Health-Related Motor Testing of Children in Primary School: A Systematic Review of Criterion-Referenced Standards
Abstract
:1. Introduction
“The performance standards provide qualitative descriptions of the intended distinctions between adjacent levels of performance (e.g., between acceptable performance and unacceptable performance). The cutscores are points on the score scale, with one cutscore associated with each performance standard. The cutscore provides an operation version of the corresponding performance standards.” (p. 55)
2. Methods
2.1. Data Sources
2.2. Inclusion Criteria
2.3. Study Selection
2.4. Data Collection and Analysis
3. Results
3.1. Health-Related Criterion-Referenced Standards for Motor Test Items of the Fulda Movement Check
3.2. Body Composition as a Health Indicator in Motor Testing
3.3. Approaches to Setting Criterion-Referenced Standards and Cut-Off Points for Health-Related Evaluation
4. Discussion
4.1. Determination of Criterion-Referenced Standards in Health-Related Motor Testing
4.2. Pedagogical Factors
4.3. Holistic Perspective on Motor Testing in Children
4.4. Implications for Setting Health-Related Criterion-Referenced Standards
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Demetriou, Y.; Bucksch, J.; Hebestreit, A.; Schlund, A.; Niessner, C.; Schmidt, S.C.E.; Finger, J.D.; Mutz, M.; Völker, K.; Vogt, L.; et al. Germany’s 2018 Report Card on Physical Activity for Children and Youth. Ger. J. Exerc. Sport Res. 2019, 49, 113–126. [Google Scholar] [CrossRef]
- Bös, K.; Schlenker, L.; Büsch, D.; Lämmle, L.; Müller, H.; Oberger, J.; Seidel, I.; Tittlbach, S. Schriften der Deutschen Vereinigung für Sportwissenschaft 1. Aufl. In Deutscher Motorik—Test 6–18: (DMT 6–18); Czwalina: Hamburg, Germany, 2009; Volume 186, ISBN 978-3-88020-520-8. [Google Scholar]
- Burton, A.W.; Miller, D.E. Movement Skill Assessment; Human Kinetics: Champaign, IL, USA, 1998; ISBN 978-0-87322-975-3. [Google Scholar]
- Lima, R.A.; Pfeiffer, K.; Larsen, L.R.; Bugge, A.; Moller, N.C.; Anderson, L.B.; Stodden, D.F. Physical Activity and Motor Competence Present a Positive Reciprocal Longitudinal Relationship Across Childhood and Early Adolescence. J. Phys. Act. Health 2017, 14, 440–447. [Google Scholar] [CrossRef]
- Cattuzzo, M.T.; Henrique, R.D.S.; Ré, A.H.N.; de Oliveira, I.S.; Melo, B.M.; de Sousa Moura, M.; de Araújo, R.C.; Stodden, D. Motor Competence and Health Related Physical Fitness in Youth: A Systematic Review. J. Sci. Med. Sport 2016, 19, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Trost, S.G.; Pate, R.R.; Saunders, R.; Ward, D.S.; Dowda, M.; Felton, G. A Prospective Study of the Determinants of Physical Activity in Rural Fifth-Grade Children. Prev. Med. 1997, 26, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Stodden, D.; Goodway, J.; Langendorfer, S.; Roberton, M.A.; Rudisill, M.; Garcia, C.; Garcia, L. A Developmental Perspective on the Role of Motor Skill Competence in Physical Activity: An Emergent Relationship. Quest 2008, 60, 290–306. [Google Scholar] [CrossRef]
- Janssen, I.; LeBlanc, A.G. Systematic Review of the Health Benefits of Physical Activity and Fitness in School-Aged Children and Youth. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 40. [Google Scholar] [CrossRef] [Green Version]
- Gabbard, C. Lifelong Motor Development, 6th ed.; Pearson-Benjamin Cummings: San Francisco, CA, USA, 2012; ISBN 978-0-321-73494-5. [Google Scholar]
- World Health Organization. WHO Guidelines on Physical Activity and Sedentary Behaviour. Available online: https://apps.who.int/iris/handle/10665/341739 (accessed on 30 August 2021).
- “Global Epidemic” of Childhood Inactivity. Available online: https://www.bbc.com/news/health-50466061 (accessed on 13 August 2021).
- Predicted Numbers of Children with Obesity Worldwide 2030. Available online: https://www.statista.com/statistics/1155606/obesity-children-worldwide-forecast/ (accessed on 13 August 2021).
- Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 13 August 2021).
- Opper, E.; Worth, A.; Bös, K. Kinder fitnesS—Kinder gesundheit. Bundesgesundheitsblatt-Gesundh.-Gesundh. 2005, 48, 854–862. [Google Scholar] [CrossRef]
- Oberger, J.; Opper, E.; Karger, C.; Worth, A.; Geuder, J.; Bös, K. Motorische Leistungsfähigkeit: Ein Indikator für die Gesundheit von Kindern und Jugendlichen. Monatsschr. Kinderheilkd. 2010, 158, 441–448. [Google Scholar] [CrossRef]
- Ortega, F.B.; Ruiz, J.R. Fitness in Youth: Methodological Issues and Understanding of Its Clinical Value. Am. J. Lifestyle Med. 2015, 9, 403–408. [Google Scholar] [CrossRef]
- Ruiz, J.; Castro-Piñero, J.; Vanesa, E.-R.; Artero, E.; Ortega, F.; Cuenca, M.; Jiménez-Pavón, D.; Chillón, P.; Girela-Rejón, M.; Mora, J.; et al. Field-Based Fitness Assessment in Young People: The ALPHA Health-Related Fitness Test Battery for Children and Adolescents. Br. J. Sports Med. 2010, 45, 518–524. [Google Scholar] [CrossRef]
- Bös, K.; Worth, A.; Oberger, J.; Opper, E.; Romahn, N.; Wagner, M.O. MoMo: Chance für die Gewinnung einer Baseline und zukünftigen Standardisierung der Leistungsdiagnostik. Beweg. Gesundh. 2006, 22, 218–222. [Google Scholar] [CrossRef]
- Going, S.; Williams, D. Understanding Fitness Standards. J. Phys. Educ. Recreat. Dance 1989, 60, 34–38. [Google Scholar] [CrossRef]
- Luz, C.; Rodrigues, L.P.; Meester, A.D.; Cordovil, R. The Relationship between Motor Competence and Health-Related Fitness in Children and Adolescents. PLoS ONE 2017, 12, e0179993. [Google Scholar] [CrossRef] [PubMed]
- Flôres, F.S.; Rodrigues, L.P.; Cordovil, R. Relationship between the Affordances for Motor Behavior of Schoolchildren (AMBS) and Motor Competence Assessment (MCA) in Brazilian Children. Children 2021, 8, 705. [Google Scholar] [CrossRef]
- Logan, S.W.; Barnett, L.M.; Goodway, J.D.; Stodden, D.F. Comparison of Performance on Process- and Product-Oriented Assessments of Fundamental Motor Skills across Childhood. J. Sports Sci. 2017, 35, 634–641. [Google Scholar] [CrossRef]
- Utesch, T.; Bardid, F.; Büsch, D.; Strauss, B. The Relationship Between Motor Competence and Physical Fitness from Early Childhood to Early Adulthood: A Meta-Analysis. Sports Med. Auckl. N. Z. 2019, 49, 541–551. [Google Scholar] [CrossRef] [Green Version]
- Utesch, T.; Dreiskämper, D.; Strauss, B.; Naul, R. The Development of the Physical Fitness Construct across Childhood. Scand. J. Med. Sci. Sports 2018, 28, 212–219. [Google Scholar] [CrossRef]
- American Alliance for Health, Physical Education, Recreation, and Dance. AAHPERD Lifetime Health Related Physical Fitness: Test Manual—Baylor University Libraries; American Alliance for Health, Physical Education, Recreation and Dance: Reston, VA, USA, 1980. [Google Scholar]
- Zhu, W.; Mahar, M.T.; Welk, G.J.; Going, S.B.; Cureton, K.J. Approaches for Development of Criterion-Referenced Standards in Health-Related Youth Fitness Tests. Am. J. Prev. Med. 2011, 41, S68–S76. [Google Scholar] [CrossRef]
- Kemper, H.C.G.; VanMechelen, W. Physical Fitness Testing of Children: A European Perspective. Pediatr. Exerc. Sci. 1996, 8, 201–214. [Google Scholar] [CrossRef]
- Júdice, P.B.; Silva, A.M.; Berria, J.; Petroski, E.L.; Ekelund, U.; Sardinha, L.B. Sedentary Patterns, Physical Activity and Health-Related Physical Fitness in Youth: A Cross-Sectional Study. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 25. [Google Scholar] [CrossRef] [Green Version]
- Morrow, J.R.; Zhu, W.; Franks, D.B.; Meredith, M.D.; Spain, C. 1958–2008: 50 Years of Youth Fitness Tests in the United States. Res. Q. Exerc. Sport 2009, 80, 1–11. [Google Scholar] [CrossRef]
- Welk, G.J.; Going, S.B.; Morrow, J.R.; Meredith, M.D. Development of New Criterion-Referenced Fitness Standards in the FITNESSGRAM (R) Program Rationale and Conceptual Overview. Am. J. Prev. Med. 2011, 41, S63–S67. [Google Scholar] [CrossRef] [PubMed]
- Freedson, P.S.; Cureton, K.J.; Heath, G.W. Status of Field-Based Fitness Testing in Children and Youth. Prev. Med. 2000, 31, S77–S85. [Google Scholar] [CrossRef]
- Bös, K.; Worth, A.; Opper, E.; Oberger, J.; Woll, A. Motorik-Modul: Eine Studie zur Motorischen Leistungsfähigkeit und körperlich-sportlichen Aktivität von Kindern und Jugendlichen in Deutschland; Abschlussbericht zum Forschungsprojekt; 1. Aufl.; Nomos-Verl.-Ges.: Baden-Baden, Germany, 2009; Volume 5, ISBN 978-3-8329-4498-8. [Google Scholar]
- Montgomery, P.C.; Connolly, B.H. Norm-Referenced and Criterion-Referenced Tests. Use in Pediatrics and Application to Task Analysis of Motor Skill. Phys. Ther. 1987, 67, 1873–1876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oberger, J. Sportmotorische Tests im Kindes- und Jugendalter: Normwertbildung-Auswertungsstrategien-Interpretationsmöglichkeiten; Überprüfung anhand der Daten des Motorik-Moduls (MoMo); Karlsruher Institut für Technologie: Karlsruhe, Germany, 2015. [Google Scholar]
- Niessner, C.; Utesch, T.; Oriwol, D.; Hanssen-Doose, A.; Schmidt, S.C.E.; Woll, A.; Bös, K.; Worth, A. Representative Percentile Curves of Physical Fitness from Early Childhood to Early Adulthood: The MoMo Study. Front. Public Health 2020, 8, 458. [Google Scholar] [CrossRef]
- Kloe, M.; Oriwol, D.; Niessner, C.; Worth, A.; Bös, K. Wie leistungsfähig sind meine Schüler*innen? Perzentilkurven zur Leistungsbeurteilung für die Testaufgaben 20-m-Sprint und 6-Minuten-Lauf. Sportunterricht 2020, 69, 386. [Google Scholar]
- Hohmann, A.; Yuan, X.; Schmitt, M.; Zhang, H.; Pietzonka, M.; Siener, M. Physical Fitness and Motor Competence in Chinese and German Elementary School Children in Relation to Different Physical Activity Settings. Children 2021, 8, 391. [Google Scholar] [CrossRef]
- Luz, C.; Rodrigues, L.P.; Almeida, G.; Cordovil, R. Development and Validation of a Model of Motor Competence in Children and Adolescents. J. Sci. Med. Sport 2016, 19, 568–572. [Google Scholar] [CrossRef]
- Kiphard, E.J.; Schilling, F. Körperkoordinationstest für Kinder: KTK, 3rd ed.; Hogrefe: Göttingen, Germany, 2017. [Google Scholar]
- Vandorpe, B.; Vandendriessche, J.; Lefevre, J.; Pion, J.; Vaeyens, R.; Matthys, S.; Philippaerts, R.; Lenoir, M. The KörperkoordinationsTest Für Kinder: Reference Values and Suitability for 6-12-Year-Old Children in Flanders. Scand. J. Med. Sci. Sports 2011, 21, 378–388. [Google Scholar] [CrossRef]
- Rodrigues, L.; Luz, C.; Cordovil, R.; Bezerra, P.; Silva, B.; Camoes, M.; Franco Lima, R. Normative Values of the Motor Competence Assessment (MCA) from 3 to 23 Years of Age. J. Sci. Med. Sport 2019, 22, 1038–1043. [Google Scholar] [CrossRef]
- Bardid, F.; Rudd, J.R.; Lenoir, M.; Polman, R.; Barnett, L.M. Cross-Cultural Comparison of Motor Competence in Children from Australia and Belgium. Front. Psychol. 2015, 6, 964. [Google Scholar] [CrossRef]
- Safrit, M.J.; Baumgartner, T.A.; Jackson, A.S.; Stamm, C.L. Issues in Setting Motor Performance Standards. Quest 1980, 32, 152–162. [Google Scholar] [CrossRef]
- Zhu, W. Science and Art of Setting Performance Standards and Cutoff Scores in Kinesiology. Res. Q. Exerc. Sport 2013, 84, 456–468. [Google Scholar] [CrossRef]
- Kane, M.T. So much remains the same: Conception and status of validation in setting standards. In Setting Performance Standards: Concepts, Methods, and Perspectives; Lawrence Erlbaum Associates Publishers: Mahwah, NJ, USA, 2001; pp. 53–88. ISBN 978-0-8058-3674-5. [Google Scholar]
- Van Nijlen, D.; Janssen, R. Modeling Judgments in the Angoff and Contrasting-Groups Method of Standard Setting. J. Educ. Meas. 2008, 45, 45–63. [Google Scholar] [CrossRef] [Green Version]
- Mahar, M.; Rowe, D. Practical Guidelines for Valid and Reliable Youth Fitness Testing. Meas. Phys. Educ. Exerc. Sci. 2008, 12, 126–145. [Google Scholar] [CrossRef]
- Bös, K.; Mechling, H. Dimensionen Sportmotorischer Leistungen. In Wissenschaftliche Schriftenreihe des Deutschen Sportbundes; Hofmann: Schorndorf, Germany, 1983; Volume 17, ISBN 978-3-7780-7631-6. [Google Scholar]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, T.P. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centre for Reviews and Dissemination. Systematic Reviews: CRD’s Guidance for Undertaking Reviews in Health Care; University of York: York, UK, 2009; ISBN 978-1-900991-19-3. [Google Scholar]
- Plowman, S.; Sterling, C.; Corbin, C.; Meredith, M.; Welk, G.; Morrow, J. The History of FITNESSGRAM® FITNESSGRAM® FITNESSGRAM. J. Phys. Act. Health 2006, 3, S5–S20. [Google Scholar] [CrossRef]
- Cureton, K.J.; Warren, G.L. Criterion-Referenced Standards for Youth Health-Related Fitness Tests: A Tutorial. Res. Q. Exerc. Sport 1990, 61, 7–19. [Google Scholar] [CrossRef]
- Welk, G.J.; De Saint-Maurice Maduro, P.F.; Laurson, K.R.; Brown, D.D. Field Evaluation of the New FITNESSGRAM® Criterion-Referenced Standards. Am. J. Prev. Med. 2011, 41, S131–S142. [Google Scholar] [CrossRef]
- Cooper Institute. FitnessGram Administration Manual: The Journey to MyHealthyZone, 5th ed.; Human Kinetics: Champaign, IL, USA, 2017; ISBN 978-1-4504-7046-9. [Google Scholar]
- Castro-Piñero, J.; Perez-Bey, A.; Cuenca-Garcia, M.; Cabanas-Sanchez, V.; Gómez-Martínez, S.; Veiga, O.L.; Marcos, A.; Ruiz, J.R. Muscle Fitness Cut Points for Early Assessment of Cardiovascular Risk in Children and Adolescents. J. Pediatr. 2019, 206, 134–141.e3. [Google Scholar] [CrossRef]
- Castro-Pinero, J.; Laurson, K.R.; Artero, E.G.; Ortega, F.B.; Labayen, I.; Ruperez, A.I.; Zaqout, M.; Manios, Y.; Vanhelst, J.; Marcos, A.; et al. Muscle Strength Field-Based Tests to Identify European Adolescents at Risk of Metabolic Syndrome: The HELENA Study. J. Sci. Med. Sport 2019, 22, 929–934. [Google Scholar] [CrossRef]
- Jolliffe, C.J.; Janssen, I. Development of Age-Specific Adolescent Metabolic Syndrome Criteria That Are Linked to the Adult Treatment Panel III and International Diabetes Federation Criteria. J. Am. Coll. Cardiol. 2007, 49, 891–898. [Google Scholar] [CrossRef] [Green Version]
- Fredriksen, P.M.; Mamen, A.; Hjelle, O.P.; Lindberg, M. Handgrip Strength in 6-12-Year-Old Children: The Health Oriented Pedagogical Project (HOPP). Scand. J. Public Health 2018, 46, 54–60. [Google Scholar] [CrossRef]
- Saint-Maurice, P.F.; Laurson, K.; Welk, G.J.; Eisenmann, J.; Gracia-Marco, L.; Artero, E.G.; Ortega, F.; Ruiz, J.R.; Moreno, L.A.; Vicente-Rodriguez, G.; et al. Grip Strength Cutpoints for Youth Based on a Clinically Relevant Bone Health Outcome. Arch. Osteoporos. 2018, 13, 92. [Google Scholar] [CrossRef]
- Artero, E.G.; España-Romero, V.; Castro-Piñero, J.; Ruiz, J.; Jiménez-Pavón, D.; Aparicio, V.; Gatto-Cardia, M.; Baena, P.; Vicente-Rodríguez, G.; Castillo, M.J.; et al. Criterion-Related Validity of Field-Based Muscular Fitness Tests in Youth. J. Sports Med. Phys. Fit. 2012, 52, 263–272. [Google Scholar]
- Santos Silva, D.A.; Lang, J.J.; Petroski, E.L.; Mello, J.B.; Gaya, A.C.A.; Tremblay, M.S. Association between 9-Minute Walk/Run Test and Obesity among Children and Adolescents: Evidence for Criterion-Referenced Cut-Points. Peerj 2020, 8, e8651. [Google Scholar] [CrossRef]
- Maury-Sintjago, E.; Rodriguez-Fernandez, A.; Parra-Flores, J.; Garcia, D.E. Association between Body Mass Index and Functional Fitness of 9-to 10-Year-Old Chilean Children. Am. J. Hum. Biol. 2019, 31, e23305. [Google Scholar] [CrossRef] [PubMed]
- Tokmakidis, S.P.; Kasambalis, A.; Christodoulos, A.D. Fitness Levels of Greek Primary Schoolchildren in Relationship to Overweight and Obesity. Eur. J. Pediatr. 2006, 165, 867–874. [Google Scholar] [CrossRef]
- Tudor-Locke, C.; Pangrazi, R.P.; Corbin, C.B.; Rutherford, W.J.; Vincent, S.D.; Raustorp, A.; Tomson, L.M.; Cuddihy, T.F. BMI-Referenced Standards for Recommended Pedometer-Determined Steps/Day in Children. Prev. Med. 2004, 38, 857–864. [Google Scholar] [CrossRef] [Green Version]
- Zaqout, M.; Michels, N.; Bammann, K.; Ahrens, W.; Sprengeler, O.; Molnar, D.; Hadjigeorgiou, C.; Eiben, G.; Konstabel, K.; Russo, P.; et al. Influence of Physical Fitness on Cardio-Metabolic Risk Factors in European Children. The IDEFICS Study. Int. J. Obes. 2016, 40, 1119–1125. [Google Scholar] [CrossRef]
- Ruzbarska, I. Gross Motor Coordination in Relation to Weight Status in 7- to 9-Year-Old Children. Acta Gymnica 2020, 50, 105–112. [Google Scholar] [CrossRef]
- Aires, L.; Silva, P.; Santos, R.; Santos, P.; Ribeiro, J.C.; Mota, J. Association of Physical Fitness and Body Mass Index in Youth. Minerva Pediatr. 2008, 60, 397–405. [Google Scholar]
- Prieto-Benavides, D.H.; Garcia-Hermoso, A.; Izquierdo, M.; Alonso-Martinez, A.M.; Agostinis-Sobrinho, C.; Correa-Bautista, J.E.; Ramirez-Velez, R. Cardiorespiratory Fitness Cut-Points Are Related to Body Adiposity Parameters in Latin American Adolescents. Medicina 2019, 55, 508. [Google Scholar] [CrossRef] [Green Version]
- Truter, L.; Pienaar, A.E.; Du Toit, D. Relationships between Overweight, Obesity and Physical Fitness of Nine- to Twelve-Year-Old South African Children. S. Afr. Fam. Pract. 2010, 52, 227–233. [Google Scholar] [CrossRef]
- Silva, D.A.S.; Lang, J.J.; Barnes, J.D.; Tomkinson, G.R.; Tremblay, M.S. Cardiorespiratory Fitness in Children: Evidence for Criterion-Referenced Cut-Points. PLoS ONE 2018, 13, e0201048. [Google Scholar] [CrossRef] [PubMed]
- Lovecchio, N.; Zago, M. Fitness Differences According to BMI Categories: A New Point of View. J. Sports Med. Phys. Fitness 2019, 59, 298–303. [Google Scholar] [CrossRef]
- Ervin, R.B.; Fryar, C.D.; Wang, C.-Y.; Miller, I.M.; Ogden, C.L. Strength and Body Weight in US Children and Adolescents. Pediatrics 2014, 134, e782–e789. [Google Scholar] [CrossRef] [Green Version]
- Plowman, S.A. Criterion Referenced Standards for Neuromuscular Physical Fitness Tests: An Analysis. Pediatr. Exerc. Sci. 1992, 4, 10–19. [Google Scholar] [CrossRef]
- Berk, R.A. Determination of Optional Cutting Scores in Criterion-Referenced Measurement. J. Exp. Educ. 1976, 45, 4–9. [Google Scholar] [CrossRef]
- De Miguel-Etayo, P.; Gracia-Marco, L.; Ortega, F.B.; Intemann, T.; Foraita, R.; Lissner, L.; Oja, L.; Barba, G.; Michels, N.; Tornaritis, M.; et al. Physical Fitness Reference Standards in European Children: The IDEFICS Study. Int. J. Obes. 2014, 38 (Suppl. 2), S57–S66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unal, I. Defining an Optimal Cut-Point Value in ROC Analysis: An Alternative Approach. Comput. Math. Methods Med. 2017, 2017, 3762651. [Google Scholar] [CrossRef]
- Mandrekar, J.N. Receiver Operating Characteristic Curve in Diagnostic Test Assessment. J. Thorac. Oncol. 2010, 5, 1315–1316. [Google Scholar] [CrossRef] [Green Version]
- Lang, J.J.; Tremblay, M.S.; Ortega, F.B.; Ruiz, J.R.; Tomkinson, G.R. Review of Criterion-Referenced Standards for Cardiorespiratory Fitness: What Percentage of 1 142 026 International Children and Youth Are Apparently Healthy? Br. J. Sports Med. 2019, 53, 953–958. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Sepúlveda, J.A.; Ramírez-Vélez, R.; Correa-Bautista, J.E.; Izquierdo, M.; García-Hermoso, A. Physical Fitness and Anthropometric Normative Values among Colombian-Indian Schoolchildren. BMC Public Health 2016, 16, 962. [Google Scholar] [CrossRef] [Green Version]
- Emeljanovas, A.; Mieziene, B.; Cesnaitiene, V.J.; Fjortoft, I.; Kjonniksen, L. Physical Fitness and Anthropometric Values Among Lithuanian Primary School Children: Population-Based Cross-Sectional Study. J. Strength Cond. Res. 2020, 34, 414–421. [Google Scholar] [CrossRef]
- Vaccari, F.; Fiori, F.; Bravo, G.; Parpinel, M.; Messina, G.; Malavolta, R.; Lazzer, S. Physical Fitness Reference Standards in Italian Children. Eur. J. Pediatr. 2021, 180, 1789–1798. [Google Scholar] [CrossRef]
- McArthur, C.; Venkatesh, S.; Warren, D.; Pringle, D.; Doerr, T.; Salbach, N.M.; Kirkwood, G.; Wright, V. Further Development of the Response Scales of the Acquired Brain Injury Challenge Assessment (ABI-CA). Brain Inj. 2013, 27, 1271–1280. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.; Mota, J.; Santos, D.A.; Silva, A.M.; Baptista, F.; Sardinha, L.B. Physical Fitness Percentiles for Portuguese Children and Adolescents Aged 10–18 Years. J. Sports Sci. 2014, 32, 1510–1518. [Google Scholar] [CrossRef]
- ROC-Kurven: Statistischer Berechnung, Interpretation und Grenzen. Available online: https://www.acomed-statistik.de/cut-off.html (accessed on 9 July 2021).
- Lang, J.J.; Wolfe Phillips, E.; Hoffmann, M.D.; Prince, S.A. Establishing Modified Canadian Aerobic Fitness Test (MCAFT) Cut-Points to Detect Clustered Cardiometabolic Risk among Canadian Children and Youth Aged 9 to 17 Years. Appl. Physiol. Nutr. Metab. 2020, 45, 311–317. [Google Scholar] [CrossRef]
- Wiersma, L.D.; Sherman, C.P. The Responsible Use of Youth Fitness Testing to Enhance Student Motivation, Enjoyment, and Performance. Meas. Phys. Educ. Exerc. Sci. 2008, 12, 167–183. [Google Scholar] [CrossRef]
- Laurson, K.R.; Saint-Maurice, P.F.; Welk, G.J.; Eisenmann, J.C. Reference Curves for Field Tests of Musculoskeletal Fitness in Us Children and Adolescents: The 2012 Nhanes National Youth Fitness Survey. J. Strength Cond. Res. 2017, 31, 2075–2082. [Google Scholar] [CrossRef] [PubMed]
- Kane, M. Validating the Performance Standards Associated with Passing Scores. Rev. Educ. Res. 1994, 64, 425–461. [Google Scholar] [CrossRef]
- Tremblay, M.S.; Tomkinson, G.R. Discussion of “Establishing Modified Canadian Aerobic Fitness Test (MCAFT) Cut-Points to Detect Clustered Cardiometabolic Risk among Canadian Children and Youth Aged 9 to 17 Years”—The Need for Foundational Fitness Research in Canada: Is There Room for Innovation? Appl. Physiol. Nutr. Metab. 2020, 45, 344–345. [Google Scholar] [CrossRef] [PubMed]
- Plowman, S.A. Top 10 Research Questions Related to Musculoskeletal Physical Fitness Testing in Children and Adolescents. Res. Q. Exerc. Sport 2014, 85, 174–187. [Google Scholar] [CrossRef]
- Malina, R.M. Physical Fitness of Children and Adolescents in the United States: Status and Secular Change. Med. Sport Sci. 2007, 50, 67–90. [Google Scholar] [CrossRef]
- de Oliveira, R.G.; Guedes, D.P. Physical Fitness and Metabolic Syndrome in Brazilian Adolescents: Validity of Diagnostic Health Criteria. Percept. Mot. Skills 2018, 125, 1140–1159. [Google Scholar] [CrossRef]
- Kolb, S.; Burchartz, A.; Oriwol, D.; Schmidt, S.C.E.; Woll, A.; Niessner, C. Indicators to Assess Physical Health of Children and Adolescents in Activity Research—A Scoping Review. Int. J. Environ. Res. Public. Health 2021, 18, 10711. [Google Scholar] [CrossRef] [PubMed]
- Aronne, L.J. Classification of Obesity and Assessment of Obesity-Related Health Risks. Obes. Res. 2002, 10, 105S–115S. [Google Scholar] [CrossRef]
- Reilly, J.J.; Kelly, J. Long-Term Impact of Overweight and Obesity in Childhood and Adolescence on Morbidity and Premature Mortality in Adulthood: Systematic Review. Int. J. Obes. 2011, 35, 891–898. [Google Scholar] [CrossRef] [Green Version]
- Truter, L.; Pienaar, A.E.; Du Toit, D. The Relationship of Overweight and Obesity to the Motor Performance of Children Living in South Africa. S. Afr. Fam. Pract. 2012, 54, 429–435. [Google Scholar] [CrossRef] [Green Version]
- Ceschia, A.; Giacomini, S.; Santarossa, S.; Rugo, M.; Salvadego, D.; Da Ponte, A.; Driussi, C.; Mihaleje, M.; Poser, S.; Lazzer, S. Deleterious Effects of Obesity on Physical Fitness in Pre-Pubertal Children. Eur. J. Sport Sci. 2016, 16, 271–278. [Google Scholar] [CrossRef]
- Yang, X.; Telama, R.; Viikari, J.; Raitakari, O.T. Risk of Obesity in Relation to Physical Activity Tracking from Youth to Adulthood. Med. Sci. Sports Exerc. 2006, 38, 919–925. [Google Scholar] [CrossRef] [PubMed]
- Silverman, S.; Keating, X.; Phillips, S. A Lasting Impression: A Pedagogical Perspective on Youth Fitness Testing. Meas. Phys. Educ. Exerc. Sci. 2010, 12, 146–166. [Google Scholar] [CrossRef]
- Updyke, W.F. In Search of Relevant and Credible Physical Fitness Standards for Children. Res. Q. Exerc. Sport 1992, 63, 112–119. [Google Scholar] [CrossRef]
- Naughton, G.A.; Carlson, J.S.; Greene, D.A. A Challenge to Fitness Testing in Primary Schools. J. Sci. Med. Sport 2006, 9, 40–45. [Google Scholar] [CrossRef] [PubMed]
- True, L.; Brian, A.; Goodway, J.; Stodden, D.F. Relationships between Product- and Process-Oriented Measures of Motor Competence and Perceived Competence. J. Mot. Learn. Dev. 2017, 5, 319–335. [Google Scholar] [CrossRef]
- MOBAK. Available online: http://mobak.info/mobak/ (accessed on 30 September 2021).
- Csányi, T.; Finn, K.J.; Welk, G.J.; Zhu, W.; Karsai, I.; Ihász, F.; Vass, Z.; Molnár, L. Overview of the Hungarian National Youth Fitness Study. Res. Q. Exerc. Sport 2015, 86 (Suppl. 1), S3–S12. [Google Scholar] [CrossRef] [Green Version]
Motor Test Item | Author (Year) | Method | Health Indicator | Sample Size | Age | CRS Boys | CRS Girls |
---|---|---|---|---|---|---|---|
Sit-ups | The Cooper Institute (2017) [54] → Curl-Ups | Contrasting-groups method (trained vs. untrained) | Training response | n = N/A | [no. completed] | ||
7 years. 8 years. 9 years. 10 years. | ≥4 ≥6 ≥9 ≥12 | ≥4 ≥6 ≥9 ≥12 | |||||
Standing long jump | Castro-Piñero et al. (2019) [55] | ROC | CVD risk score | n = 237 | 6–10 years. | ≥104.5 cm | ≥81.5 cm |
6-min run | Santos Silva et al. (2020) [61] → 9-min run | ROC | BMI | n = 61.465 | [9-min. (approximated 6 min.)] | ||
6–8 years. 9–11 years. | ≥1200 (800) m ≥1300 (867) m | ≥1070 (713) m ≥1160 (773) m | |||||
Handgrip strength | Castro-Piñero et al. (2019) [55] | ROC | CVD risk score | n = 237 | 6–10 years. | ≥0.367 kg/mass kg | ≥0.306 kg/mass kg |
Fredriksen et al. (2018) [58] | ROC | CM risk | n = 2272 | 6–12 years. | handgrip strength = unsuitable predictor for cardiometabolic risk | ||
Saint-Maurice et al. (2018) [59] | ROC | Bone health (TBLH_BMC) | n = 433 (USA) + 355 (ESP) | 6 years. 7 years. 8 years. 9 years. 10 years. | >10.0 kg >11.2 kg >13.1 kg >15.2 kg >17.3 kg | >8.9 kg >10.2 kg >12.0 kg >14.0 kg >16.5 kg | |
Push-ups | The Cooper Institute (2017) [54] | Contrasting-groups method (trained vs. untrained) | Training response | n = N/A | [no. completed] | ||
7 years. 8 years. 9 years. 10 years. | ≥4 ≥5 ≥6 ≥7 | ≥4 ≥5 ≥6 ≥7 |
Methodological Context | Author (Year) | Motor Test | Content/Theme |
---|---|---|---|
Body composition in motor testing | Zaqout et al. (2016) [65] | 20-m-shuttle-run, handgrip strength, standing long jump, flamingo test, back-saver sit-and-reach, 40-m-sprint | Influence of physical fitness on cardiometabolic risk factors (IDEFICS study) |
Truter et al. (2010) [69] | PACER, sit-and-reach, standing long jump, knee push-ups, sit-ups, wall-sitting, aeroplane lying | Relationships of physical fitness and body composition classification | |
Ervin et al. (2014) [72] | Handgrip strength, plank, modified pull-up, knee extension | Muscle strength and body weight | |
Ruzbarska (2020) [66] | Balancing backwards, one-legged hopping, jumping laterally, moving sideways | Gross motor coordination in relation to weight status | |
Tokmakidis et al. (2006) [63] | Sit-and-reach, standing long jump, sit-ups, agility-shuttle-run, 20-m-shuttle-run | Fitness levels in relationship to overweight and obesity | |
Lovecchio & Zago (2019) [71] | Sit-and-reach, standing long jump, shuttle run 5-m × 10, sit-ups, bent arm hang | Fitness differences according to BMI categories | |
Silva et al. (2018) [70] | 20-m-shuttle-run | Criterion-referenced cut-points for low cardiorespiratory fitness associated with obesity | |
Humberto P.-B. et al. (2019) [68] | 20-m-shuttle-run | Cardiorespiratory fitness cut-off points related to body composition parameters | |
Aires et al. (2008) [67] | Push-ups, sit-ups, trunk-lift, sit-and-reach, 20-m-shuttle-run | Association of physical fitness and body mass index in youth | |
Maury-Sintjago et al. (2019) [62] | 6-min-walk | Association between body mass index and functional fitness | |
Approaches to setting criterion-referenced standards and cut-off points | Zhu et al. (2011) [26] | Fitnessgram, without reference to a specific test | Approaches for development of criterion-referenced standards |
Plowman (1992) [73] | Sit-and-reach, pull-ups, sit-ups | Criterion-referenced standards for neuromuscular physical fitness tests | |
Van Nijlen & Janssen (2008) [46] | Without reference to a specific test | Contrasting groups and Angoff-method | |
Berk (1976) [74] | Without reference to a specific test | Determination of optional cutting scores in criterion-referenced measurement | |
Cureton & Warren (1990) [52] | Mile run/walk test | Procedures used in development of criterion-referenced standards | |
Plowman (2006) [51] | Fitnessgram, without reference to a specific test | Fitnessgram criterion-referenced standards | |
Bös et al. (2006) [18] | MoMo: Push-ups, jumping sideways, standing long jump, balancing backwards, stand-and-reach, reaction, sticking-pins, tracing-lines, ergometer | Norm-referenced evaluation as a baseline approach (MoMo) | |
Oberger & Bös (2009) [32] (pp. 129–153) | MoMo (see above) | Scaling and evaluation strategies (MoMo) | |
Oberger (2015) [34] | MoMo (see above) | Setting standards, evaluation strategies, interpretation possibilities (MoMo) | |
Going & Williams (1989) [19] | Mile run/walk, sit-ups | Understanding fitness standards | |
Zhu et al. (2013) [44] | Fitnessgram, without reference to a specific test | Setting performance standards and cut-off scores | |
Niessner et al. (2020) [35] | MoMo (see above) | Representative percentile curves of physical fitness from childhood to adulthood (MoMo) | |
Kloe et al. (2020) [36] | 20-m-sprint, 6-min-run | Percentile curves for 20 m-sprint and 6-min run | |
Oberger et al. (2010) [15] | MoMo (see above) | Motor skills as a health indicator in children | |
Safrit et al. (1980) [43] | Without reference to a specific test | Issues in setting motor performance standards | |
De Miguel-Etayo et al. (2014) [75] | 20-m-shuttle-run, handgrip strength, standing long jump, flamingo test, back-saver sit-and-reach, 40-m-sprint | Physical fitness reference standards in European children (IDEFICS study) | |
ROC curves | Welk et al. (2011) [30] | Fitnessgram, without reference to a specific test | New criterion-referenced standards for Fitnessgram tests using ROC |
Unal (2017) [76] | Without reference to a specific test | Defining an optimal cut-off point value in ROC analysis | |
Mandrekar (2011) [77] | Without reference to a specific test | ROC curve in diagnostic test assessment | |
Lang et al. (2019) [78] | 20-m-shuttle-run | Criterion-referenced standards for cardiorespiratory fitness using ROC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Köster, P.; Hohmann, A.; Niessner, C.; Siener, M. Health-Related Motor Testing of Children in Primary School: A Systematic Review of Criterion-Referenced Standards. Children 2021, 8, 1046. https://doi.org/10.3390/children8111046
Köster P, Hohmann A, Niessner C, Siener M. Health-Related Motor Testing of Children in Primary School: A Systematic Review of Criterion-Referenced Standards. Children. 2021; 8(11):1046. https://doi.org/10.3390/children8111046
Chicago/Turabian StyleKöster, Paulina, Andreas Hohmann, Claudia Niessner, and Maximilian Siener. 2021. "Health-Related Motor Testing of Children in Primary School: A Systematic Review of Criterion-Referenced Standards" Children 8, no. 11: 1046. https://doi.org/10.3390/children8111046
APA StyleKöster, P., Hohmann, A., Niessner, C., & Siener, M. (2021). Health-Related Motor Testing of Children in Primary School: A Systematic Review of Criterion-Referenced Standards. Children, 8(11), 1046. https://doi.org/10.3390/children8111046