Effects of the Combination of Music Therapy and Physiotherapy in the Improvement of Motor Function in Cerebral Palsy: A Challenge for Research
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Search Strategy
2.3. Selection of Studies
2.4. Eligibility Criteria
2.5. Assessment of Methodological Quality
2.6. Statistical Analysis
3. Results
3.1. Selection of Studies
3.2. Study Design and Characteristics
3.3. Assessment of Methodological Quality
3.4. Quantitative Analysis
4. Discussion
4.1. Selection of Studies
4.2. Characteristics of Studies Included
4.3. Assessment of Methodological Quality
4.4. Limitations
4.5. Implications in the Field of Physiotherapy and Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
“Physical therapy”[All Fields] AND “Music therapy”[All Fields] AND “Cerebral Palsy”[All Fields] AND ((Review[ptyp] OR Clinical Trial[ptyp]) AND (“2009/01/01”[PDAT]: “2019/12/13”[PDAT])) |
References
- Paneth, N.; Leviton, A.; Goldstein, M.; Bax, M.; Damiano, D.; Dan, B.; Fabiola, R.; Jacobsson, B. A Report: The Definition and Classification of Cerebral Palsy April 2006 Peter Rosenbaum (Definition Panel Chair) MD. Available online: https://wzukusers.storage.googleapis.com/user-32163818/documents/5a917ab76f3ffKJVJWSW/A report the definition CP.pdf (accessed on 17 January 2019).
- Graham, H.K.; Rosenbaum, P.; Paneth, N.; Dan, B.; Lin, J.P.; Damiano, D.L.; Becher, J.G.; Gaebler-Spira, D.; Colver, A.; Reddihough, D.S.; et al. Cerebral palsy. Nat. Rev. Dis. Primers 2016, 2, 15082. [Google Scholar] [CrossRef] [PubMed]
- Ruiz Brunner, M.d.l.M.; Cuestas, E. La construcción de la definición parálisis cerebral: Un recorrido histórico hasta la actua-lidad. Rev. Fac. Cienc. Med. Cordoba 2019, 76, 113. [Google Scholar] [CrossRef]
- Gulati, S.; Sondhi, V. Cerebral Palsy: An Overview. Indian J. Pediatr. 2017, 85, 1006–1016. [Google Scholar] [CrossRef]
- Ganesh, G.; Das, S. Evidence-based approach to physical therapy in cerebral palsy. Indian J. Orthop. 2019, 53, 20–34. [Google Scholar] [CrossRef]
- Hasanah, I.; Haikal, Z. The Effects of Music Therapy on Cortisol Levels as a Biomarker of Stress in Children; IntechOpen: Rijeka, Croatia, 2021. [Google Scholar] [CrossRef]
- Nasuruddin, M.G. The Confluence Between Arts and Medical Science—Music and movement therapy for children with Cerebral Palsy. Malays. J. Med. Sci. 2010, 17, 1–4. [Google Scholar]
- Jackson, N.A. Professional Music Therapy Supervision: A Survey. J. Music Ther. 2008, 45, 192–216. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.D. Songs composed for use in music therapy: A survey of original songwriting practices of music therapists. J. Music Ther. 2006, 43, 94–110. [Google Scholar] [CrossRef] [PubMed]
- Correa, A.G.D.; Ficheman, I.K.; do Nascimento, M.; Lopes, R.d.D. Computer Assisted Music Therapy: A Case Study of an Aug-mented Reality Musical System for Children with Cerebral Palsy Rehabilitation. In Proceedings of the 2009 Ninth IEEE International Conference on Advanced Learning Technologies, Riga, Latvia, 15–17 July 2009; pp. 218–220. Available online: http://ieeexplore.ieee.org/document/5194207/ (accessed on 18 January 2019).
- Dileo, C.; Bradt, J.; Grocke, D.; Magill, L. Music interventions for improving psychological and physical outcomes in cancer patients. In Cochrane Database of Systematic Reviews; Dileo, C., Ed.; John Wiley & Sons, Ltd: Chichester, UK, 2008. [Google Scholar] [CrossRef]
- Li, J.; Zhou, L.; Wang, Y. The effects of music intervention on burn patients during treatment procedures: A systematic review and meta-analysis of randomized controlled trials. BMC Complement. Altern. Med. 2017, 17, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, I.; Taylor, N.; Baker, F. Music interventions and physical activity in older adults: A systematic literature review and meta-analysis. J. Rehabil. Med. 2012, 44, 710–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendes, M.V.d.S.; Cavalcante, S.A.; de Oliveira, E.F.; Pinto, D.M.R.; Barbosa, T.S.M.; de Camargo, C.L.; Mendes, M.V.d.S.; Cavalcante, S.A.; de Oliveira, E.F.; Pinto, D.M.R.; et al. Crianças com Retardo do Desenvolvimento Neuropsicomotor: Musicoterapia Promovendo Qualidade de Vida. Rev. Bras. Enferm. 2015, 68, 797–802. Available online: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0034-71672015000500797&lng=pt&tlng=pt (accessed on 18 January 2019). [CrossRef]
- Wigram, T. The effects of Vibroacoustic Therapy on Clinical and Non-Clinical. 1996. Available online: http://www.wfmt.info/Musictherapyworld/modules/archive/stuff/papers/Wigram.pdf (accessed on 28 January 2019).
- Gullickson, T. The Art and Science of Music Therapy: A Handbook. PsycCRITIQUES 1997, 42, 483. Available online: https://books.google.es/books?hl=en&lr=&id=BQpGAQAAQBAJ&oi=fnd&pg=PA194&dq=Bean,+J.+(1995).+Music+therapy+and+the+child+with+cerebral+palsy:+Directive+and+nondirective+intervention.+In+T.Wigram,+B.Saperston,+%26+R.West+(Eds.)+The+Art+and+Science+of+Music+ (accessed on 28 January 2019). [CrossRef]
- Jesús Tiburcio Jiménez, J. Didgeridoo as an Accompanying Instrument in Physiotherapy Sessions with Children Suffering Cerebral Palsy; Artseduca. Universidad Jaume I de Castellon: Castellon, Spain, 2019; pp. 163–189. [Google Scholar]
- Bean, J.; Oldfield, A. Pied Piper: Musical Activities to Develop Basic Skills; Jessica Kingsley Publishes: London, UK, 2001; 91p, Available online: https://books.google.es/books?hl=es&lr=&id=fxsvXEKQcyEC&oi=fnd&pg=PA1&dq=Bean,+J.,+%26+Oldfield,+A.+Pied+Pieper:+Musical+Activities+to+Develop+Basic+Skills.+2+nd+ed.+London.+Jessica+Kingsley+Publishers.+2001.&ots=4GFiq7o11v&sig=w2OPoDcPxuOSCai_nZTXthSBXKM#v=onepage&q&f=false (accessed on 18 January 2019).
- Jonsson, A.-S. Functionally Oriented Music Therapy (FMT) as a Method of Improving Children’s Ability to Function at School. 2014. Available online: http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A715413&dswid=1496 (accessed on 18 January 2019).
- Hatampour, R.; Zadehmohammadi, A.; Masoumizadeh, F.; Sedighi, M. The effects of music therapy on sensory motor functions of multiple handicapped People: Case study. Procedia Soc. Behav. Sci. 2011, 30, 1124–1126. [Google Scholar] [CrossRef] [Green Version]
- Lathom, W. Application of Kodaly Concepts in Music Therapy. J. Music Ther. 1974, 11, 13–20. [Google Scholar] [CrossRef]
- Darrow, A.-A. American Music Therapy Association. Introduction to Approaches in Music Therapy; American Music Therapy Association: Silver Spring, MD, USA, 2008; p. 190. Available online: https://eric.ed.gov/?id=ED504537 (accessed on 18 January 2019).
- Chesky, K.S.; Russell, I.J.; Lopez, Y.; Kondraske, G.V. Fibromyalgia Tender Point Pain: A Double-Blind, Placebo-Controlled Pilot Study of Music Vibration Using the Music Vibration Table™. J. Musculoskelet. Pain 1997, 5, 33–52. [Google Scholar] [CrossRef]
- Conklyn, D.; Stough, D.; Novak, E.; Paczak, S.; Chemali, K.; Bethoux, F. A Home-Based Walking Program Using Rhythmic Auditory Stimulation Improves Gait Performance in Patients with Multiple Sclerosis: A Pilot Study. Neurorehabilit. Neural Repair 2010, 24, 835–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marrades-Caballero, E.; Santonja-Medina, C.S.; Sanz-Mengibar, J.M.; Santonja-Medina, F. Neurologic music therapy in upper-limb rehabilitation in children with severe bilateral cerebral palsy: A randomized controlled trial. Eur. J. Phys. Rehabil. Med. 2019, 54, 866–872. [Google Scholar] [CrossRef]
- Peng, Y.-C.; Lu, T.-W.; Wang, T.-H.; Chen, Y.-L.; Liao, H.-F.; Lin, K.-H.; Tang, P.-F. Immediate effects of therapeutic music on loaded sit-to-stand movement in children with spastic diplegia. Gait Posture 2011, 33, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Thaut, M.H. Neural Basis of Rhythmic Timing Networks in the Human Brain. Ann. N. Y. Acad. Sci. 2003, 999, 364–373. Available online: https://pubmed.ncbi.nlm.nih.gov/14681157/ (accessed on 8 July 2021). [CrossRef]
- Santonja Medina, C.S. La Musicoterapia de Neurorrehabilitación Como Conector Entre el Movimiento, Las Emociones y la Cognición en Parálisis Cerebral de Tipo Severa. 2017. Available online: https://dialnet.unirioja.es/servlet/tesis?codigo=155096&info=resumen&idioma=SPA (accessed on 8 December 2020).
- Alves-Pinto, A.; Turova, V.; Blumenstein, T.; Lampe, R. The Case for Musical Instrument Training in Cerebral Palsy for Neurorehabilitation. Neural Plast. 2016, 2016, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Palomares, M.; Rodríguez-Mansilla, J.; González-López-Arza, M.V.; Rodríguez-Domínguez, M.T.; Prieto-Tato, M. Beneficios de la musicoterapia como tratamiento no farmacológico y de rehabilitación en la demencia moderada. Rev. Esp. Geriatr. Gerontol. 2013, 48, 238–242. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, D.; Ye, D.; Li, H.; Chen, F. Can music-based movement therapy improve motor dysfunction in patients with Par-kinson’s disease? Systematic review and meta-analysis. Neurol. Sci. 2017, 38, 1629–1636. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhou, R.; Wei, W.; Luan, R.; Li, W. Effects of music-based movement therapy on motor function, balance, gait, mental health, and quality of life for patients with Parkinson’s disease: A systematic review and meta-analysis. Clin. Rehabil. 2021, 35, 937–951. Available online: https://pubmed.ncbi.nlm.nih.gov/33517767/ (accessed on 30 July 2021). [CrossRef]
- Jia, C.; Zhang, H.; Ni, G.; Zhang, Y.; Su, B.; Xu, X. Spasmodic hemiplegia after stroke treated with scalp acupuncture, music therapy and rehabilitation: A randomized controlled trial. Chin. Acupunct. Moxibustion 2017, 37, 1271–1275. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Moher, D. Updating guidance for reporting systematic reviews: Development of the PRISMA 2020 statement. J. Clin. Epidemiol. 2021, 134, 103–112. [Google Scholar] [CrossRef]
- Pimienta, H.J.; Escobar, M.I. Neuroanatomía: Consideraciones Neuroanatómicas. Rev. Estomat. 1991, 1, 32–33. [Google Scholar]
- Verhagen, A.P.; de Vet, H.C.; de Bie, R.A.; Kessels, A.G.; Boers, M.; Bouter, L.; Knipschild, P.G. The Delphi List: A Criteria List for Quality Assessment of Randomized Clinical Trials for Conducting Systematic Reviews Developed by Delphi Consensus. J. Clin. Epidemiol. 1998, 51, 1235–1241. [Google Scholar] [CrossRef] [Green Version]
- Foley, N.C.; Bhogal, S.K.; Teasell, R.W.; Bureau, Y.; Speechley, M.R. Estimates of Quality and Reliability with the Physiotherapy Evidence-Based Database Scale to Assess the Methodology of Randomized Controlled Trials of Pharmacological and Nonpharmacological Interventions. Phys. Ther. 2006, 86, 817–824. Available online: https://academic.oup.com/ptj/article/86/6/817/2805091 (accessed on 26 January 2020). [CrossRef] [PubMed]
- Green, S.; Higgins, J.P.T. Cochrane Handbook for Systematic Reviews of Interventions—Version 5.0.2. The Cochrane Collaboration 2011. 2009. Available online: https://es.cochrane.org/sites/es.cochrane.org/files/public/uploads/Manual_Cochrane_510_reduit.pdf (accessed on 4 August 2021).
- Programa Para Análisis Epidemiológico y Estadístico. Available online: https://www.sergas.es/Saude-publica/Epidat-4-2-Suxestión-de-cita?idioma=es (accessed on 20 September 2021).
- Efraimidou, V.; Tsimaras, V.; Proios, M.; Christoulas, K.; Giagazoglou, P.; Sidiropoulou, M.; Orologas, A. The Effect of a Music and Movement Program on Gait, Balance and Psychological Parameters of Adults with Cerebral Palsy. J. Phys. Educ. Sport 2016, 16, 1357–1364. Available online: www.efsupit.ro (accessed on 18 January 2019).
- Kwak, E.E. Effect of Rhythmic Auditory Stimulation on Gait Performance in Children with Spastic Cerebral Palsy. J. Music Ther. 2007, 44, 198–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.J.; Kwak, E.E.; Park, E.S.; Lee, D.S.; Kim, K.J.; Song, J.E.; Cho, S.-R. Changes in gait patterns with rhythmic auditory stimulation in adults with cerebral palsy. NeuroRehabilitation 2011, 29, 233–241. [Google Scholar] [CrossRef]
- Kim, S.J.; Kwak, E.E.; Park, E.S.; Cho, S.-R. Differential effects of rhythmic auditory stimulation and neurodevelopmental treat-ment/Bobath on gait patterns in adults with cerebral palsy: A randomized controlled trial. Clin. Rehabil. 2012, 26, 904–914. Available online: http://www.ncbi.nlm.nih.gov/pubmed/22308559 (accessed on 18 January 2019). [CrossRef]
- Hamed, N.S. Pedometer-based gait training in children with spastic hemiparetic cerebral palsy: A randomized controlled study. Clin. Rehabil. 2011, 25, 157–165. Available online: http://www.sagepub.co.uk/journalsPermissions.nav (accessed on 19 January 2020). [CrossRef] [PubMed]
- Wang, T.-H.; Peng, Y.-C.; Chen, Y.-L.; Lu, T.-W.; Liao, H.-F.; Tang, P.-F.; Shieh, J.-Y. A Home-Based Program Using Patterned Sensory Enhancement Improves Resistance Exercise Effects for Children with Cerebral Palsy. Neurorehabilit. Neural Repair 2013, 27, 684–694. [Google Scholar] [CrossRef] [PubMed]
- Torres, M.R.; Ortiz, J.A.; Codirector, O.; Enrique, Á.; Restrepo, R. Efectos de un Programa de Musicoterapia con Aplicación de RAS y TIMP, en las Funciones Motoras de 3 Niños Diagnosticados con Parálisis Cerebral con Edades entre 5 y los 10 años, que Asisten a la Asociación Aconiño en Bogotá. Estudios de Caso. 2016. Available online: https://repositorio.unal.edu.co/handle/unal/58355 (accessed on 6 December 2020).
- Martínez Morga, M.; Martínez, P.S. Plasticidad neural: La sinaptogénesis durante el desarrollo normal y su implicación en la discapacidad intelectual. Rev. Neurol. 2017, 64, S45. [Google Scholar] [CrossRef] [PubMed]
- La Sistematización de un Protocolo Clínico Para la Inclusión de la Musicoterapia en la Rehabilitación de Niños y Adultos con Parálisis Cerebral. Available online: https://dialnet.unirioja.es/servlet/tesis?codigo=89989 (accessed on 6 December 2020).
- Shevell, M.I.; Bodensteiner, J.B. Cerebral Palsy: Defining the Problem. Semin. Pediatr. Neurol. 2004, 11, 2–4. [Google Scholar] [CrossRef] [PubMed]
- Malagon Valdez, J. Parálisis cerebral. Actual Neurol. Infant. 2007, 67, 586–592. [Google Scholar]
- Bartlett, D.J.; Galuppi, B.; Palisano, R.J.; McCoy, S.W. Consensus classifications of gross motor, manual ability, and communication function classification systems between therapists and parents of children with cerebral palsy. Dev. Med. Child Neurol. 2015, 58, 98–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lundkvist Josenby, A.; Jarnlo, G.-B.; Gummesson, C.; Nordmark, E. Longitudinal Construct Validity of the GMFM-88 Total Score and Goal Total Score and the GMFM-66 Score in a 5-Year Follow-up Study. Phys. Ther. 2009, 89, 342–350. Available online: https://academic.oup.com/ptj/article/89/4/342/2737571 (accessed on 17 December 2020). [CrossRef] [Green Version]
- Eliasson, A.-C.; Krumlinde-Sundholm, L.; Rösblad, B.; Beckung, E.; Arner, M.; Öhrvall, A.-M.; Rosenbaum, P. The Manual Ability Classification System (MACS) for children with cerebral palsy: Scale development and evidence of validity and reliability. Dev. Med. Child Neurol. 2007, 48, 549–554. [Google Scholar] [CrossRef]
- Hidecker, M.J.C.; Paneth, N.; Rosenbaum, P.L.; Kent, R.D.; Lillie, J.; Chester, K., Jr.; Johnson, B.; Michalsen, L.; Evatt, M.; Taylor, K.; et al. Developing and validating the Communication Function Classification System for individuals with cerebral palsy. Dev. Med. Child Neurol. 2011, 53, 704–710. [Google Scholar] [CrossRef]
- Shin, Y.-K.; Chong, H.J.; Kim, S.J.; Cho, S.-R. Effect of Rhythmic Auditory Stimulation on Hemiplegic Gait Patterns. Yonsei Med. J. 2015, 56, 1703–1713. [Google Scholar] [CrossRef]
- Bendixen, R.M.; Fairman, A.D.; Karavolis, M.; Sullivan, C.; Parmanto, B.; Iglesias, M.L.; Losa, K.B.D.B.; Athanasiou, A. A User-Centered Approach: Understanding Client and Caregiver Needs and Preferences in the Development of mHealth Apps for Self-Management. JMIR mHealth uHealth 2017, 5, e141. [Google Scholar] [CrossRef] [Green Version]
- Pitale, J.T.; Bolte, J.H. A heel-strike real-time auditory feedback device to promote motor learning in children who have cerebral palsy: A pilot study to test device accuracy and feasibility to use a music and dance-based learning paradigm. Pilot Feasibility Stud. 2018, 4, 42. [Google Scholar] [CrossRef] [Green Version]
- Chong, H.J.; Cho, S.-R.; Jeong, E.; Kim, S.J. Finger exercise with keyboard playing in adults with cerebral palsy: A preliminary study. J. Exerc. Rehabil. 2013, 9, 420–425. [Google Scholar] [CrossRef]
- Lampe, R.; Turova, V.; Alves-Pinto, A. Piano jacket for perceiving and playing music for patients with cerebral palsy. Disabil. Rehabil. Assist. Technol. 2017, 14, 221–225. [Google Scholar] [CrossRef]
- Borggraefe, I.; Schaefer, J.S.; Klaiber, M.; Dabrowski, E.; Ammann-Reiffer, C.; Knecht, B.; Berweck, S.; Heinen, F.; Meyer-Heim, A. Robotic-assisted treadmill therapy improves walking and standing performance in children and adolescents with cerebral palsy. Eur. J. Paediatr. Neurol. 2010, 14, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Kim, J.; Gaebler-Spira, D.J.; Schmit, B.D.; Arora, P. Robotic Resistance Treadmill Training Improves Locomotor Function in Children with Cerebral Palsy: A Randomized Controlled Pilot Study. Arch. Phys. Med. Rehabil. 2017, 98, 2126–2133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noble, S.; Pearcey, G.; Quartly, C.; Zehr, E.P. Robot controlled, continuous passive movement of the ankle reduces spinal cord excitability in participants with spasticity: A pilot study. Exp. Brain Res. 2019, 237, 3207–3220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillick, B.T.; Gordon, A.; Feyma, T.; Krach, L.; Carmel, J.; Rich, T.; Bleyenheuft, Y.; Friel, K. Non-Invasive Brain Stimulation in Children With Unilateral Cerebral Palsy: A Protocol and Risk Mitigation Guide. Front. Pediatr. 2018, 6, 56. [Google Scholar] [CrossRef] [Green Version]
- Park, J.-H.; You, J.S. Innovative robotic hippotherapy improves postural muscle size and postural stability during the quiet stance and gait initiation in a child with cerebral palsy: A single case study. NeuroRehabilitation 2018, 42, 247–253. [Google Scholar] [CrossRef]
- Martín-Valero, R.; Vega-Ballón, J.; Perez-Cabezas, V. Benefits of hippotherapy in children with cerebral palsy: A narrative review. Eur. J. Paediatr. Neurol. 2018, 22, 1150–1160. [Google Scholar] [CrossRef]
- Ammann-Reiffer, C.; Bastiaenen, C.; Meyer-Heim, A.; Van Hedel, H. Effectiveness of robot-assisted gait training in children with cerebral palsy: A bicenter, pragmatic, randomized, cross-over trial (PeLoGAIT). BMC Pediatr. 2017, 17, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallard, L.; Dietrich, G.; Kerlirzin, Y.; Bredin, J. Robotic-assisted gait training improves walking abilities in diplegic children with cerebral palsy. Eur. J. Paediatr. Neurol. 2017, 21, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Thaut, M.H.; Abiru, M. Rhythmic Auditory Stimulation in Rehabilitation of Movement Disorders: A Review of Current Research. Music. Percept. Interdiscip. J. 2010, 27, 263–269. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, A.; Verma, I. Cerebral palsy in children: An overview. J. Clin. Orthop. Trauma 2012, 3, 77–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leslie, B. “In motion” A music-therapeutical approach in the rehabilitation of physicallly handicapped childen. In Proceedings of the VII Worldkongress of Music Therapy, Vitoria-Gasteiz, Spain, 19–23 July 1993; p. 150. [Google Scholar]
- Sabbatella, P.L. Musicoterapia Aplicada: Metodología y Evaluación en Parálisis Cerebral. Available online: https://www.academia.edu/759446/Musicoterapia_Aplicada_Metodología_y_Evaluación_en_Parálisis_Cerebral (accessed on 16 December 2020).
- Begg, C.; Cho, M.; Eastwood, S.; Horton, R.; Moher, D.; Olkin, I.; Pitkin, R.; Rennie, D.; Schulz, K.F.; Simel, D.; et al. Mejora de la calidad de los informes de los ensayos clinicos aleatorios controlados. Recomendaciones del grupo de trabajo CONSORT. Rev. Esp. Salud Publica Minist. Sanid. Consumo 1998, 72, 5–11. [Google Scholar]
Study | N Age/Mean (SD) Age Range (Years) | Type of PCI | “Motor Function” Outcome | t/w min Weeks | Results |
---|---|---|---|---|---|
Kwak [41] (NRCT) | n = 25 Con: 9 Exp1: 9 Exp2: 7 6–20 | Spastic cerebral palsy | 14-meter walkway Gait parameter (cadence, stride length, velocity, symmetry) | 5 t/w 30 min 3 weeks | Exp1: improved stride length (t = −3109, p = 0.014), velocity (t = −3029, p = 0.016) and symmetry (t = −3029, p = 0.016) |
Kim et al. [42] (NRCT) | n = 44 Con: 30 healthy people Exp: 14 with CP 25.64 ± 7.31 | Bilateral spasticity | Temporal and kinematic gait parameters GDI Asymmetry | 1 session | Kinematic changes of pelvic and hip movement, and GDI was significantly changed with RAS (p < 0.05) Improved temporospatial asymmetry in household ambulators |
Kim et al. [43] (RCT) | n = 39 Con: 19 27.3 (2.5) Exp: 20 27.3 (2.4) | Bilateral spasticity | Temporal and kinematic parameters of the gait GDI | 3 t/w 30 min 3 weeks | Exp: improved cadence, velocity, step length, stride length (p < 0.05), previous pelvic tilt, hip flexion (p < 0.05), GDI (p < 0.05) Con: improved Ri and Re (p < 0.05). |
Peng et al. [26] (RCT) | n = 23 8.7 (2) Con: NA Exp: NA | Spastic diplegia | Kinematic parameters Movement time NJI Flex trunk angles COM address | 1 session | Maximum knee extension power (p = 0.009), >total extension power (p = 0.015), >COM fluidity (p = 0.01), <movement time (p = 0.003), and remained without music |
Hamed et al. [44] (RCT) | n = 30 Con: 15 7.07 (0.82) Exp: 15 Exp: 7.03 (0.76) | Spastic hemiparesis | Running speed Stride length Cadence Cycle time | 5 t/w 60min 12 weeks | Exp: improved velocity (p < 0.0001) and cadence (p < 0.008) Exp: velocity 0.68 ± 0.09 m/s Con: 0.420 ± 11 m/s for control group (t = 6.2) (p < 0.0001) Exp: cadence 124.3 ± 4.3 steps/min Con: 128.7 ± 4.1 steps/min (t = 2.8) (p < 0.008) |
Efraimidou et al. [40] (RCT) | n = 10 Con: 5 38.80 (12.28) Exp: 5 35.20 (13.01) | Spastic hemiparesis | TUG Lift and walk test MWT Berg’s Scale Static and dynamic balance with EPS platform | 2 t/w 50 min 8 weeks | Exp: improvement in gait and balance (p ≤ 0.05) Improvement in gait time (s) (F1,8 = 13.60, p = 0.006, η2 = 0.630), in normal gait speed (m/s) (F1,8 = 8.53, p = 0.019, η2 = 0.516), but not in fast gait speed (m/s) (F1,8 = 4.84, p = 0.059, η2 = 0.377) Statistically significant differences in intervention group between the two measurements regarding static and dynamic balance score (t = −8.63, df = 4, p = 0.001) |
Wang et al. [45] (RCT) | n = 45 Con: 24 9 (1.99) Exp: 21 8.98 (2.61) | Spastic diplegia | GMFM PEDI STS | 3t/w 6 weeks | Exp: improvements in gross motor function capacity (p < 0.05) maintained 6–12 weeks (p < 0.13). No improvements in daily functioning, strength, and walking speed. |
Marrades-Caballero et al. [25] (crossover) | n = 18 10 (6) | Severe bilateral | UL functionality Chailey skill levels | 16 weeks | Improved Chailey Levels of Ability (p = 0.002): “activities” section (p = 0.007), “arm and hand position” section (p = 0.027) and locomotor stages (p = 0.008). Persisted for 4 months. |
Study | Intervention |
---|---|
Kwak et al. [41] | Con: conventional gait training with a physical therapist Exp1: gait training + RAS A music therapist provided verbal instructions. A drum was used to emphasize the beat. A computer speaker system played the prescribed music (4/4 m, 105–120 beats per minute). The tempo of the music was increases by 10% (2nd week) and 15% (3rd week). Depending on individual needs, the physical therapist and music therapist developed muscle strengthening exercises using PSE and TIMP. Exp2: gait training + self-guided RAS A tape and instructions were given. The researcher demonstrated how they could feel the beat and how they could walk with the prescribed music for 30 min of daily self-training. |
Kim et al. [42] | -Gait training without RAS -Gait training with RAS 1. A subject walked barefoot along a 10 m walkway three times at the individual’s preferred walking speed without RAS. 2. Walking cadence (steps/min) was calculated based on the gait parameters in Step 1. 3. The tempo of metronome beats (bpm) was set to participant’s cadence obtained in Step 2. 4. RAS was provided by the music therapists, playing a simple rhythm pattern using chord progression on a keyboard with metronome beats. 5. The same chord pattern was repeated providing a continuous timing cue and period sequence for 1–2 min to help a subject adapt to RAS immediately. 6. A subject walked 10 m three times again with RAS. |
Kim et al. [43] | Con: NDT. Gait training Exp: Gait training with RAS 1. A participant walked barefoot along the walkway (10 m) three times, at the individual’s preferred walking speed, before rhythmic auditory stimulation application. 2. The individual’s cadence (steps/min) was calculated based on the gait parameters in Step 1. 3. The tempo of metronome beats (bpm) was set to the participant’s cadence obtained in Step 2. 4. RAS was provided by music therapists, who played a simple rhythm pattern synchronized with the beats of a metronome, using chord progressions on a keyboard. |
Peng et al. [26] | Con: STS with 50% of 1RM without PSE, 8 reps Exp: STS with 50% of 1RM, 5 reps with PSE and 3 reps without PSE The individualized PSE music was composed by a music therapist with an electronic keyboard using GarageBand software on a Mac Mini at an intensity of 75 dBA, varying the tempo, harmonies, metre. |
Hamed et al. [44] | Con: NDT + usual gait training -NDT: approximation of the upper and lower limbs in a regular and rhythmic manner, facilitation of righting, equilibrium, and protective reactions, training of postural stability and equal weight shift, stretching and strengthening exercises of the upper and lower limbs and back muscles. -Gait training program without pedometer Exp: same + pedometer-based gait training programme. A talking pedometer was fastened to a belt or waistband. It played seven melodies while walking or jogging, and the tempo synchronized with walking speed. The activities included walking forward, backward, and sideways between parallel bars, on a walking line, and on a balance beam; stepping forward on a stepper (stairs); and training of walking with different obstacles and on different floor surfaces. |
Efraimidou et al. [40] | Con: ball and puck training program Exp: The program included gait and balance with music exercises according to RAS. -Warm-up period: stretching exercises accompanied with music tracks of 4/4 m and a tempo of 70 beats per minute -Main part: Participants walked to the rhythm veer (music tracks of 4/4, 90 beats/min). Then they continued to move with pace in a straight line for a distance of 10 m with forward, backward, right, and left steps, as well as standing on one leg with change for some seconds. -Cool-down: relaxation exercises, breathing and music (4/4, 70 beats/min) |
Wang et al. [45] | Con: Loaded STS exercise with weighted body vest. 3 sets: -1st and 3rd: load at 20% of 1RM, 10 reps -2nd: 50% of 1RM until fatigue Exp: To prescribe the PSE music, loaded STS 50% of 1RM, 6 reps. The fastest three STS movements were selected as references to prescribe PSE music using an electronic keyboard and GarageBand software on a Mac (Apple Inc., Cupertino, CA, USA). Music provided cueing of the movement period. Caregivers supervised. Every 2 weeks, the music therapist adjusted musical elements according to the individual’s needs. |
Marrades-Caballero et al. [25] | Con: physiotherapy (no technique specified), 1 t/w Exp: NMT sessions by two music therapists. The music was live and customized according to each patient. Small percussion instruments, Spanish guitar, keyboard, and drums were played. Two types of activities: -At the beginning, patients chose and played the musical instruments using their own movement strategies (hitting, rubbing, crashing) to generate rhythmic music patterns. Music therapists played along. -Task-specific training with varied and incremental levels of difficulty. Music therapists composed small pieces of music testing different music parameters trying to trigger forearm pronation and supination, elbow flexion and extension, and shoulder flexion. The activities were performed in a prone position or sitting in their wheelchairs and were aimed at challenging upper-limb movements and head and trunk control. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vinolo-Gil, M.J.; Casado-Fernández, E.; Perez-Cabezas, V.; Gonzalez-Medina, G.; Martín-Vega, F.J.; Martín-Valero, R. Effects of the Combination of Music Therapy and Physiotherapy in the Improvement of Motor Function in Cerebral Palsy: A Challenge for Research. Children 2021, 8, 868. https://doi.org/10.3390/children8100868
Vinolo-Gil MJ, Casado-Fernández E, Perez-Cabezas V, Gonzalez-Medina G, Martín-Vega FJ, Martín-Valero R. Effects of the Combination of Music Therapy and Physiotherapy in the Improvement of Motor Function in Cerebral Palsy: A Challenge for Research. Children. 2021; 8(10):868. https://doi.org/10.3390/children8100868
Chicago/Turabian StyleVinolo-Gil, Maria Jesus, Esteban Casado-Fernández, Veronica Perez-Cabezas, Gloria Gonzalez-Medina, Francisco Javier Martín-Vega, and Rocío Martín-Valero. 2021. "Effects of the Combination of Music Therapy and Physiotherapy in the Improvement of Motor Function in Cerebral Palsy: A Challenge for Research" Children 8, no. 10: 868. https://doi.org/10.3390/children8100868
APA StyleVinolo-Gil, M. J., Casado-Fernández, E., Perez-Cabezas, V., Gonzalez-Medina, G., Martín-Vega, F. J., & Martín-Valero, R. (2021). Effects of the Combination of Music Therapy and Physiotherapy in the Improvement of Motor Function in Cerebral Palsy: A Challenge for Research. Children, 8(10), 868. https://doi.org/10.3390/children8100868