Microbiome Modulation in Pediatric Leukemia: Impact on Graft-Versus-Host Disease and Treatment Outcomes: A Narrative Review
Abstract
:1. Introduction
2. Gut Microbiome Dynamics During Childhood
3. Microbiome Implications in Acute Leukemia in Children
4. Antibiotic Regimens and Outcome in Pediatric Leukemia
5. Impact of Chemotherapy on Gut Microbiota and Infection Risks in Pediatric Leukemia
6. Gut Microbiome and GvHD in Pediatric Leukemia Patients Post-HSCT
7. Gut Microbiota Interventions with Pre-, Pro- and Postbiotics in Leukemia Pediatric Patients
Category | Intervention | Description and Benefits | Reference |
---|---|---|---|
Prebiotics | Inulin | Enhances the cytotoxic effects of doxorubicin, potentially reducing chemotherapy dose; improves stool consistency following radiation therapy. | [70,71,72,73] |
Pectin supplementation | Reduces intestinal damage, improves integrity, decreases bacterial translocation, and alleviates anorexia in leukemia models. | [74,75] | |
Probiotics | Lactobacillus rhamnosus GG | Reduces gastrointestinal symptoms and antimicrobial use post-chemotherapy; shows modest improvements in sepsis and hospitalization rates. | [83] |
Bifidobacterium breve | Decreases fever episodes, antibiotic use, and Enterobacteriaceae levels in fecal samples of pediatric leukemia patients. | [85] | |
Lactobacillus acidophilus and L. rhamnosus GG | Effective in treating diarrhea, nausea, vomiting, constipation, and bloating associated with oncology treatments. Often used with Bifidobacterium species for up to 6 months. | [84] | |
Postbiotics | Butyrate (BA) | Induces apoptosis in leukemia cells by activating caspase-3; reduces chemokines (CCL2, CCL5), promoting apoptosis and cytokine regulation. | [91,92,93] |
SCFAs (Short-Chain Fatty Acids) | Modulates immune responses, inhibits NF-κB signaling, boosts IL-10 expression, and impacts macrophages and dendritic cells. SCFAs may reduce GVHD severity by inducing regulatory T cells. | [80,81,82,94] | |
Nutrition Approach | Enteral Nutrition (EN) | Supports quicker SCFA production recovery, restores gut microbiome health, and reduces infection and GVHD risk compared to parenteral nutrition (PN). | [94,95] |
8. Fecal Microbiota Transplantation Following Childhood Leukemia Treatment
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Freifeld, A.G.; Bow, E.J.; Sepkowitz, K.A.; Boeckh, M.J.; Ito, J.I.; Mullen, C.A.; Raad, I.I.; Rolston, K.V.; Young, J.-A.H.; Wingard, J.R. Clinical Practice Guideline for the Use of Antimicrobial Agents in Neutropenic Patients with Cancer: 2010 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2011, 52, e56–e93. [Google Scholar] [CrossRef] [PubMed]
- Lehrnbecher, T.; Robinson, P.; Fisher, B.; Alexander, S.; Ammann, R.A.; Beauchemin, M.; Carlesse, F.; Groll, A.H.; Haeusler, G.M.; Santolaya, M.; et al. Guideline for the Management of Fever and Neutropenia in Children with Cancer and Hematopoietic Stem-Cell Transplantation Recipients: 2017 Update. J. Clin. Oncol. 2017, 35, 2082–2094. [Google Scholar] [CrossRef] [PubMed]
- Vinker-Shuster, M.; Stepensky, P.; Temper, V.; Shayovitz, V.; Masarwa, R.; Averbuch, D. Gram-Negative Bacteremia in Children with Hematologic Malignancies and Following Hematopoietic Stem Cell Transplantation: Epidemiology, Resistance, and Outcome. J. Pediatr. Hematol. Oncol. 2019, 41, e493–e498. [Google Scholar] [CrossRef] [PubMed]
- Averbuch, D.; Tridello, G.; Hoek, J.; Mikulska, M.; Akan, H.; Yaňez San Segundo, L.; Pabst, T.; Özçelik, T.; Klyasova, G.; Donnini, I.; et al. Antimicrobial Resistance in Gram-Negative Rods Causing Bacteremia in Hematopoietic Stem Cell Transplant Recipients: Intercontinental Prospective Study of the Infectious Diseases Working Party of the European Bone Marrow Transplantation Group. Clin. Infect. Dis. 2017, 65, 1819–1828. [Google Scholar] [CrossRef] [PubMed]
- Castagnola, E.; Bagnasco, F.; Mesini, A.; Agyeman, P.K.A.; Ammann, R.A.; Carlesse, F.; Santolaya De Pablo, M.E.; Groll, A.H.; Haeusler, G.M.; Lehrnbecher, T.; et al. Antibiotic Resistant Bloodstream Infections in Pediatric Patients Receiving Chemotherapy or Hematopoietic Stem Cell Transplant: Factors Associated with Development of Resistance, Intensive Care Admission and Mortality. Antibiotics 2021, 10, 266. [Google Scholar] [CrossRef]
- Mayer, E.F.; Maron, G.; Dallas, R.H.; Ferrolino, J.; Tang, L.; Sun, Y.; Danziger-Isakov, L.; Paulsen, G.C.; Fisher, B.T.; Vora, S.B.; et al. A Multicenter Study to Define the Epidemiology and Outcomes of Clostridioides Difficile Infection in Pediatric Hematopoietic Cell and Solid Organ Transplant Recipients. Am. J. Transplant. 2020, 20, 2133–2142. [Google Scholar] [CrossRef]
- Weber, D.; Jenq, R.R.; Peled, J.U.; Taur, Y.; Hiergeist, A.; Koestler, J.; Dettmer, K.; Weber, M.; Wolff, D.; Hahn, J.; et al. Microbiota Disruption Induced by Early Use of Broad-Spectrum Antibiotics Is an Independent Risk Factor of Outcome After Allogeneic Stem Cell Transplantation. Biol. Blood Marrow Transplant. 2017, 23, 845–852. [Google Scholar] [CrossRef]
- Elgarten, C.W.; Tanes, C.; Lee, J.; Danziger-Isakov, L.A.; Grimley, M.S.; Green, M.; Michaels, M.G.; Barnum, J.L.; Ardura, M.I.; Auletta, J.J.; et al. Early Stool Microbiome and Metabolome Signatures in Pediatric Patients Undergoing Allogeneic Hematopoietic Cell Transplantation. Pediatr. Blood Cancer 2022, 69, e29384. [Google Scholar] [CrossRef]
- Shono, Y.; Van Den Brink, M.R.M. Gut Microbiota Injury in Allogeneic Haematopoietic Stem Cell Transplantation. Nat. Rev. Cancer 2018, 18, 283–295. [Google Scholar] [CrossRef]
- Allegra, A.; Innao, V.; Allegra, A.G.; Ettari, R.; Pugliese, M.; Pulvirenti, N.; Musolino, C. Role of the Microbiota in Hematologic Malignancies. Neth. J. Med. 2019, 77, 67–80. [Google Scholar]
- Staffas, A.; Burgos Da Silva, M.; Van Den Brink, M.R.M. The Intestinal Microbiota in Allogeneic Hematopoietic Cell Transplant and Graft-Versus-Host Disease. Blood 2017, 129, 927–933. [Google Scholar] [CrossRef] [PubMed]
- Schluter, J.; Peled, J.U.; Taylor, B.P.; Markey, K.A.; Smith, M.; Taur, Y.; Niehus, R.; Staffas, A.; Dai, A.; Fontana, E.; et al. The Gut Microbiota Is Associated with Immune Cell Dynamics in Humans. Nature 2020, 588, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Savage, J.H.; Lee-Sarwar, K.A.; Sordillo, J.E.; Lange, N.E.; Zhou, Y.; O’Connor, G.T.; Sandel, M.; Bacharier, L.B.; Zeiger, R.; Sodergren, E.; et al. Diet during Pregnancy and Infancy and the Infant Intestinal Microbiome. J. Pediatr. 2018, 203, 47–54.e4. [Google Scholar] [CrossRef] [PubMed]
- Arox, W.K.; Rebecca, Y.; Charles, D.A.; Noel, P.; Josh, M.J.; Emma, K.; David, C.; Chikondi, M.; Ulla, A.; B, C.Y.; et al. Provision of Lipid-Based Nutrient Supplements to Mothers During Pregnancy and 6 Months Postpartum and to Their Infants from 6 to 18 Months Promotes Infant Gut Microbiota Diversity at 18 Months of Age but Not Microbiota Maturation in a Rural Malawian Setting: Secondary Outcomes of a Randomized Trial. J. Nutr. 2020, 150, 918–928. [Google Scholar] [CrossRef]
- Bäckhed, F.; Roswall, J.; Peng, Y.; Feng, Q.; Jia, H.; Kovatcheva-Datchary, P.; Li, Y.; Xia, Y.; Xie, H.; Zhong, H.; et al. Dynamics and Stabilization of the Human Gut Microbiome During the First Year of Life. Cell Host Microbe 2015, 17, 852. [Google Scholar] [CrossRef]
- Dominguez-Bello, M.G.; Costello, E.K.; Contreras, M.; Magris, M.; Hidalgo, G.; Fierer, N.; Knight, R. Delivery Mode Shapes the Acquisition and Structure of the Initial Microbiota across Multiple Body Habitats in Newborns. Proc. Natl. Acad. Sci. USA 2010, 107, 11971–11975. [Google Scholar] [CrossRef]
- Reyman, M.; Van Houten, M.A.; Van Baarle, D.; Bosch, A.A.T.M.; Man, W.H.; Chu, M.L.J.N.; Arp, K.; Watson, R.L.; Sanders, E.A.M.; Fuentes, S.; et al. Author Correction: Impact of Delivery Mode-Associated Gut Microbiota Dynamics on Health in the First Year of Life. Nat. Commun. 2019, 10, 5352. [Google Scholar] [CrossRef]
- Bonaventure, A.; Simpson, J.; Ansell, P.; Roman, E. Paediatric Acute Lymphoblastic Leukaemia and Caesarean Section: A Report from the United Kingdom Childhood Cancer Study (UKCCS). Paediatr. Perinat. Epidemiol. 2020, 34, 344–349. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, C.; Fu, R.; Xia, S.; Ni, H.; He, Y.; Zhu, K.; Sun, Q. Association of Cesarean Section with Risk of Childhood Leukemia: A Meta-analysis from an Observational Study. Hematol. Oncol. 2023, 41, 182–191. [Google Scholar] [CrossRef]
- Rudant, J.; Lightfoot, T.; Urayama, K.Y.; Petridou, E.; Dockerty, J.D.; Magnani, C.; Milne, E.; Spector, L.G.; Ashton, L.J.; Dessypris, N.; et al. Childhood Acute Lymphoblastic Leukemia and Indicators of Early Immune Stimulation: A Childhood Leukemia International Consortium Study. Am. J. Epidemiol. 2015, 181, 549–562. [Google Scholar] [CrossRef]
- Ihekweazu, F.D.; Versalovic, J. Development of the Pediatric Gut Microbiome: Impact on Health and Disease. Am. J. Med. Sci. 2018, 356, 413–423. [Google Scholar] [CrossRef] [PubMed]
- La Rosa, P.S.; Warner, B.B.; Zhou, Y.; Weinstock, G.M.; Sodergren, E.; Hall-Moore, C.M.; Stevens, H.J.; Bennett, W.E.; Shaikh, N.; Linneman, L.A.; et al. Patterned Progression of Bacterial Populations in the Premature Infant Gut. Proc. Natl. Acad. Sci. USA 2014, 111, 12522–12527. [Google Scholar] [CrossRef] [PubMed]
- Meij, T.G.J.; Budding, A.E.; Groot, E.F.J.; Jansen, F.M.; Kneepkens, C.M.F.; Benninga, M.A.; Penders, J.; Bodegraven, A.A.; Savelkoul, P.H.M. Composition and Stability of Intestinal Microbiota of Healthy Children Within a Dutch Population. FASEB J. 2016, 30, 1512–1522. [Google Scholar] [CrossRef]
- Berding, K.; Holscher, H.D.; Arthur, A.E.; Donovan, S.M. Fecal Microbiome Composition and Stability in 4- to 8-Year Old Children Is Associated with Dietary Patterns and Nutrient Intake. J. Nutr. Biochem. 2018, 56, 165–174. [Google Scholar] [CrossRef]
- Ajslev, T.A.; Andersen, C.S.; Gamborg, M.; Sørensen, T.I.A.; Jess, T. Childhood Overweight after Establishment of the Gut Microbiota: The Role of Delivery Mode, Pre-Pregnancy Weight and Early Administration of Antibiotics. Int. J. Obes. 2011, 35, 522–529. [Google Scholar] [CrossRef]
- Kalliomäki, M.; Carmen Collado, M.; Salminen, S.; Isolauri, E. Early Differences in Fecal Microbiota Composition in Children May Predict Overweight. Am. J. Clin. Nutr. 2008, 87, 534–538. [Google Scholar] [CrossRef]
- Martín-Lorenzo, A.; Hauer, J.; Vicente-Dueñas, C.; Auer, F.; González-Herrero, I.; García-Ramírez, I.; Ginzel, S.; Thiele, R.; Constantinescu, S.N.; Bartenhagen, C.; et al. Infection Exposure Is a Causal Factor in B-Cell Precursor Acute Lymphoblastic Leukemia as a Result of Pax5- Inherited Susceptibility. Cancer Discov. 2015, 5, 1328–1343. [Google Scholar] [CrossRef]
- Rodríguez-Hernández, G.; Hauer, J.; Martín-Lorenzo, A.; Schäfer, D.; Bartenhagen, C.; García-Ramírez, I.; Auer, F.; González-Herrero, I.; Ruiz-Roca, L.; Gombert, M.; et al. Infection Exposure Promotes ETV6-RUNX1 Precursor B-Cell Leukemia via Impaired H3K4 Demethylases. Cancer Res. 2017, 77, 4365–4377. [Google Scholar] [CrossRef]
- Vicente-Dueñas, C.; Janssen, S.; Oldenburg, M.; Auer, F.; González-Herrero, I.; Casado-García, A.; Isidro-Hernández, M.; Raboso-Gallego, J.; Westhoff, P.; Pandyra, A.A.; et al. An Intact Gut Microbiome Protects Genetically Predisposed Mice against Leukemia. Blood 2020, 136, 2003–2017. [Google Scholar] [CrossRef]
- Liu, X.; Zou, Y.; Ruan, M.; Chang, L.; Chen, X.; Wang, S.; Yang, W.; Zhang, L.; Guo, Y.; Chen, Y.; et al. Pediatric Acute Lymphoblastic Leukemia Patients Exhibit Distinctive Alterations in the Gut Microbiota. Front. Cell. Infect. Microbiol. 2020, 10, 558799. [Google Scholar] [CrossRef]
- Chua, L.L.; Rajasuriar, R.; Lim, Y.A.L.; Woo, Y.L.; Loke, P.; Ariffin, H. Temporal Changes in Gut Microbiota Profile in Children with Acute Lymphoblastic Leukemia Prior to Commencement-, During-, and Post-Cessation of Chemotherapy. BMC Cancer 2020, 20, 151. [Google Scholar] [CrossRef] [PubMed]
- Rajagopala, S.V.; Yooseph, S.; Harkins, D.M.; Moncera, K.J.; Zabokrtsky, K.B.; Torralba, M.G.; Tovchigrechko, A.; Highlander, S.K.; Pieper, R.; Sender, L.; et al. Gastrointestinal Microbial Populations Can Distinguish Pediatric and Adolescent Acute Lymphoblastic Leukemia (ALL) at the Time of Disease Diagnosis. BMC Genom. 2016, 17, 635. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Zhou, P.; Li, D.; Ju, X. Changes in the Gastrointestinal Microbiota of Children with Acute Lymphoblastic Leukaemia and Its Association with Antibiotics in the Short Term. J. Med. Microbiol. 2017, 66, 1297–1307. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xue, J.; Zhou, X.; You, M.; Du, Q.; Yang, X.; He, J.; Zou, J.; Cheng, L.; Li, M.; et al. Oral Microbiota Distinguishes Acute Lymphoblastic Leukemia Pediatric Hosts from Healthy Populations. PLoS ONE 2014, 9, e102116. [Google Scholar] [CrossRef]
- Peppas, I.; Ford, A.M.; Furness, C.L.; Greaves, M.F. Gut Microbiome Immaturity and Childhood Acute Lymphoblastic Leukaemia. Nat. Rev. Cancer 2023, 23, 565–576. [Google Scholar] [CrossRef]
- Wen, Y.; Jin, R.; Chen, H. Interactions between Gut Microbiota and Acute Childhood Leukemia. Front. Microbiol. 2019, 10, 1300. [Google Scholar] [CrossRef]
- Pötgens, S.A.; Havelange, V.; Lecop, S.; Li, F.; Neyrinck, A.M.; Bindels, F.; Neveux, N.; Demoulin, J.-B.; Moors, I.; Kerre, T.; et al. Gut Microbiome Alterations at Acute Myeloid Leukemia Diagnosis Are Associated with Muscle Weakness and Anorexia. Haematologica 2024, 109, 3194–3208. [Google Scholar] [CrossRef]
- Chang, J.S.; Tsai, C.-R.; Tsai, Y.-W.; Wiemels, J.L. Medically Diagnosed Infections and Risk of Childhood Leukaemia: A Population-Based Case–Control Study. Int. J. Epidemiol. 2012, 41, 1050–1059. [Google Scholar] [CrossRef]
- Patel, P.A.; Teherani, M.F.; Xiang, Y.; Bernardo, V.; Chandrakasan, S.; Goggin, K.P.; Haight, A.; Horwitz, E.; Liang, W.H.; Parikh, S.H.; et al. Short-Course Empiric Antibiotics in Children Undergoing Allogeneic Hematopoietic Cell Transplantation. Transplant. Cell. Ther. 2023, 29, 778.e1–778.e6. [Google Scholar] [CrossRef]
- Butters, C.; Thursky, K.; Hanna, D.T.; Cole, T.; Davidson, A.; Buttery, J.; Haeusler, G. Adverse Effects of Antibiotics in Children with Cancer: Are Short-Course Antibiotics for Febrile Neutropenia Part of the Solution? Expert Rev. Anti-Infect. Ther. 2023, 21, 267–279. [Google Scholar] [CrossRef]
- Margolis, E.B.; Hakim, H.; Dallas, R.H.; Allison, K.J.; Ferrolino, J.; Sun, Y.; Pui, C.-H.; Yao, J.; Chang, T.-C.; Hayden, R.T.; et al. Antibiotic Prophylaxis and the Gastrointestinal Resistome in Paediatric Patients with Acute Lymphoblastic Leukaemia: A Cohort Study with Metagenomic Sequencing Analysis. Lancet Microbe 2021, 2, e159–e167. [Google Scholar] [CrossRef] [PubMed]
- Stern, A.; Carrara, E.; Bitterman, R.; Yahav, D.; Leibovici, L.; Paul, M. Early Discontinuation of Antibiotics for Febrile Neutropenia versus Continuation Until Neutropenia Resolution in People with Cancer. Cochrane Database Syst. Rev. 2019, 2019, CD012184. [Google Scholar] [CrossRef] [PubMed]
- Styczynski, J.; Czyzewski, K.; Wysocki, M.; Gryniewicz-Kwiatkowska, O.; Kolodziejczyk-Gietka, A.; Salamonowicz, M.; Hutnik, L.; Zajac-Spychala, O.; Zaucha-Prazmo, A.; Chelmecka-Wiktorczyk, L.; et al. Increased Risk of Infections and Infection-Related Mortality in Children Undergoing Haematopoietic Stem Cell Transplantation Compared to Conventional Anticancer Therapy: A Multicentre Nationwide Study. Clin. Microbiol. Infect. 2016, 22, 179.e1–179.e10. [Google Scholar] [CrossRef] [PubMed]
- Hanks, C.R.; Slain, D.; Kanate, A.S.; Wen, S.; Cumpston, A. Impact of Anti-anaerobic Antibiotic Activity on Graft-Versus-Host Disease in Allogeneic Hematopoietic Stem Cell Transplant (HSCT) Recipients at an Institution That Utilizes Antibiotic Cycling. Transpl. Infect. Dis. 2021, 23, e13676. [Google Scholar] [CrossRef]
- Elgarten, C.W.; Li, Y.; Getz, K.D.; Hemmer, M.; Huang, Y.-S.V.; Hall, M.; Wang, T.; Kitko, C.L.; Jagasia, M.H.; Nishihori, T.; et al. Broad-Spectrum Antibiotics and Risk of Graft-Versus-Host Disease in Pediatric Patients Undergoing Transplantation for Acute Leukemia: Association of Carbapenem Use with the Risk of Acute Graft-Versus-Host Disease. Transplant. Cell. Ther. 2021, 27, 177.e1–177.e8. [Google Scholar] [CrossRef]
- Hakim, H.; Dallas, R.; Wolf, J.; Tang, L.; Schultz-Cherry, S.; Darling, V.; Johnson, C.; Karlsson, E.A.; Chang, T.-C.; Jeha, S.; et al. Gut Microbiome Composition Predicts Infection Risk During Chemotherapy in Children with Acute Lymphoblastic Leukemia. Clin. Infect. Dis. 2018, 67, 541–548. [Google Scholar] [CrossRef]
- Nycz, B.T.; Dominguez, S.R.; Friedman, D.; Hilden, J.M.; Ir, D.; Robertson, C.E.; Frank, D.N. Evaluation of Bloodstream Infections, Clostridium Difficile Infections, and Gut Microbiota in Pediatric Oncology Patients. PLoS ONE 2018, 13, e0191232. [Google Scholar] [CrossRef]
- Liu, X.; Zou, Y.; Zhang, Y.; Liu, L.; Duan, Y.; Zhang, A.; Zhang, X.; Zhang, R.; Zhao, B.; Li, X.; et al. Characteristics in Gut Microbiome Is Associated with Chemotherapy-Induced Pneumonia in Pediatric Acute Lymphoblastic Leukemia. BMC Cancer 2021, 21, 1190. [Google Scholar] [CrossRef]
- Margolis, E.B.; Maron, G.; Sun, Y.; Dallas, R.H.; Allison, K.J.; Ferrolino, J.; Ross, H.S.; Davis, A.E.; Jia, Q.; Turner, P.; et al. Microbiota Predict Infections and Acute Graft-Versus-Host Disease After Pediatric Allogeneic Hematopoietic Stem Cell Transplantation. J. Infect. Dis. 2023, 228, 627–636. [Google Scholar] [CrossRef]
- Sørum, M.E.; Boulund, U.; De Pietri, S.; Weischendorff, S.; Enevold, C.; Rathe, M.; Als-Nielsen, B.; Hasle, H.; Pamp, S.J.; Stokholm, J.; et al. Changes in Gut Microbiota Predict Neutropenia after Induction Treatment in Childhood Acute Lymphoblastic Leukemia. Blood Adv. 2024. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Zhou, Q.; Yu, L.; Fu, J.; Lin, D.; Huang, L.; Lai, X.; Wu, L.; Zhang, J.; et al. Microbial Metagenomic Shifts in Children with Acute Lymphoblastic Leukaemia during Induction Therapy and Predictive Biomarkers for Infection. Ann. Clin. Microbiol. Antimicrob. 2024, 23, 52. [Google Scholar] [CrossRef] [PubMed]
- De Pietri, S.; Ingham, A.C.; Frandsen, T.L.; Rathe, M.; Krych, L.; Castro-Mejía, J.L.; Nielsen, D.S.; Nersting, J.; Wehner, P.S.; Schmiegelow, K.; et al. Gastrointestinal Toxicity during Induction Treatment for Childhood Acute Lymphoblastic Leukemia: The Impact of the Gut Microbiota. Int. J. Cancer 2020, 147, 1953–1962. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Perlman, K.; Gyarmati, P. Microbial and Host Factors Contribute to Bloodstream Infection in a Pediatric Acute Lymphocytic Leukemia Mouse Model. Heliyon 2022, 8, e11340. [Google Scholar] [CrossRef] [PubMed]
- Chua, L.L.; Rajasuriar, R.; Azanan, M.S.; Abdullah, N.K.; Tang, M.S.; Lee, S.C.; Woo, Y.L.; Lim, Y.A.L.; Ariffin, H.; Loke, P. Reduced Microbial Diversity in Adult Survivors of Childhood Acute Lymphoblastic Leukemia and Microbial Associations with Increased Immune Activation. Microbiome 2017, 5, 35. [Google Scholar] [CrossRef]
- Hill, G.R.; Ferrara, J.L. The Primacy of the Gastrointestinal Tract as a Target Organ of Acute Graft-versus-Host Disease: Rationale for the Use of Cytokine Shields in Allogeneic Bone Marrow Transplantation. Blood 2000, 95, 2754–2759. [Google Scholar] [CrossRef]
- MacMillan, M.L.; DeFor, T.E.; Weisdorf, D.J. What Predicts High Risk Acute Graft- Versus -host Disease (GVHD) at Onset?: Identification of Those at Highest Risk by a Novel Acute GVHD Risk Score. Br. J. Haematol. 2012, 157, 732–741. [Google Scholar] [CrossRef]
- Ponce, D.M.; Gonzales, A.; Lubin, M.; Castro-Malaspina, H.; Giralt, S.; Goldberg, J.D.; Hanash, A.M.; Jakubowski, A.; Jenq, R.; Papadopoulos, E.B.; et al. Graft-Versus-Host Disease after Double-Unit Cord Blood Transplantation Has Unique Features and an Association with Engrafting Unit-to-Recipient HLA Match. Biol. Blood Marrow Transplant. 2013, 19, 904–911. [Google Scholar] [CrossRef]
- MacMillan, M.L.; Robin, M.; Harris, A.C.; DeFor, T.E.; Martin, P.J.; Alousi, A.; Ho, V.T.; Bolaños-Meade, J.; Ferrara, J.L.M.; Jones, R.; et al. A Refined Risk Score for Acute Graft-Versus-Host Disease That Predicts Response to Initial Therapy, Survival, and Transplant-Related Mortality. Biol. Blood Marrow Transplant. 2015, 21, 761–767. [Google Scholar] [CrossRef]
- Mehta, R.S.; Cao, Q.; Holtan, S.; MacMillan, M.L.; Weisdorf, D.J. Upper GI GVHD: Similar Outcomes to Other Grade II Graft-versus-Host Disease. Bone Marrow Transpl. 2017, 52, 1180–1186. [Google Scholar] [CrossRef]
- Biagi, E.; Zama, D.; Nastasi, C.; Consolandi, C.; Fiori, J.; Rampelli, S.; Turroni, S.; Centanni, M.; Severgnini, M.; Peano, C.; et al. Gut Microbiota Trajectory in Pediatric Patients Undergoing Hematopoietic SCT. Bone Marrow Transplant. 2015, 50, 992–998. [Google Scholar] [CrossRef]
- Simms-Waldrip, T.R.; Sunkersett, G.; Coughlin, L.A.; Savani, M.R.; Arana, C.; Kim, J.; Kim, M.; Zhan, X.; Greenberg, D.E.; Xie, Y.; et al. Antibiotic-Induced Depletion of Anti-Inflammatory Clostridia Is Associated with the Development of Graft-versus-Host Disease in Pediatric Stem Cell Transplantation Patients. Biol. Blood Marrow Transplant. 2017, 23, 820–829. [Google Scholar] [CrossRef] [PubMed]
- Stein-Thoeringer, C.; Peled, J.U.; Lazrak, A.; Slingerland, A.E.; Shono, Y.; Staffas, A.; Gomes, A.; Argyropoulos, K.; Docampo, M.; Xavier, J.; et al. Domination of the Gut Microbiota with Enterococcus Species Early after Allogeneic Bone Marrow Transplantation Is an Important Contributor to the Development of Acute Graft-Versus-Host Disease (GHVD) in Mouse and Man. Biol. Blood Marrow Transplant. 2018, 24, S40–S41. [Google Scholar] [CrossRef]
- Doki, N.; Suyama, M.; Sasajima, S.; Ota, J.; Igarashi, A.; Mimura, I.; Morita, H.; Fujioka, Y.; Sugiyama, D.; Nishikawa, H.; et al. Clinical Impact of Pre-Transplant Gut Microbial Diversity on Outcomes of Allogeneic Hematopoietic Stem Cell Transplantation. Ann. Hematol. 2017, 96, 1517–1523. [Google Scholar] [CrossRef]
- Ilett, E.E.; Jørgensen, M.; Noguera-Julian, M.; Nørgaard, J.C.; Daugaard, G.; Helleberg, M.; Paredes, R.; Murray, D.D.; Lundgren, J.; MacPherson, C.; et al. Associations of the Gut Microbiome and Clinical Factors with Acute GVHD in Allogeneic HSCT Recipients. Blood Adv. 2020, 4, 5797–5809. [Google Scholar] [CrossRef]
- Sardzikova, S.; Andrijkova, K.; Svec, P.; Beke, G.; Klucar, L.; Minarik, G.; Bielik, V.; Kolenova, A.; Soltys, K. High Diversity but Monodominance of Multidrug-Resistant Bacteria in Immunocompromised Pediatric Patients with Acute Lymphoblastic Leukemia Developing GVHD Are Not Associated with Changes in Gut Mycobiome. Antibiotics 2023, 12, 1667. [Google Scholar] [CrossRef]
- Liu, C.; Frank, D.N.; Horch, M.; Chau, S.; Ir, D.; Horch, E.A.; Tretina, K.; Van Besien, K.; Lozupone, C.A.; Nguyen, V.H. Associations between Acute Gastrointestinal GvHD and the Baseline Gut Microbiota of Allogeneic Hematopoietic Stem Cell Transplant Recipients and Donors. Bone Marrow Transplant. 2017, 52, 1643–1650. [Google Scholar] [CrossRef]
- Gavriilaki, M.; Sakellari, I.; Anagnostopoulos, A.; Gavriilaki, E. The Impact of Antibiotic-Mediated Modification of the Intestinal Microbiome on Outcomes of Allogeneic Hematopoietic Cell Transplantation: Systematic Review and Meta-Analysis. Biol. Blood Marrow Transplant. 2020, 26, 1738–1746. [Google Scholar] [CrossRef]
- Bekker, V.; Zwittink, R.D.; Knetsch, C.W.; Sanders, I.M.J.G.; Berghuis, D.; Heidt, P.J.; Vossen, J.M.J.J.; De Vos, W.M.; Belzer, C.; Bredius, R.G.M.; et al. Dynamics of the Gut Microbiota in Children Receiving Selective or Total Gut Decontamination Treatment during Hematopoietic Stem Cell Transplantation. Biol. Blood Marrow Transplant. 2019, 25, 1164–1171. [Google Scholar] [CrossRef]
- Ingham, A.C.; Kielsen, K.; Cilieborg, M.S.; Lund, O.; Holmes, S.; Aarestrup, F.M.; Müller, K.G.; Pamp, S.J. Specific Gut Microbiome Members Are Associated with Distinct Immune Markers in Pediatric Allogeneic Hematopoietic Stem Cell Transplantation. Microbiome 2019, 7, 131. [Google Scholar] [CrossRef]
- Masetti, R.; Leardini, D.; Muratore, E.; Fabbrini, M.; D’Amico, F.; Zama, D.; Baccelli, F.; Gottardi, F.; Belotti, T.; Ussowicz, M.; et al. Gut Microbiota Diversity before Allogeneic Hematopoietic Stem Cell Transplantation as a Predictor of Mortality in Children. Blood 2023, 142, 1387–1398. [Google Scholar] [CrossRef]
- Burgos Da Silva, M.; Ponce, D.M.; Dai, A.; Devlin, S.M.; Gomes, A.L.C.; Moore, G.; Slingerland, J.; Shouval, R.; Armijo, G.K.; DeWolf, S.; et al. Preservation of the Fecal Microbiome Is Associated with Reduced Severity of Graft-Versus-Host Disease. Blood 2022, 140, 2385–2397. [Google Scholar] [CrossRef] [PubMed]
- Taur, Y.; Coyte, K.; Schluter, J.; Robilotti, E.; Figueroa, C.; Gjonbalaj, M.; Littmann, E.R.; Ling, L.; Miller, L.; Gyaltshen, Y.; et al. Reconstitution of the Gut Microbiota of Antibiotic-Treated Patients by Autologous Fecal Microbiota Transplant. Sci. Transl. Med. 2018, 10, eaap9489. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S.; Nguyen, V.H. Role of Gut Microbiota in Graft-Versus-Host Disease. Leuk. Lymphoma 2011, 52, 1844–1856. [Google Scholar] [CrossRef]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert Consensus Document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef]
- Davani-Davari, D.; Negahdaripour, M.; Karimzadeh, I.; Seifan, M.; Mohkam, M.; Masoumi, S.; Berenjian, A.; Ghasemi, Y. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods 2019, 8, 92. [Google Scholar] [CrossRef]
- Schoener, C.A.; Carillo-Conde, B.; Hutson, H.N.; Peppas, N.A. An Inulin and Doxorubicin Conjugate for Improving Cancer Therapy. J. Drug Deliv. Sci. Technol. 2013, 23, 111–118. [Google Scholar] [CrossRef]
- Mazraeh, R.; Azizi-Soleiman, F.; Jazayeri, S.M.H.M.; Noori, S.M.A. Effect of Inulin-Type Fructans in Patients Undergoing Cancer Treatments: A Systematic Review: Effect of Inulin-Type Fructans in Cancer Treatments. Pak. J. Med. Sci. 2019, 35, 575–580. [Google Scholar] [CrossRef]
- Mao, Y.; Kasravi, B.; Nobaek, S.; Wang, L.Q.; Adawi, D.; Roos, G.; Stenram, U.; Molin, G.; Bengmark, S.; Jeppsson, B. Pectin-Supplemented Enteral Diet Reduces the Severity of Methotrexate-Induced Enterocolitis in Rats. Scand. J. Gastroenterol. 1996, 31, 558–567. [Google Scholar] [CrossRef]
- Bindels, L.B.; Neyrinck, A.M.; Loumaye, A.; Catry, E.; Walgrave, H.; Cherbuy, C.; Leclercq, S.; Van Hul, M.; Plovier, H.; Pachikian, B.; et al. Increased Gut Permeability in Cancer Cachexia: Mechanisms and Clinical Relevance. Oncotarget 2018, 9, 18224–18238. [Google Scholar] [CrossRef]
- McFarland, L.V.; Evans, C.T.; Goldstein, E.J.C. Strain-Specificity and Disease-Specificity of Probiotic Efficacy: A Systematic Review and Meta-Analysis. Front. Med. 2018, 5, 124. [Google Scholar] [CrossRef]
- Chiu, Y.-H.; Lin, S.-L.; Tsai, J.-J.; Lin, M.-Y. Probiotic Actions on Diseases: Implications for Therapeutic Treatments. Food Funct. 2014, 5, 625. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, K.; Kakihana, K.; Doki, N.; Ohashi, K. Gut Microbiota and Acute Graft-Versus-Host Disease. Pharmacol. Res. 2017, 122, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Yoshifuji, K.; Inamoto, K.; Kiridoshi, Y.; Takeshita, K.; Sasajima, S.; Shiraishi, Y.; Yamashita, Y.; Nisaka, Y.; Ogura, Y.; Takeuchi, R.; et al. Prebiotics Protect against Acute Graft-Versus-Host Disease and Preserve the Gut Microbiota in Stem Cell Transplantation. Blood Adv. 2020, 4, 4607–4617. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.V.; Hao, L.; Offermanns, S.; Medzhitov, R. The Microbial Metabolite Butyrate Regulates Intestinal Macrophage Function via Histone Deacetylase Inhibition. Proc. Natl. Acad. Sci. USA 2014, 111, 2247–2252. [Google Scholar] [CrossRef] [PubMed]
- Vinolo, M.A.R.; Rodrigues, H.G.; Nachbar, R.T.; Curi, R. Regulation of Inflammation by Short Chain Fatty Acids. Nutrients 2011, 3, 858–876. [Google Scholar] [CrossRef]
- Mathewson, N.D.; Jenq, R.; Mathew, A.V.; Koenigsknecht, M.; Hanash, A.; Toubai, T.; Oravecz-Wilson, K.; Wu, S.-R.; Sun, Y.; Rossi, C.; et al. Gut Microbiome–Derived Metabolites Modulate Intestinal Epithelial Cell Damage and Mitigate Graft-Versus-Host Disease. Nat. Immunol. 2016, 17, 505–513. [Google Scholar] [CrossRef]
- Reyna-Figueroa, J.; Bejarano-Juvera, A.A.; García-Parra, C.; Barrón-Calvillo, E.E.; Queipo-Garcia, G.E.; Galindo-Delgado, P. Decrease of Postchemotherapy Complications with the Use of Probiotics in Children with Acute Lymphoblastic Leukemia. J. Pediatr. Hematol. Oncol. 2021, 43, e457–e461. [Google Scholar] [CrossRef]
- Rodriguez-Arrastia, M.; Martinez-Ortigosa, A.; Rueda-Ruzafa, L.; Folch Ayora, A.; Ropero-Padilla, C. Probiotic Supplements on Oncology Patients’ Treatment-Related Side Effects: A Systematic Review of Randomized Controlled Trials. Int. J. Environ. Res. Public Health 2021, 18, 4265. [Google Scholar] [CrossRef]
- Wada, M.; Nagata, S.; Saito, M.; Shimizu, T.; Yamashiro, Y.; Matsuki, T.; Asahara, T.; Nomoto, K. Effects of the Enteral Administration of Bifidobacterium Breve on Patients Undergoing Chemotherapy for Pediatric Malignancies. Support. Care Cancer 2010, 18, 751–759. [Google Scholar] [CrossRef]
- Ekert, H.; Jurk, I.H.; Waters, K.D.; Tiedemann, K. Prophylactic Co-trimoxazole and Lactobacilli Preparation in Neutropenic Patients. Med. Pediatr. Oncol. 1980, 8, 47–51. [Google Scholar] [CrossRef]
- Oldenburg, M.; Rüchel, N.; Janssen, S.; Borkhardt, A.; Gössling, K.L. The Microbiome in Childhood Acute Lymphoblastic Leukemia. Cancers 2021, 13, 4947. [Google Scholar] [CrossRef] [PubMed]
- Ambesh, P.; Stroud, S.; Franzova, E.; Gotesman, J.; Sharma, K.; Wolf, L.; Kamholz, S. Recurrent Lactobacillus Bacteremia in a Patient with Leukemia. J. Investig. Med. High Impact Case Rep. 2017, 5, 2324709617744233. [Google Scholar] [CrossRef] [PubMed]
- Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.M.M.; Sanders, M.E.; Shamir, R.; Swann, J.R.; Szajewska, H.; et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Postbiotics. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 649–667. [Google Scholar] [CrossRef]
- Vinderola, G.; Sanders, M.E.; Salminen, S. The Concept of Postbiotics. Foods 2022, 11, 1077. [Google Scholar] [CrossRef]
- Peng, L.; He, Z.; Chen, W.; Holzman, I.R.; Lin, J. Effects of Butyrate on Intestinal Barrier Function in a Caco-2 Cell Monolayer Model of Intestinal Barrier. Pediatr. Res. 2007, 61, 37–41. [Google Scholar] [CrossRef]
- Fachi, J.L.; Felipe, J.D.S.; Pral, L.P.; Da Silva, B.K.; Corrêa, R.O.; De Andrade, M.C.P.; Da Fonseca, D.M.; Basso, P.J.; Câmara, N.O.S.; De Sales, E.; et al. Butyrate Protects Mice from Clostridium Difficile-Induced Colitis through an HIF-1-Dependent Mechanism. Cell Rep. 2019, 27, 750–761.e7. [Google Scholar] [CrossRef]
- Nakkarach, A.; Foo, H.L.; Song, A.A.-L.; Mutalib, N.E.A.; Nitisinprasert, S.; Withayagiat, U. Anti-Cancer and Anti-Inflammatory Effects Elicited by Short Chain Fatty Acids Produced by Escherichia coli Isolated from Healthy Human Gut Microbiota. Microb. Cell Fact. 2021, 20, 36. [Google Scholar] [CrossRef]
- Bollmann, L.M.; Skerhut, A.J.; Asfaha, Y.; Horstick, N.; Hanenberg, H.; Hamacher, A.; Kurz, T.; Kassack, M.U. The Novel Class IIa Selective Histone Deacetylase Inhibitor YAK540 Is Synergistic with Bortezomib in Leukemia Cell Lines. Int. J. Mol. Sci. 2022, 23, 13398. [Google Scholar] [CrossRef]
- Pulliam, S.R.; Pellom, S.T.; Shanker, A.; Adunyah, S.E. Butyrate Regulates the Expression of Inflammatory and Chemotactic Cytokines in Human Acute Leukemic Cells during Apoptosis. Cytokine 2016, 84, 74–87. [Google Scholar] [CrossRef]
- D’Amico, F.; Biagi, E.; Rampelli, S.; Fiori, J.; Zama, D.; Soverini, M.; Barone, M.; Leardini, D.; Muratore, E.; Prete, A.; et al. Enteral Nutrition in Pediatric Patients Undergoing Hematopoietic SCT Promotes the Recovery of Gut Microbiome Homeostasis. Nutrients 2019, 11, 2958. [Google Scholar] [CrossRef]
- Zama, D.; Gori, D.; Muratore, E.; Leardini, D.; Rallo, F.; Turroni, S.; Prete, A.; Brigidi, P.; Pession, A.; Masetti, R. Enteral Versus Parenteral Nutrition as Nutritional Support after Allogeneic Hematopoietic Stem Cell Transplantation: A Systematic Review and Meta-Analysis. Transplant. Cell. Ther. 2021, 27, 180.e1–180.e8. [Google Scholar] [CrossRef] [PubMed]
- Sha, S.; Liang, J.; Chen, M.; Xu, B.; Liang, C.; Wei, N.; Wu, K. Systematic Review: Faecal Microbiota Transplantation Therapy for Digestive and Nondigestive Disorders in Adults and Children. Aliment. Pharmacol. Ther. 2014, 39, 1003–1032. [Google Scholar] [CrossRef]
- Goloshchapov, O.; Bakin, E.; Stanevich, O.; Klementeva, R.; Shcherbakov, A.; Shvetsov, A.; Paina, O.; Kozhokar, P.; Gorchakova, M.; Babenko, E.; et al. Clinical and Immune Effects of Fecal Microbiota Transplantation in Children with Acute Graft-versus-Host Disease. Cell. Ther. Transplant. 2021, 10, 69–78. [Google Scholar] [CrossRef]
- Goloshchapov, O.V.; Chukhlovin, A.B.; Bakin, E.A.; Stanevich, O.V.; Klementeva, R.V.; Shcherbakov, A.A.; Shvetsov, A.N.; Suvorova, M.A.; Bondarenko, S.N.; Kucher, M.A.; et al. Fecal Microbiota Transplantation for Graft-Versus-Host Disease in Children and Adults: Methods, Clinical Effects, Safety. Ter. Arkhiv 2020, 92, 43–54. [Google Scholar] [CrossRef]
- Fałkowska, A.I.; Jakubas, A.; Surdacka, L.; Jagiełło, J.; Drabko, K.; Zaucha-Prażmo, A. Safe Use of Fecal Microbiota Transplant in Treatment of Graft Versus Host Disease in a 5-Year-Old Child. Acta Haematol. Pol. 2023, 54, 266–268. [Google Scholar] [CrossRef]
- Merli, P.; Putignani, L.; Ruggeri, A.; Del Chierico, F.; Gargiullo, L.; Galaverna, F.; Gaspari, S.; Pagliara, D.; Russo, A.; Pane, S.; et al. Decolonization of Multi-Drug Resistant Bacteria by Fecal Microbiota Transplantation in Five Pediatric Patients Before Allogeneic Hematopoietic Stem Cell Transplantation: Gut Microbiota Profiling, Infectious and Clinical Outcomes. Haematologica 2020, 105, 2686–2690. [Google Scholar] [CrossRef]
- Zhong, S.; Zeng, J.; Deng, Z.; Jiang, L.; Zhang, B.; Yang, K.; Wang, W.; Zhang, T. Fecal Microbiota Transplantation for Refractory Diarrhea in Immunocompromised Diseases: A Pediatric Case Report. Ital. J. Pediatr. 2019, 45, 116. [Google Scholar] [CrossRef]
- Bluestone, H.; Kronman, M.P.; Suskind, D.L. Fecal Microbiota Transplantation for Recurrent Clostridium Difficile Infections in Pediatric Hematopoietic Stem Cell Transplant Recipients. J. Pediatr. Infect. Dis. Soc. 2018, 7, e6–e8. [Google Scholar] [CrossRef]
- Kelly, C.R.; Ihunnah, C.; Fischer, M.; Khoruts, A.; Surawicz, C.; Afzali, A.; Aroniadis, O.; Barto, A.; Borody, T.; Giovanelli, A.; et al. Fecal Microbiota Transplant for Treatment of Clostridium Difficile Infection in Immunocompromised Patients. Am. J. Gastroenterol. 2014, 109, 1065–1071. [Google Scholar] [CrossRef]
- Conover, K.R.; Absah, I.; Ballal, S.; Brumbaugh, D.; Cho, S.; Cardenas, M.C.; Knackstedt, E.D.; Goyal, A.; Jensen, M.K.; Kaplan, J.L.; et al. Fecal Microbiota Transplantation for Clostridioides Difficile Infection in Immunocompromised Pediatric Patients. J. Pediatr. Gastroenterol. Nutr. 2023, 76, 440–446. [Google Scholar] [CrossRef]
- Zhang, X.-Y.; Wang, Y.-Z.; Li, X.-L.; Hu, H.; Liu, H.-F.; Li, D.; Xiao, Y.-M.; Zhang, T. Safety of Fecal Microbiota Transplantation in Chinese Children: A Single-Center Retrospective Study. World J. Clin. Cases 2018, 6, 1121–1127. [Google Scholar] [CrossRef] [PubMed]
Study | Patient Type | Intervention Details | Outcomes | Adverse Events | Comments |
---|---|---|---|---|---|
Pavlov University, St. Petersburg, Russia; et al. [103] | Pediatric patients with gut GVHD | FMT administered; improved gut microbiota (Bacteroides fragilis, Faecalibacterium prausnitzii) | 6 of 7 patients had clinical responses and stable immune cells | Nausea, abdominal pain (86%)—mostly mild | Suggests microbiota restoration with FMT |
Goloshchapov et al. [104] | Adults and children with GI GVHD | FMT administered; increased bacterial mass, Bifidobacterium spp., Escherichia coli, Bacteroides fragilis | Faster response (4 days vs. 48 days), improved complete response rates (42%, 74%, 84% at 30, 60, 90 days) | Similar adverse events in both groups | Promising for GI GVHD treatment |
Fałkowska et al. [105] (Case report) | Pediatric patient with T-cell lymphoblastic leukemia and GI GVHD | Multiple FMT procedures after failed treatments and multi-resistant bacterial colonization | Clinical improvement after FMT | No significant adverse events | Highlights FMT’s potential in refractory cases |
Merli et al. [106] | Pediatric ALL patients with MDR bacteria colonization | FMT administered for decolonization | 80% decolonization rate within 1-week, recurrent colonization in 4/5 patients | Mild, transient adverse events; one sepsis episode treated with antibiotics | FMT shows feasibility, repeated procedures may help with long-term decolonization |
Zhong et al. [107] | Immunodeficient children with refractory diarrhea | FMT administered | Improved microbial diversity post-FMT (Shannon’s diversity index) | No significant adverse events | Demonstrates FMT’s potential for gut health restoration |
Bluestone et al. [108] | Pediatric HSCT recipients with recurrent CDI | FMT administered | Safe and well-tolerated; CDI clearance in 1 patient, recurrence in 2 others | Mild adverse effects (nausea, vomiting) | Efficacy may be limited by chemotherapy and antimicrobial use |
Kelly et al. [109] | 80 patients (75 adults, 5 children) with recurrent, refractory, or severe CDI | FMT administered | 89% cure rate; 78% resolution after a single FMT | No infections definitively linked to FMT, close monitoring needed | Positive results in both pediatric and adult populations |
Conover et al. [110] | Immunocompromised pediatric patients with malignant and non-malignant conditions | FMT for recurrent CDI | 79% success after 1st FMT, 86% after multiple treatments | 31% serious adverse events; no fatal events | High success rate but caution needed for immunocompromised children |
Zhang et al. [111] | Pediatric patients | FMT administered | Short-term adverse events (26.32% mild and self-limiting) | Abdominal pain, diarrhea, fever | Immunodeficiency increases risk, needs careful monitoring |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Todor, S.B.; Ichim, C. Microbiome Modulation in Pediatric Leukemia: Impact on Graft-Versus-Host Disease and Treatment Outcomes: A Narrative Review. Children 2025, 12, 166. https://doi.org/10.3390/children12020166
Todor SB, Ichim C. Microbiome Modulation in Pediatric Leukemia: Impact on Graft-Versus-Host Disease and Treatment Outcomes: A Narrative Review. Children. 2025; 12(2):166. https://doi.org/10.3390/children12020166
Chicago/Turabian StyleTodor, Samuel Bogdan, and Cristian Ichim. 2025. "Microbiome Modulation in Pediatric Leukemia: Impact on Graft-Versus-Host Disease and Treatment Outcomes: A Narrative Review" Children 12, no. 2: 166. https://doi.org/10.3390/children12020166
APA StyleTodor, S. B., & Ichim, C. (2025). Microbiome Modulation in Pediatric Leukemia: Impact on Graft-Versus-Host Disease and Treatment Outcomes: A Narrative Review. Children, 12(2), 166. https://doi.org/10.3390/children12020166