Trunk Lateral Flexor Endurance and Body Fat: Predictive Risk Factors for Low Back Pain in Child Equestrian Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Participants (Sample of Equestrian Athletes)
2.3. Examiners
2.4. Interview Questionnaire
2.5. Assessment of Predictive Risk Factors for Lower Back Pain
2.6. Statistical Analysis
3. Results
4. Discussion
4.1. Risk Factors for the Development of Low Back Pain in CEA
4.2. Practical Considerations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ekberg, J.; Timpka, T.; Ramel, H.; Valter, L. Injury rates and risk-factors associated with eventing: A total cohort study of injury events among adult Swedish eventing athletes. Int. J. Inj. Contr. Saf. Promot. 2011, 18, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Pugh, T.; Bolin, D. Overuse injuries in equestrian athletes. Overuse Inj. Equest. Athletes 2004, 3, 297–303. [Google Scholar] [CrossRef]
- Lewis, V.; Kennerley, R. A preliminary study to investigate the prevalence of pain in elite dressage riders during competition in the United Kingdom. Comp. Exerc. Physiol. 2017, 13, 259–263. [Google Scholar] [CrossRef]
- Hobbs, S.J.; Baxter, J.; Broom, L.; Rossell, L.A.; Sinclair, J.; Clayton, H.M. Posture, flexibility and grip strength in horse riders. J. Hum. Kinet. 2014, 42, 113–125. [Google Scholar] [CrossRef] [Green Version]
- Lewis, V.; Baldwin, K. A preliminary study to investigate the prevalence of pain in international event riders during competition, in the United Kingdom. Comp. Exerc. Physiol. 2018, 14, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Kraft, C.; Scharfstädt, A.; Yong, M.; Westhoff, B.; Urban, N.; Falkenhausen, M.; Pennekamp, P. Correlation of back pain and magnetic resonance imaging of the lumbar spine in elite horse vaulters. Sport. Sport. 2007, 21, 142–147. [Google Scholar] [CrossRef]
- Pilato, M.; Shifrin, S.; Bixby-Hammett, D. The equestrian as an athlete: A view into injuries and incidence rates. Equest. Med. Saf. Assoc. Newsl. 2007, 1, 5–7. [Google Scholar]
- Dąbek, J.; Koczy, B.; Piotrkowicz, J. Horse riding as a form of recreation and professional sport taking into account the spine mobility of riders-a preliminary results. Pol. Merkur. Lek. Organ Pol. Tow. Lek. 2015, 39, 297–304. [Google Scholar]
- Kraft, C.N.; Pennekamp, P.H.; Becker, U.; Young, M.; Diedrich, O.; Lüring, C.; von Falkenhausen, M. Magnetic resonance imaging findings of the lumbar spine in elite horseback riders: Correlations with back pain, body mass index, trunk/leg-length coefficient, and riding discipline. Am. J. Sports Med. 2009, 37, 2205–2213. [Google Scholar] [CrossRef]
- Gandy, E.A.; Bondi, A.; Pigott, T.; Smith, G.; Mcdonald, S. Measurement of hip flexion and pelvic rotation in horse riders using imus investigation of the use of inertial sensing equipment for the measurement of hip flexion and pelvic rotation in horse riders. Comp. Exerc. Physiol. 2018, 14, 99–110. [Google Scholar] [CrossRef]
- Ginés-Díaz, A.; Martinez-Romero, M.; Cejudo, A.; Aparicio-Sarmiento, A.; Sainz de Baranda, P. Sagittal spinal morphotype assessment in dressage and show jumping riders physical. J. Sport Rehabil. 2019, 29, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Nevison, C.M.; Timmis, M.A. The effect of physiotherapy intervention to the pelvic region of experienced riders on seated postural stability and the symmetry of pressure distribution to the saddle: A preliminary study. J. Vet. Behav. Clin. Appl. Res. 2013, 8, 261–264. [Google Scholar] [CrossRef]
- Quinn, S.; Bird, S. Influence of saddle type upon the incidence of lower back pain in equestrian riders. Br. J. Sports Med. 1996, 30, 140–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín-Valero, R.; Vega-Ballón, J.; Perez-Cabezas, V. Benefits of hippotherapy in children with cerebral palsy: A narrative review. Eur. J. Paediatr. Neurol. 2018, 22, 1150–1160. [Google Scholar] [CrossRef]
- Cejudo, A.; Moreno-Alcaraz, V.J.; Izzo, R.; Santonja-Medina, F.; Sainz de Baranda, P. External and total hip rotation ranges of motion predispose to low back pain in elite Spanish inline hockey players. Int. J. Environ. Res. Public Health 2020, 17, 4858. [Google Scholar] [CrossRef] [PubMed]
- Sainz de Baranda, P.; Santonja-Medina, F.; Rodríguez-Iniesta, M. Tiempo de entrenamiento y plano sagital del raquis en gimnastas de trampolín. Rev. Int. Med. Cienc. Act. Física Deport. 2010, 10, 521–536. [Google Scholar]
- Wojtys, E.; Ashton-Miller, J.; Huston, L.; Moga, P. The association between athletic training time and the sagittal curvature of the immature spine. Am. J. Sports Med. 2000, 28, 490–498. [Google Scholar] [CrossRef]
- Trompeter, K.; Fett, D.; Platen, P. Prevalence of back pain in sports: A systematic review of the literature. Sport. Med. 2017, 47, 1183–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vad, V.; Bhat, A.; Basrai, D.; Gebeh, A.; Aspergren, D.; Andrews, J. Low back pain in professional golfers: The role of associated hip and low back range-of-motion deficits. Am. J. Sports Med. 2004, 32, 494–497. [Google Scholar] [CrossRef]
- Santonja, F.; Collazo-Diéguez, M.; Martínez-Romero, M.; Rodríguez-Ferrán, O.; Aparicio-Sarmiento, A.; Cejudo, A.; Andújar, P.; Sainz De Baranda, P. Classification system of the sagittal integral morphotype in children from the ISQUIOS programme (Spain). Int. J. Environ. Res. Publ. Health 2020, 17, 2467. [Google Scholar] [CrossRef] [Green Version]
- Sainz-de-Baranda, P.; Santonja-Medina, F.; Rodríguez-Iniesta, M. Valoración de la disposición sagital del raquis en gimnastas especialistas en trampolín. Assessment of the sagittal plane of the spine in trampoline gymnasts. RICYDE Rev. Int. Cienc. Deport. 2009, 5, 21–33. [Google Scholar] [CrossRef]
- Sainz de Baranda, P.; Cejudo, A.; Moreno-Alcaraz, V.; Martinez-Romero, M.; Aparicio-Sarmiento, A.; Santonja, F. Sagittal spinal morphotype assessment in 8 to 15 years old inline hockey players. Peer J. 2020, 8, e8229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sainz de Baranda, P.; Cejudo, A.; Ayala, F.; Santonja, F. perfil óptimo de flexibilidad del miembro inferior en jugadoras de fútbol sala. Rev. Int. Med. Cienc. Act. Fis. Deport. 2015, 15, 647–662. [Google Scholar] [CrossRef] [Green Version]
- Cejudo, A.; Moreno-Alcaraz, V.J.; Izzo, R.; Robles-Palazón, F.J.; Sainz de Baranda, P.; Santonja-Medina, F. Flexibility in Spanish elite inline hockey players: Profile, sex, tightness and asymmetry. Int. J. Environ. Res. Publ. Health 2020, 17, 3295. [Google Scholar] [CrossRef]
- Cejudo, A. El perfil óptimo de flexibilidad en jóvenes jugadores de fútbol durante su periodo sensible del desarrollo físico. Batería ROM-SPORT. JUMP 2020, 2, 16–25. [Google Scholar] [CrossRef]
- Ito, T.; Shirado, O.; Suzuki, H.; Takahashi, M.; Kaneda, K.; Strax, T.E. Lumbar trunk muscle endurance testing: An inexpensive alternative to a machine for evaluation. Arch. Phys. Med. Rehabil. 1996, 77, 75–79. [Google Scholar] [CrossRef]
- McGill, S.; Childs, A.; Liebenson, C. Endurance times for low back stabilization exercises: Clinical targets for testing and training from a normal database. Arch. Phys. Med. Rehabil. 1999, 80, 941–944. [Google Scholar] [CrossRef]
- Martínez-Romero, M.T.; Ayala, F.; de Ste Croix, M.; Vera-Garcia, F.J.; Sainz de Baranda, P.; Santonja-Medina, F.; Sánchez-Meca, J. A meta-analysis of the reliability of four field-based trunk extension endurance tests. Int. J. Environ. Res. Public Health 2020, 17, 3088. [Google Scholar] [CrossRef]
- Brotons-Gil, E.; García-Vaquero, M.P.; Peco-González, N.; Vera-Garcia, F.J. Flexion-rotation trunk test to assess abdominal muscle endurance. J. Strength Cond. Res. 2013, 27, 1602–1608. [Google Scholar] [CrossRef]
- Hopkins, W.; Marshall, S.; Batterham, A.; Hanin, J. progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sport. Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Fousekis, K.; Tsepis, E.; Poulmedis, P.; Athanasopoulos, S.; Vagenas, G. Intrinsic risk factors of non-contact quadriceps and hamstring strains in soccer: A prospective study of 100 professional players. Br. J. Sports Med. 2011, 45, 709–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witvrouw, E.; Bellemans, J.; Lysens, R.; Danneels, L.; Cambier, D. Intrinsic risk factors for the development of patellar tendinitis in an athletic population. Am. J. Sports Med. 2001, 29, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Fagerland, M.; Hosmer, D. A generalized hosmer-lemeshow goodness-of-fit test for multinomial logistic regression models. Stata J. 2012, 12, 447–453. [Google Scholar] [CrossRef] [Green Version]
- Coombes, B.; Bisset, L.; Vicenzino, B. Efficacy and safety of corticosteroid injections and other injections for management of tendinopathy: A systematic review of randomised controlled trials. Lancet 2010, 376, 1751–1767. [Google Scholar] [CrossRef] [Green Version]
- Faul, F.; Erdfelder, E.; Lang, A.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Cortes, C.; Mohri, M. AUC optimization vs. error rate minimization. Adv. Neural Inf. Process. Syst. 2004, 16, 313–320. [Google Scholar]
- Meyers, M.C. Effect of equitation training on health and physical fitness of college females. Eur. J. Appl. Physiol. 2006, 98, 177–184. [Google Scholar] [CrossRef]
- Alfredson, H.; Hedberg, G.; Bergström, E.; Nordström, P.; Lorentzon, R. High thigh muscle strength but not bone mass in young horseback-riding females. Calcif. Tissue Int. 1998, 62, 497–501. [Google Scholar] [CrossRef]
- Meyers, M.; Sterling, J. Physical, hematological, and exercise response of collegiate female equestrian athletes. J. Sports Med. Phys. Fitness 2000, 40, 131–138. [Google Scholar]
- Roberts, M.; Shearman, J.; Marlin, D. A comparison of the metabolic cost of the three phases of the one-day event in female collegiate riders. Comp. Exerc. Physiol. 2009, 6, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Cupisti, A.; D’Alessandro, C.; Evangelisti, I.; Piazza, M.; Galetta, F.; Morelli, E. Low back pain in competitive rhythmic gymnasts. J. Sports Med. Phys. Fitness 2004, 44, 49–53. [Google Scholar]
- Koyama, K.; Nakazato, K.; Min, S.; Gushiken, K.; Hatakeda, Y.; Seo, K.; Hiranuma, K. Radiological abnormalities and low back pain in gymnasts. Int. J. Sports Med. 2013, 34, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Almeida, G.; de Souza, V.; Sano, S.; Saccol, M.; Cohen, M. Comparison of hip rotation range of motion in judo athletes with and without history of low back pain. Man. Ther. 2012, 17, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Tak, I.; Weerink, M.; Barendrecht, M. Judokas with low back pain have lower flexibility of the hip-spine complex: A case-control study. Phys. Ther. Sport 2020, 45, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Okada, T.; Nakazato, K.; Iwai, K.; Tanabe, M.; Irie, K.; Nakajima, H. Body mass, nonspecific low back pain, and anatomical changes in the lumbar spine in judo athletes. J. Orthop. Sport. Phys. Ther. 2007, 37, 688–693. [Google Scholar] [CrossRef]
- Kujala, U.M.; Taimela, S.; Oksanen, A.; Salminen, J.J. Lumbar mobility and low back pain during adolescence. A longitudinal three-year follow-up study in athletes and controls. Am. J. Sports Med. 1997, 25, 363–368. [Google Scholar] [CrossRef]
- Murray, E.; Birley, E.; Twycross-Lewis, R.; Morrissey, D. The relationship between hip rotation range of movement and low back pain prevalence in amateur golfers: An observational study. Phys. Ther. Sport 2009, 10, 131–135. [Google Scholar] [CrossRef]
- Kujala, U.M.; Taimela, S.; Salminen, J.J.; Oksanen, A. Baseline anthropometry, flexibility and strength characteristics and future low-back pain in adolescent athletes and nonathletes: A prospective one-year follow-up study. Scand. J. Med. Sci. Sports 1994, 4, 200–205. [Google Scholar] [CrossRef]
- Burdorf, A.; van der Steenhoven, G.A.; Tromp-Klaren, E.G.M. A one-year prospective study on back pain among novice golfers. Am. J. Sports Med. 1996, 24, 659–664. [Google Scholar] [CrossRef]
- Evans, K.; Refshauge, K.; Adam, R.; Aliprandi, L. Predictors of low back pain in young elite golfers: A preliminary study. Phys. Ther. Sport 2005, 6, 122–130. [Google Scholar] [CrossRef]
- Terada, K.; Mullineaux, D.; Lanovaz, J.; Kato, K.; Clayton, H. Electromyographic Activity of the Rider’s Muscles at Trot. Equine Comp. Exerc. Physiol. 2004, 1, 193–198. [Google Scholar] [CrossRef]
- Terada, K. Comparison of Head Movement and EMG Activity of muscles between advanced and novice horseback riders at different gaits. J. Equine Sci. 2000, 11, 83–90. [Google Scholar] [CrossRef] [Green Version]
- McGill, S. Low Back Disorders: Evidence-Based Prevention and Rehabilitation; Human Kinetics: Champaign, IL, USA, 2015. [Google Scholar]
- Bussey, M.D. Does the demand for asymmetric functional lower body postures in lateral sports relate to structural asymmetry of the pelvis? J. Sci. Med. Sport 2010, 13, 360–364. [Google Scholar] [CrossRef]
- Gnat, R.; Saulicz, E. Induced static asymmetry of the pelvis is associated with functional asymmetry of the lumbo-pelvo-hip complex. J. Manipulative Physiol. Ther. 2008, 31, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Symes, D.; Ellis, R. A preliminary study into rider asymmetry within equitation. Vet. J. 2009, 181, 34–37. [Google Scholar] [CrossRef] [PubMed]
- Gurney, B. Leg length discrepancy. Gait Posture 2002, 15, 195–206. [Google Scholar] [CrossRef]
- Beattie, P.; Isaacson, K.; Riddle, D.L.; Rothstein, J.M. Validity of derived measurements of leg-length differences obtained by use of a tape measure. Phys. Ther. 1990, 70, 150–157. [Google Scholar] [CrossRef] [PubMed]
- McGuigan, M.R.; Al Dayel, A.; Tod, D.; Foster, C.; Newton, R.U.; Pettigrew, S. Use of session rating of perceived exertion for monitoring resistance exercise in children who are overweight or obese. Pediatr. Exerc. Sci. 2008, 20, 333–341. [Google Scholar] [CrossRef]
- Aguilar Cordero, M.J.; Ortegón Piñero, A.; Mur Villar, N.; Sánchez García, J.C.; García Verazaluce, J.J.; García, I.G.; Sánchez López, A.M. Programas de actividad física para reducir sobrepeso y obesidad en niños y adolescentes: Revisión sistemática. Nutr. Hosp. 2014, 30, 727–740. [Google Scholar] [CrossRef]
- Durall, C.; Udermann, B.; Johansen, D.; Gibson, B.; Reineke, D.; Reuteman, P. The effects of preseason trunk muscle training on low-back pain occurrence in women collegiate gymnasts. J. Strength Cond. Res. 2009, 23, 86–92. [Google Scholar] [CrossRef]
Variable | Male (n = 8) | Female (n = 11) | p-Value | Total (n = 19) |
---|---|---|---|---|
Age (years) | 13.9 ± 1.8 | 15.3 ± 1.9 | 0.81 | 14.7 ± 1.9 |
Stature (cm) | 159.3 ± 14.3 | 160.8 ± 5.5 | 0.93 | 160.2 ± 9.9 |
Body mass (kg) | 52.9 ± 13.8 | 53.2 ± 9.5 | 0.87 | 53.1 ± 11.1 |
Body mass index (kg/m2) | 20.6 ± 2.9 | 20.5 ± 3.2 | 0.62 | 20.5 ± 3.0 |
Body fat (%) | 19.4 ± 4.2 | 24.2 ± 6.9 | 0.90 | 22.2 ± 6.2 |
Riding experience (years) | 5.8 ± 1.7 | 7.1 ± 2.5 | 0.16 | 6.5 ± 2.2 |
Hours of training per week (h) | 7.5 ± 4.0 | 6.5 ± 4.7 | 0.37 | 6.9 ± 4.3 |
Training hours last 12 month (h) | 324.5 ± 162.8 | 280.0 ± 182.8 | 0.37 | 298.7 ± 171.4 |
Variable | Dominant Limb | Non-Dominant Limb | p-Value | Cohen’s d |
---|---|---|---|---|
HE (iliopsoas) | 12.3 ± 5.5° | 11.3 ± 4.7° | 0.040 | 0.195 Trivial |
HAD-HF (piriformis) | 25.5 ± 3.7° | 27.3 ± 3.1° | 0.006 | −0.527 Small |
HAB (adductors) | 38.0 ± 4.4° | 36.2 ± 3.7° | 0.026 | 0.442 Small |
HIR (external rotators) | 56.1 ± 9.5° | 54.2 ± 8.1° | 0.028 | 0.215 Small |
HER (internal rotators) | 64.1 ± 8.5° | 64.9 ± 7.2° | 0.462 | −0.101 Trivial |
HAB-HF (M. adductors) | 59.8 ± 7.3° | 58.6 ± 6.0° | 0.198 | 0.179 Trivial |
HF-KE (hamstrings) | 70.3 ± 7.4° | 72.0 ± 6.9° | 0.072 | −0.237 Small |
HF-KF (gluteus maximus) | 135.8 ± 6.1° | 137.7 ± 5.7° | 0.039 | −0.321 Small |
KF (quadriceps) | 129.7 ± 8.9° | 128.6 ± 8.7° | 0.206 | 0.125 Trivial |
ISBE (trunk lateral flexors) | 80.3 ± 32.7 s | 68.2 ± 28.8 s | 0.024 | 0.392 Small |
Variables | CEA-A (n = 11) | CEA-LBP (n = 8) | p-Value | Effect Sizes Cohen’s d (Qualitative Inference) |
---|---|---|---|---|
Age (years) | 14.9 ± 2.0 | 14.0 ± 2.7 | 0.702 | 0.3889 (Small) |
Body mass (kg) | 53.0 ± 10.8 | 53.2 ± 12.3 | 0.934 | −0.0175 (Trivial) |
Height (cm) | 162.7 ± 7.4 | 156.6 ± 12.2 | 0.282 | 0.6309 (Moderate) |
BMI (kg/m2) | 19.9 ± 2.7 | 21.4 ± 3.4 | 0.457 | −0.4987 (Small) |
Body fat (%) | 19.3 ± 4.3 | 26.1 ± 6.6 | 0.010 | −1.2668 (Large) |
Years of experience (y) | 6.9 ± 2.0 | 6.5 ± 2.0 | 0.557 | 0.2 (Small) |
Training hours per week (h) | 8.0 ± 4.4 | 5.1 ± 2.4 | 0.089 | 0.7818 (Moderate) |
Training hours last 12 month (h) | 352.0 ± 193.8 | 225.5 ± 106.3 | 0.089 | 0.7735 (Moderate) |
Standing position (TC) | 40.9 ± 8.0 | 39.5 ± 9.4 | 0.934 | 0.1627 (Trivial) |
Standing position (LC) (°) | 39.1 ± 7.8 | 40.8 ± 11.7 | 0.648 | −0.1771 (Trivial) |
Slump sitting (TC) (°) | 42.7 ± 7.4 | 33.0 ± 14.5 | 0.171 | 0.89 (Moderate) |
Slump sitting (LC) (°) | 12.2 ± 17.3 | 15.3 ± 8.3 | 0.679 | −0.2168 (Small) |
Trunk forward bending (TC) (°) | 52.5 ± 8.9 | 48.3 ± 14.7 | 0.868 | 0.3607 (Small) |
Trunk forward bending (LC) (°) | 28.4 ± 8.3 | 30.5 ± 9.9 | 0.587 | −0.2335 (Small) |
HE (iliopsoas) (°) | 10.3 ± 3.1 | 13.9 ± 6.5 | 0.212 | −0.7498 (Moderate) |
HAD-HF (piriformis) (°) | 25.9 ± 2.8 | 27.0 ± 3.8 | 0.647 | −0.3385 (Small) |
HAB (adductors) (°) | 35.7 ± 4.1 | 39.0 ± 2.3 | 0.056 | −0.95 (Moderate) |
HIR (external rotators) (°) | 53.1 ± 9.4 | 58.0 ± 7.0 | 0231 | −0.5769 (Small) |
HER (internal rotators) (°) | 62.7 ± 8.9 | 67.0 ± 4.8 | 0.222 | −0.5742 (Small) |
HTR (hip rotators) (°) | 115.8 ± 12.7 | 125.0 ± 5.0 | 0.043 | −0.8971 (Moderate) |
HAB-HF (monoarticular adductors) (°) | 57.8 ± 7.3 | 61.1 ± 4.7 | 0.145 | −0.5189 (Small) |
HF-KE (hamstring) (°) | 69.3 ± 5.2 | 73.8 ± 8.3 | 0.227 | −0.6763 (Moderate) |
HF-KF (gluteus maximus) (°) | 136.6 ± 5.5 | 136.9 ± 6.0 | 0.804 | −0.0525 (Trivial) |
KF (quadriceps) (°) | 126.8 ± 7.1 | 132.4 ± 9.8 | 0.116 | −0.6732 (Moderate) |
Trunk flexion (trunk flexors) (s) | 230.5 ± 102.7 | 182.7 ± 110.9 | 0.372 | 0.4503 (Small) |
Trunk extension (trunk extensors) (s) | 287.2 ± 42.2 | 260.1 ± 81.0 | 0.363 | 0.4426 (Small) |
ISBE _D (trunk lateral flexors) (s) | 92.4 ± 30.7 | 63.6 ± 28.7 | 0.083 | 0.9634 (Moderate) |
ISBE_ND (trunk lateral flexors) (s) | 79.3 ± 29.2 | 52.7 ± 20.8 | 0.039 | 1.0203 (Moderate) |
ISBE (trunk lateral flexors) (s) | 85.9 ± 27.5 | 58.2 ± 23.0 | 0.021 | 1.076 (Moderate) |
DTFR (trunk flexors/lateral flexors) (s) | 63.1 ± 9.3 | 59.8 ± 20.6 | 0.563 | 0.2197 (Small) |
Risk Factors | History Last 12 Months | OR * | SE | 95% CI | p-Value | |
---|---|---|---|---|---|---|
Body fat | CEA-A | CEA-LBP | 1.297 Medium | 0.130 | 1.005 to 1.673 | 0.045 |
<23% | 88.9% | 11.1% | ||||
≥23% | 30.0% | 70.0% | ||||
ISBE | CEA-A | CEA-LBP | 1.048 Small | 0.240 | 0.910 to 1.001 | 0.055 |
>65 s | 69.2% | 30.8% | ||||
≤65 s | 33.3% | 66.7% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cejudo, A.; Ginés-Díaz, A.; Rodríguez-Ferrán, O.; Santonja-Medina, F.; Sainz de Baranda, P. Trunk Lateral Flexor Endurance and Body Fat: Predictive Risk Factors for Low Back Pain in Child Equestrian Athletes. Children 2020, 7, 172. https://doi.org/10.3390/children7100172
Cejudo A, Ginés-Díaz A, Rodríguez-Ferrán O, Santonja-Medina F, Sainz de Baranda P. Trunk Lateral Flexor Endurance and Body Fat: Predictive Risk Factors for Low Back Pain in Child Equestrian Athletes. Children. 2020; 7(10):172. https://doi.org/10.3390/children7100172
Chicago/Turabian StyleCejudo, Antonio, Angélica Ginés-Díaz, Olga Rodríguez-Ferrán, Fernando Santonja-Medina, and Pilar Sainz de Baranda. 2020. "Trunk Lateral Flexor Endurance and Body Fat: Predictive Risk Factors for Low Back Pain in Child Equestrian Athletes" Children 7, no. 10: 172. https://doi.org/10.3390/children7100172
APA StyleCejudo, A., Ginés-Díaz, A., Rodríguez-Ferrán, O., Santonja-Medina, F., & Sainz de Baranda, P. (2020). Trunk Lateral Flexor Endurance and Body Fat: Predictive Risk Factors for Low Back Pain in Child Equestrian Athletes. Children, 7(10), 172. https://doi.org/10.3390/children7100172