The Impact of Moderate-Dose Acetylsalicylic Acid in the Reduction of Inflammatory Cytokine and Prevention of Complication in Acute Phase of Kawasaki Disease: The Benefit of Moderate-Dose Acetylsalicylic Acid
Abstract
:1. Introduction
2. Results
2.1. Patients’ Characteristics
2.2. Fever Duration
2.3. Control of Inflammatory Biomarkers
2.3.1. Laboratory Data
2.3.2. Relationship between the Change of Cytokine Levels and ASA Dose
2.4. Complication
2.4.1. Response of IVIG Treatment
2.4.2. Cardiac Complications
2.4.3. Occurrence of Reye Syndrome
3. Discussion
Limitations
4. Materials and Methods
4.1. Study Materials and Data Collection
4.2. Treatment
4.3. Laboratory Tests
4.4. Echocardiography
4.5. Primary and Secondary Outcomes of the Study
4.6. Statistical Analysis
4.7. Ethics Statement
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- McCrindle, B.W.; Rowley, A.H.; Newburger, J.W.; Burns, J.C.; Bolger, A.F.; Gewitz, M.; Baker, A.L.; Jackson, M.A.; Takahashi, M.; Shah, P.B.; et al. Diagnosis, treatment, and long-term management of Kawasaki disease: A scientific statement for health professionals from the American Heart Association. Circulation 2017, 135, e927–e999. [Google Scholar] [CrossRef]
- Kuo, H.C.; Lo, M.H.; Hsieh, K.S.; Guo, M.M.H.; Huanget, Y.H. High-dose aspirin is associated with anemia and does not confer benefit to disease outcomes in Kawasaki disease. PLoS ONE 2015, 10, e0144603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newburger, J.W.; Takahashi, M.; Burns, J.C. Kawasaki disease. J. Am. Coll. Cardiol. 2016, 67, 1738–1749. [Google Scholar] [CrossRef] [PubMed]
- Research Committee of the Japanese Society of Pediatric Cardiology; Cardiac Surgery Committee for Development of Guidelines for Medical Treatment of Acute Kawasaki Disease. Guidelines for medical treatment of acute Kawasaki disease: Report of the Research Committee of the Japanese Society of Pediatric C ardiology and Cardiac Surgery (2012 revised version). Pediatr. Int. 2014, 56, 135–158. [Google Scholar] [CrossRef] [PubMed]
- Dallaire, F.; Fortier-Morissette, Z.; Blais, S.; Dhanrajani, A.; Basodan, D.; Renaud, C.; Mathew, M.; De Souza, A.M.; Dionne, A.; Blanchard, J.; et al. Aspirin dose and prevention of coronary abnormalities in Kawasaki disease. Pediatrics 2017, 139, e20170098. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.; Lee, S.E.; Hong, Y.M.; Sohn, S. Is high-dose aspirin necessary in the acute phase of Kawasaki disease? Korean Circ. J. 2013, 43, 182–186. [Google Scholar] [CrossRef] [Green Version]
- Cha, S.H.; Je, N.K. Drug Utilization in Korean Children with Kawasaki Disease. Korean J. Clin. Pharm. 2017, 27, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Park, S.Y.; Kim, Y.H.; Kim, Y.H.; Hyun, M.C.; Lee, Y.H. Sensorineural hearing loss in patients with Kawasaki disease. Korean J. Pediatr. 2015, 58, 434–439. [Google Scholar] [CrossRef]
- Schror, K. Aspirin and Reye syndrome: A review of the evidence. Pediatr. Drugs 2007, 9, 195–205. [Google Scholar] [CrossRef]
- Wei, C.M.; Chen, H.L.; Lee, P.I.; Chen, C.M.; Ma, C.Y.; Hwu, W.L. Reye’s syndrome developing in an infant on treatment of Kawasaki syndrome. J. Paediatr. Child Health 2005, 41, 303–304. [Google Scholar] [CrossRef]
- Kim, G.B.; Yu, J.J.; Yoon, K.L.; Jeong, S.I.; Song, Y.H.; Han, J.W.; Hong, Y.M.; Joo, C.U. Medium-or higher-dose acetylsalicylic acid for acute Kawasaki disease and patient outcomes. J. Pediatr. 2017, 184, 125–129. [Google Scholar] [CrossRef]
- Kuo, H.C.; Guo, M.M.H.; Lo, M.H.; Hsieh, K.S.; Huang, Y.H. Effectiveness of intravenous immunoglobulin alone and intravenous immunoglobulin combined with high-dose aspirin in the acute stage of Kawasaki disease: Study protocol for a randomized controlled trial. BMC Pediatr. 2018, 18, 200. [Google Scholar] [CrossRef] [Green Version]
- Saulsbury, F.T. Comparison of high-dose and low-dose aspirin plus intravenous immunoglobulin in the treatment of Kawasaki syndrome. Clin. Pediatr. 2002, 41, 597–601. [Google Scholar] [CrossRef] [PubMed]
- Amarilyo, G.; Koren, Y.; Brik Simon, D.; Bar-Meir, M.; Bahat, H.; Helou, M.H.; Mendelson, A.; Hezkelo, N.; Chodick, G.; Berkun, Y.; et al. High-dose aspirin for Kawasaki disease: Outdated myth or effective aid? Clin. Exp. Rheumatol. 2017, 35, 209–212. [Google Scholar]
- Wang, Y.; Wang, W.; Gong, F.; Fu, S.; Zhang, Q.; Hu, J.; Qi, Y.; Xie, C.; Zhang, Y. Evaluation of intravenous immunoglobulin resistance and coronary artery lesions in relation to Th1/Th2 cytokine profiles in patients with Kawasaki disease. Arthritis Rheum. 2013, 65, 805–814. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.B.; Kim, Y.H.; Hyun, M.C.; Kim, Y.H.; Kim, H.S.; Lee, Y.H. T-helper cytokine profiles in patients with Kawasaki disease. Korean Circ. J. 2015, 45, 516–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Liu, F.F.; Xu, Y.; Wang, J.J.; Samadli, S.; Wu, Y.F.; Liu, H.H.; Chen, W.X.; Luo, H.H.; Zhang, D.D.; et al. Interleukin-6 is prone to be a candidate biomarker for predicting incomplete and IVIG nonresponsive Kawasaki disease rather than coronary artery aneurysm. Clin. Exp. Med. 2019, 19, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Jiang, G.M.; Wu, Y.; Huang, B.Y.; Liu, S.Y.; Zhang, D.D.; Xu, Y.; Wu, Y.F.; Xia, X.; Wei, W.; et al. TNF-α is superior to conventional inflammatory mediators in forecasting IVIG nonresponse and coronary arteritis in Chinese children with Kawasaki disease. Clin. Chim. Acta 2017, 471, 76–80. [Google Scholar] [CrossRef]
- Shimizu, C.; Jain, S.; Davila, S.; Hibberd, M.L.; Lin, K.O.; Molkara, D.; Frazer, J.R.; Sun, S.; Baker, A.L.; Newburger, J.W.; et al. Transforming growth factor-beta signaling pathway in patients with Kawasaki disease. Circ. Cardiovasc. Genet. 2011, 4, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, C.; Oharaseki, T.; Takahashi, K.; Kottek, A.; Franco, A.; Burns, J.C. The role of TGF-β and myofibroblasts in the arteritis of Kawasaki disease. Hum. Pathol. 2013, 44, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Kimura, J.; Takada, H.; Nomura, A.; Ohno, T.; Mizuno, Y.; Saito, M.; Kusuhara, K.; Hara, T. Th1 and Th2 cytokine production is suppressed at the level of transcriptional regulation in Kawasaki disease. Clin. Exp. Immunol. 2004, 137, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Dusser, P.; Koné-Paut, I. Il-1 inhibition may have an important role in treating refractory Kawasaki disease. Front. Pharmacol. 2017, 8, 163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stock, A.T.; Jama, H.A.; Hansen, J.A.; Wicks, I.P. TNF and IL-1 play essential but temporally distinct roles in driving cardiac inflammation in a murine model of Kawasaki disease. J. Immunol. 2019, 202, 3151–3160. [Google Scholar] [CrossRef]
- Gorelik, M.; Lee, Y.; Abe, M.; Andrews, T.; Davis, L.; Patterson, J.; Chen, S.; Crother, T.R.; Aune, G.J.; Rivas, M.N.; et al. IL-1 receptor antagonist, anakinra, prevents myocardial dysfunction in a mouse model of Kawasaki disease vasculitis and myocarditis. Clin. Exp. Immunol. 2019, 198, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, K.S.; Weng, K.P.; Lin, C.C.; Huang, T.C.; Lee, C.L.; Huang, S.M. Treatment of acute Kawasaki disease: Aspirin’s role in the febrile stage revisited. Pediatrics 2004, 114, e689–e693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogata, S.; Bando, Y.; Kimura, S.; Ando, H.; Nakahata, Y.; Ogihara, Y.; Keneko, T.; Minoura, K.; Kaida, M.; Yokota, Y.; et al. The strategy of immune globulin resistant Kawasaki disease: A comparative study of additional immune globulin and steroid pulse therapy. J. Cardiol. 2009, 53, 15–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sittiwangkul, R.; Pongprot, Y.; Silvilairat, S.; Phornphutkul, C. Management and outcome of intravenous gammaglobulin-resistant Kawasaki disease. Singapore Med. J. 2006, 47, 780. [Google Scholar] [PubMed]
- Rigante, D.; Andreozzi, L.; Fastiggi, M.; Bracci, B.; Natale, M.F.; Esposito, S. Critical Overview of the Risk Scoring Systems to Predict Non-Responsiveness to Intravenous Immunoglobulin in Kawasaki Syndrome. Int. J. Mol. Sci. 2016, 17, 278. [Google Scholar] [CrossRef] [Green Version]
- Kliegman, R.; St Geme, J. Nelson, Textbook of Pediatrics, 21st ed.; Elsevier: Philadelphia, PA, USA, 2019; Volume 2, p. 3467. [Google Scholar]
- Dallaire, F.; Dahdah, N. New equations and a critical appraisal of coronary artery Z scores in healthy children. J. Am. Soc. Echocardiogr. 2011, 24, 60–74. [Google Scholar] [CrossRef]
Group 1 (n = 91) | Group 2 (n = 97) | Group 3 (n = 135) | p Value | |
---|---|---|---|---|
Mean age at diagnosis (months) | 34.2 ± 30.8 | 32.8 ± 22.9 | 39.6 ± 30.4 | 0.127 |
Male (n) | 54 (59.3) | 66 (68.0) | 75 (55.6) | 0.378 |
Complete KD (n) | 62 (68.1) | 71(73.2) | 97 (71.9) | 0.683 |
Fever | ||||
Total duration of fever (day) | 5.9 ± 2.0 | 5.9 ± 2.6 | 6.1 ± 2.5 | 0.635 |
Duration from IVIG administration to fever subside (hours) | 37.7 ± 47.3 | 26.8 ± 35.7 | 46.6 ± 47.9 | 0.004 * |
Kobayashi risk score | 3.0 ± 2.0 | 2.4 ± 2.1 | 2.7 ± 2.0 | 0.145 |
≥4 Kobayashi risk score (n) | 33 (36.3) | 31 (32.0) | 43 (31.9) | 0.569 |
Hospitalization duration (day) | 6.2 ± 6.7 | 5.9 ± 5.6 | 5.5 ± 2.7 | 0.573 |
Duration of ASA medication (day) | 3.7 ± 1.7 | 3.7 ± 2.0 | − | 0.844 |
Group 1 (n = 91) | Group 2 (n = 97) | Group 3 (n = 135) | p Value | |
---|---|---|---|---|
WBC (/mm3) | 14,106 ± 5,469 | 13,724 ± 5,139 | 14,243 ± 6,016 | 0.782 |
Neutrophil (%) | 63.6 ± 16.8 | 64.5 ± 16.2 | 66.3 ± 16.9 | 0.481 |
Hemoglobin (g/dL) | 11.5 ± 0.2 | 11.8 ± 1.0 | 12.5 ± 8.6 | 0.387 |
Platelet (×103/mm3) | 356 ± 110 | 382 ± 127 | 365 ± 121 | 0.324 |
ESR (mm/hr) | 46.8 ± 28.7 | 37.9 ± 19.9 | 53.5 ± 28.5 | 0.001 * |
CRP (g/dL) | 6.9 ± 5.7 | 6.3 ± 7.8 | 8.2 ± 7.2 | 0.108 |
AST (IU/L) | 70.5 ± 97.4 | 61.5 ± 81.4 | 136.9 ± 264.2 | 0.003 * |
ALT (IU/L) | 66.0 ± 99.0 | 70.0 ± 110.3 | 133.3 ± 195.6 | 0.001 * |
Group 1 (n = 91) | Group 2 (n = 97) | Group 3 (n = 135) | p Value | |
---|---|---|---|---|
∆WBC (/mm3) | −5308 ± 4958 | −5483 ± 4850 | −5110 ± 5609 | 0.870 |
∆Neutrophil (%) | −26.2 ± 19.3 | −26.3 ± 18.8 | −23.6 ± 18.2 | 0.467 |
∆Hemoglobin (g/dL) | −0.4 ± 1.0 | −0.4 ± 0.9 | −1.3 ± 8.5 | 0.362 |
∆Platelet (×103/mm3) | 22.2 ± 103.5 | 31.0 ± 95.5 | 32.8 ± 102.8 | 0.718 |
∆ESR (mm/hr) | 8.1 ± 21.7 | 10.3 ± 28.0 | 19.0 ± 27.5 | 0.005 * |
∆CRP (g/dL) | −3.0 ± 7.3 | −3.3 ± 6.7 | −4.5 ± 4.8 | 0.155 |
∆AST (IU/L) | −36.1 ± 88.8 | −42.5 ± 111.5 | −97.2 ± 252.8 | 0.050 |
∆ALT (IU/L) | −43.6 ± 97.5 | −36.1 ± 84.6 | −69.5 ± 136.1 | 0.115 |
Group 1 (n = 20) | Group 2 (n = 8) | Group 3 (n = 39) | p Value | |
---|---|---|---|---|
IL-1a (pg/mL) | 14.6 ± 26.8 | 3.0 ± 4.4 | 15.7 ± 43.2 | 0.666 |
IL-1b (pg/mL) | 2.5 ± 2.9 | 0.9 ± 1.2 | 10.3 ± 50.0 | 0.684 |
IL-6 (pg/mL) | 56.8 ± 45.8 | 100.5 ± 113.6 | 98.4 ± 113.5 | 0.285 |
IL-10 (pg/mL) | 96.6 ± 116.9 | 81.2 ± 62.0 | 138.4 ± 207.2 | 0.551 |
TNF-α (pg/mL) | 25.6 ± 9.9 | 19.2 ± 10.9 | 45.8 ± 83.0 | 0.380 |
TGF-β1 (pg/mL) | 47,396 ± 10,033 | 34,821 ± 11,827 | 40,892 ± 13,985 | 0.046 * |
TGF-β2 (pg/mL) | 2619 ± 1050 | 1666 ± 707 | 2442 ± 934 | 0.059 |
TGF-β3 (pg/mL) | 57.2 ± 27.7 | 44.3 ± 12.7 | 47.9 ± 15.6 | 0.160 |
Group 1 (n = 20) | Group 2 (n = 8) | Group 3 (n = 39) | p value | |
---|---|---|---|---|
∆IL-1a (pg/mL) | 7.0 ± 39.7 | 15.6 ± 38.5 | 9.9 ± 56.1 | 0.920 |
∆IL-1b (pg/mL) | 1.0 ± 7.0 | −0.2 ± 0.8 | −6.4 ± 49.1 | 0.750 |
∆IL-6 (pg/mL) | −48.6 ± 46.7 * | −94.1 ± 114.0 | −84.2 ± 110.4 | 0.345 |
∆IL-10 (pg/mL) | −75.0 ± 116.3 | −65.2 ± 57.4 | −107.7 ± 214.1 | 0.718 |
∆TNF-α (pg/mL) | 7.1 ± 19.3 | 1.7 ± 14.5 | −12.8 ± 77.2 | 0.468 |
∆TGF-β1 (pg/mL) | −5450 ± 7187 | 1911 ± 11,928 | −1683 ± 13,932 | 0.304 |
∆TGF-β2 (pg/mL) | −619.6 ± 530.9 | −192.6 ± 598.5 | −435.7 ± 718.6 | 0.284 |
∆TGF-β3 (pg/mL) | 8.1 ± 31.0 | 14.0 ± 55.4 | 18.2 ± 21.7 | 0.478 |
Group 1 (n = 91) | Group 2 (n = 97) | Group 3 (n = 135) | p Value | |
---|---|---|---|---|
IVIG resistant | 16 (17.6) | 20 (20.6) | 67 (49.6) | 0.001 * |
Second treatment | ||||
IVIG | 16 (17.6) | 20 (20.6) | 16 (11.9) | |
Steroid | 0 (0) | 0 (0) | 51 (37.8) | 0.001 * |
Coronary artery dilatation | 7 (8.0) | 5 (5.1) | 7 (5.2) | 0.688 |
2.0 < z score ≤ 2.5 | 2 (2.5) | 1 (1.0) | 1 (0.7) | |
2.5 < z score | 5 (5.5) | 4 (4.1) | 6 (4.4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, J.E.; Roh, D.E.; Kim, Y.H. The Impact of Moderate-Dose Acetylsalicylic Acid in the Reduction of Inflammatory Cytokine and Prevention of Complication in Acute Phase of Kawasaki Disease: The Benefit of Moderate-Dose Acetylsalicylic Acid. Children 2020, 7, 185. https://doi.org/10.3390/children7100185
Kwon JE, Roh DE, Kim YH. The Impact of Moderate-Dose Acetylsalicylic Acid in the Reduction of Inflammatory Cytokine and Prevention of Complication in Acute Phase of Kawasaki Disease: The Benefit of Moderate-Dose Acetylsalicylic Acid. Children. 2020; 7(10):185. https://doi.org/10.3390/children7100185
Chicago/Turabian StyleKwon, Jung Eun, Da Eun Roh, and Yeo Hyang Kim. 2020. "The Impact of Moderate-Dose Acetylsalicylic Acid in the Reduction of Inflammatory Cytokine and Prevention of Complication in Acute Phase of Kawasaki Disease: The Benefit of Moderate-Dose Acetylsalicylic Acid" Children 7, no. 10: 185. https://doi.org/10.3390/children7100185
APA StyleKwon, J. E., Roh, D. E., & Kim, Y. H. (2020). The Impact of Moderate-Dose Acetylsalicylic Acid in the Reduction of Inflammatory Cytokine and Prevention of Complication in Acute Phase of Kawasaki Disease: The Benefit of Moderate-Dose Acetylsalicylic Acid. Children, 7(10), 185. https://doi.org/10.3390/children7100185