuze, R.H.; Jongmans, M.J.; Schoemaker, M.M.; Smits-Engelsman, B.C.M. Clinical and Research Diagnostic Criteria for Developmental Coordination Disorder: A Review and Discussion. Hum. Mov. Sci. 2001, 20, 7–47. [Google Scholar] [CrossRef] [PubMed]
- Wuang, Y.-P.; Wang, C.-C.; Huang, M.-H. Health-Related Quality of Life in Children with Developmental Coordination Disorder and Their Parents. OTJR Occup. Ther. J. Res. 2012, 32, 142–150. [Google Scholar] [CrossRef]
- Bonney, E.; Jelsma, L.D.; Ferguson, G.D.; Smits-Engelsman, B.C.M. Learning Better by Repetition or Variation? Is Transfer at Odds with Task-Specific Training? PLoS ONE 2017, 12, e0174214. [Google Scholar] [CrossRef]
- Steenman, K.; Verschuren, O.; Rameckers, E.; Douma-van Riet, D.; Takken, T. Extended Reference Values for the Muscle Power Sprint Test in 6-to 18-Year-Old Children. Pediatr. Phys. Ther. 2016, 28, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Smits-Engelsman, B.C.M. Developing a Motor Performance and Physical Fitness Test Battery for Low-Resourced Communities, 2nd ed.; PERF-FITT: Cape Town, South Africa, 2018. [Google Scholar]
- Smits-Engelsman, B.C.M.; Bonney, E.; Neto, J.L.C.; Jelsma, D.L. Feasibility and Content Validity of the PERF-FIT Test Battery to Assess Movement Skills, Agility, and Power among Children in Low-Resource Settings. BMC Public Health 2020, 20, 1139. [Google Scholar] [CrossRef] [PubMed]
- Smits-Engelsman, B.C.M.; Smit, E.; Doe-Asinyo, R.X.; Lawerteh, S.E.; Aertssen, W.; Ferguson, G.; Jelsma, D.L. Inter-Rater Reliability and Test-Retest Reliability of the Performance and Fitness (PERF-FIT) Test Battery for Children: A Test for Motor Skill-Related Fitness. BMC Pediatr. 2021, 21, 119. [Google Scholar] [CrossRef]
- Armstrong, N.; Welsman, J. The Development of Aerobic and Anaerobic Fitness with Reference to Youth Athletes. J. Sci. Sport Exerc. 2020, 2, 275–286. [Google Scholar] [CrossRef]
- Malina, R.M.; Moriyama, M. Growth and Motor Performance of Black and White Children 6–10 Years of Age: A Multivariate Analysis. Am. J. Hum. Biol. 1991, 3, 599–611. [Google Scholar] [CrossRef]
- Meyers, R.W.; Oliver, J.L.; Hughes, M.G.; Lloyd, R.S.; Cronin, J.B. The Influence of Maturation on Sprint Performance in Boys over a 21-Month Period. Med. Sci. Sports Exerc. 2016, 48, 2555–2562. [Google Scholar] [CrossRef] [PubMed]
- Nagahara, R.; Takai, Y.; Haramura, M.; Mizutani, M.; Matsuo, A.; Kanehisa, H.; Fukunaga, T. Age-Related Differences in Spatiotemporal Variables and Ground Reaction Forces during Sprinting in Boys. Pediatr. Exerc. Sci. 2018, 30, 335–344. [Google Scholar] [CrossRef]
- Adams, I.L.J.; Lust, J.M.; Wilson, P.H.; Steenbergen, B. Compromised Motor Control in Children with DCD: A Deficit in the Internal Model?—A Systematic Review. Neurosci. Biobehav. Rev. 2014, 47, 225–244. [Google Scholar] [CrossRef] [PubMed]
- Sudlow, A.; Galantine, P.; Vercruyssen, F.; Peyrot, N.; Raymond, J.-J.; Duché, P. Which Factors Influence Running Gait in Children and Adolescents? A Narrative Review. Int. J. Environ. Res. Public Health 2023, 20, 4621. [Google Scholar] [CrossRef]
- Rubinstein, M.; Eliakim, A.; Steinberg, N.; Nemet, D.; Ayalon, M.; Zeev, A.; Pantanowitz, M.; Brosh, T. Biomechanical characteristics of overweight and obese children during five different walking and running velocities. Footwear Sci. 2017, 9, 149–159. [Google Scholar] [CrossRef]
- Steinberg, N.; Rubinstein, M.; Nemet, D.; Ayalon, M.; Zeev, A.; Pantanowitz, M.; Brosh, T.; Eliakim, A. Effects of a Program for Improving Biomechanical Characteristics During Walking and Running in Children Who Are Obese. Pediatr. Phys. Ther. 2017, 9, 330–340. [Google Scholar] [CrossRef]
- Steinberg, N.; Nemet, D.; Pantanowitz, M.; Eliakim, A. Gait Pattern, Impact to the Skeleton and Postural Balance in Overweight and Obese Children: A Review. Sports 2018, 6, 75. [Google Scholar] [CrossRef] [PubMed]
Variables | TD Mean (n = 191) | SD | r-DCD Mean (n = 162) | SD | p-DCD Mean (n = 146) | SD |
---|---|---|---|---|---|---|
Age (years) | 9.6 | 1.6 | 9.9 | 1.6 | 9.7 | 1.6 |
Weight (kg) | 31.4 | 8.5 | 32.4 | 7.6 | 33.6 | 10.1 |
Height (cm) | 136.5 | 11.6 | 137.9 | 10.7 | 137.3 | 11.2 |
BMI (kg m−2) | 16.6 | 2.7 | 16.9 | 2.5 | 17.6 * | 3.7 |
MABC-2 (TSS) | 9.8 | 1.7 | 6.4 ** | 0.4 | 3.9 ** | 1.2 |
Variable | df | F-Value | p-Value |
---|---|---|---|
Age Group | 1.489 | 175.48 | <0.001 |
Motor Coordination Group | 2.488 | 17.747 | <0.001 |
Age Group by Motor Coordination Group | 2.488 | 0.197 | 0.821 |
Runs | 5.485 | 150.388 | <0.001 |
Runs (Quadratic Effect) | 1.489 | 665.619 | <0.001 |
Runs by Age Group | 5.485 | 19.367 | <0.001 |
Runs by Motor Coordination Group | 10.480 | 2.153 | 0.019 |
Runs by Age Group by Motor Coordination Group | 10.480 | 3.383 | <0.001 |
CRISP Test | TD (n = 191) | r-DCD (n = 162) | DCD (n = 146) | Statistics Motor Coordination Groups | 6–9 Years Old (n = 215) | 10–12 Years Old (n = 284) | Statistics Age Groups | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | F-Value | p-Value | Mean | SD | Mean | SD | F-Value | p-Value | |
Mean Run Time (s) | 6.69 * | 0.84 | 6.67 # | 0.89 | 7.13 *# | 1.00 | 13.614 | <0.001 | 7.41 | 1.08 | 6.41 | 0.61 | 41.407 | <0.001 |
Time 1 (s) | 6.24 * | 0.71 | 6.25 # | 0.70 | 6.53 *# | 0.68 | 11.547 | <0.001 | 6.71 | 0.74 | 6.07 | 0.59 | 11.547 | <0.001 |
Time 2 (s) | 6.46 * | 0.81 | 6.46 # | 0.84 | 6.83 *# | 0.98 | 9.194 | <0.001 | 7.01 | 0.96 | 6.26 | 0.68 | 9.194 | <0.001 |
Time 3 (s) | 6.71 * | 0.91 | 6.66 # | 0.93 | 7.15 *# | 1.14 | 12.038 | <0.001 | 7.43 | 1.15 | 6.40 | 0.64 | 12.038 | <0.001 |
Time 4 (s) | 6.91 * | 0.74 | 6.85 # | 0.97 | 7.32 *# | 1.24 | 8.733 | <0.001 | 7.65 | 1.23 | 6.54 | 0.70 | 8.733 | <0.001 |
Time 5 (s) | 6.95 * | 1.03 | 6.89 # | 1.13 | 7.47 *# | 1.20 | 13.089 | <0.001 | 7.78 | 1.27 | 6.69 | 0.77 | 13.089 | <0.001 |
Time 6 (s) | 6.96 * | 0.98 | 6.92 # | 1.14 | 7.48 *# | 1.33 | 10.566 | <0.001 | 7.84 | 1.97 | 6.62 | 0.75 | 10.566 | <0.001 |
Best Run (s) | 6.11 * | 0.69 | 6.11 # | 0.71 | 6.20 *# | 0.70 | 11.617 | <0.001 | 6.59 | 0.73 | 5.93 | 0.56 | 17.151 | <0.001 |
Mean Power (Watts) | 104.8 * | 48.9 | 110.4 # | 46.6 | 94.09 *# | 41.14 | 5.450 | 0.005 | 68.88 | 24.95 | 130.10 | 42.04 | 377.86 | <0.001 |
Fatigue Index Time | −18.75 * | 9.31 | −18.26 # | 9.95 | −23.24 *# | 24.88 | 5.128 | 0.006 | −24.19 | 21.01 | −16.60 | 8.09 | 15.816 | <0.001 |
Fatigue Index Power | 38.36 | 12.52 | 37.50 # | 12.38 | 41.44 # | 15.81 | 3.568 | 0.034 | 43.69 | 14.37 | 35.39 | 11.69 | 6.998 | 0.008 |
Variable | df | F-Value | p-Value |
---|---|---|---|
Age Group | 1.489 | 348.694 | <0.001 |
Motor Coordination Group | 2.488 | 8.123 | <0.001 |
Age Group by Motor Coordination Group | 2.488 | 3.937 | 0.020 |
Runs | 5.485 | 143.698 | <0.001 |
Runs (Quadratic Effect) | 1.489 | 140.569 | <0.001 |
Runs by Age Group | 5.485 | 0.865 | 0.505 |
Runs by Motor Coordination Group | 10.480 | 0.890 | 0.542 |
Runs by Age Group by Motor Coordination Group | 10.480 | 2.519 | 0.005 |
Variable | df | F-Value | p-Value |
---|---|---|---|
Fatigue Index Time | |||
Age Group | 1.494 | 42.64 | <0.001 |
Motor Coordination Group | 2.493 | 5.57 | 0.004 |
Age Group by Motor Coordination Group | 2.493 | 1.99 | 0.138 |
Fatigue Index Power | |||
Age Group | 1.494 | 47.89 | <0.001 |
Motor Coordination Group | 2.493 | 4.11 | 0.017 |
Age Group by Motor Coordination Group | 2.493 | 1.32 | 0.268 |
B | SE | BS | t-Value | r2 | p-Value | |
---|---|---|---|---|---|---|
Model 5 | ||||||
Constant | 49.140 | 7.988 | 6.152 | 0.21 | <0.001 | |
Long jump | −0.089 | 0.028 | −0.183 | −3.213 | 0.001 | |
BMI | 1.325 | 0.195 | 0.336 | 6.809 | <0.001 | |
Side jump | −0.362 | 0.083 | −0.200 | −4.344 | <0.001 | |
Overhead throw | −0.043 | 0.011 | −0.222 | −3.927 | <0.001 | |
CRISP time first run | −3.461 | 0.913 | −0.209 | −3.792 | <0.001 |
B | SE | BS | t-Value | r2 | p-Value | |
---|---|---|---|---|---|---|
Model 5 | ||||||
Constant | 74.23 | 9.173 | 8.103 | 0.18 | <0.001 | |
Long jump | −0.101 | 0.032 | −0.184 | −3.183 | <0.002 | |
Side jump | −0.435 | 0.096 | −0.213 | −4.548 | <0.001 | |
BMI | 1.148 | 0.224 | 0.258 | 5.137 | <0.001 | |
Overhand throw | −0.043 | 0.013 | −0.196 | −3.403 | <0.001 | |
CRISP time first run | −3.385 | 1.048 | −0.181 | −3.230 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coetzee, D.; du Plessis, W.; Smits-Engelsman, B. Repetitive Sprinting and Running Fatigue in Children with Different Levels of Motor Competence. Children 2025, 12, 135. https://doi.org/10.3390/children12020135
Coetzee D, du Plessis W, Smits-Engelsman B. Repetitive Sprinting and Running Fatigue in Children with Different Levels of Motor Competence. Children. 2025; 12(2):135. https://doi.org/10.3390/children12020135
Chicago/Turabian StyleCoetzee, Dané, Wilmarié du Plessis, and Bouwien Smits-Engelsman. 2025. "Repetitive Sprinting and Running Fatigue in Children with Different Levels of Motor Competence" Children 12, no. 2: 135. https://doi.org/10.3390/children12020135
APA StyleCoetzee, D., du Plessis, W., & Smits-Engelsman, B. (2025). Repetitive Sprinting and Running Fatigue in Children with Different Levels of Motor Competence. Children, 12(2), 135. https://doi.org/10.3390/children12020135