Learning Basketball Tactical Actions from Video Modeling and Static Pictures: When Gender Matters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Design
2.3. Apparatus and Stimulus Information
2.4. Measurements
2.4.1. Spatial Ability
2.4.2. Mental Effort
2.4.3. Game Performance
2.4.4. Learning Efficiency
2.5. Procedure
2.6. Statistical Analyses
3. Results
3.1. Spatial Ability
3.2. Game Performance
3.3. Mental Effort
3.4. Learning Efficiency
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Papastergiou, M. Enhancing physical education and sport science students’ self-efficacy and attitudes regarding information and communication technologies through a computer literacy course. Comput. Educ. 2010, 54, 298–308. [Google Scholar] [CrossRef]
- Palao, J.M.; Hastie, P.A.; Cruz, P.G.; Ortega, E. The impact of video technology on student performance in physical education. Technol. Pedagogy Educ. 2015, 24, 51–63. [Google Scholar] [CrossRef]
- Rekik, G.; Belkhir, Y.; Jarraya, M. Searching to improve learning from complex animated basketball scenes: When decreasing the presentation speed is more efficient than using segmentation. Technol. Pedagogy Educ. 2021, 30, 1–15. [Google Scholar] [CrossRef]
- Jarraya, M.; Rekik, G.; Belkhir, Y.; Chtourou, H.; Nikolaidis, P.T.; Rosemann, T.; Knechtle, B. Which presentation speed is better for learning basketball tactical actions through video modeling examples? The influence of content complexity. Front. Psychol. 2019, 10, 2356. [Google Scholar] [CrossRef]
- Zetou, E.; Tzetzis, G.; Vernadakis, N.; Kioumourtzoglou, E. Modeling in learning two volleyball skills. Percept. Mot. Ski. 2002, 94, 1131–1142. [Google Scholar] [CrossRef] [PubMed]
- Hoogerheide, V.; van Wermeskerken, M.; Loyens, S.M.; van Gog, T. Learning from video modeling examples: Content kept equal, adults are more effective models than peers. Learn. Instr. 2016, 44, 22–30. [Google Scholar] [CrossRef]
- Bandura, A. Self-efficacy: Toward a unifying theory of behavioral change. Psychol. Rev. 1977, 84, 191–215. [Google Scholar] [CrossRef] [PubMed]
- Boschker, M.S.; Bakker, F.C.; Michaels, C.F. Memory for the functional characteristics of climbing walls: Perceiving affordances. J. Mot. Behav. 2002, 34, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Nahid, S.; Zahra, N.R.; Elham, A. Effects of video modeling on skill acquisition in learning the handball shoot. Eur. J. Exp. Biol. 2013, 3, 214–218. [Google Scholar]
- Barzouka, K.; Sotiropoulos, K.; Kioumourtzoglou, E. The effect of feedback through an expert model observation on performance and learning the pass skill in volleyball and motivation. J. Phys. Educ. Sport 2015, 15, 3. [Google Scholar]
- Carroll, W.R.; Bandura, A. Representational guidance of action production in observational learning: A causal analysis. J. Mot. Behav. 1990, 22, 85–97. [Google Scholar] [CrossRef]
- Pollock, B.J.; Lee, T.D. Effects of the model’s skill level on observational motor learning. Res. Q. Exerc. Sport 1992, 63, 25–29. [Google Scholar] [CrossRef]
- Sweller, J.; Van Merrienboer, J.J.; Paas, F.G. Cognitive architecture and instructional design. Educ. Psychol. Rev. 1998, 10, 251–296. [Google Scholar] [CrossRef]
- Wong, A.; Leahy, W.; Marcus, N.; Sweller, J. Cognitive load theory, the transient information effect and e-learning. Learn. Instr. 2012, 22, 449–457. [Google Scholar] [CrossRef]
- Ayres, P.; Paas, F. Making instructional animations more effective: A cognitive load approach. Appl. Cogn. Psychol. 2007, 21, 695–700. [Google Scholar] [CrossRef]
- Moreno, R.; Mayer, R. Interactive multimodal learning environments. Educ. Psychol. Rev. 2007, 19, 309–326. [Google Scholar] [CrossRef]
- Baddeley, A. Working memory: Looking back and looking forward. Nat. Rev. Neurosci. 2003, 4, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Mayer, R.E.; DeLeeuw, K.E.; Ayres, P. Creating retroactive and proactive interference in multimedia learning. Appl. Cogn. Psychol. 2007, 21, 795–809. [Google Scholar] [CrossRef]
- Carpenter, P.A.; Shah, P. A model of the perceptual and conceptual processes in graph comprehension. J. Exp. Psychol. Appl. 1998, 4, 75–100. [Google Scholar] [CrossRef]
- Rekik, G.; Belkhir, Y.; Jarraya, M.; Bouzid, M.A.; Chen, Y.S.; Kuo, C.D. Uncovering the Role of Different Instructional Designs When Learning Tactical Scenes of Play through Dynamic Visualizations: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 256. [Google Scholar] [CrossRef]
- Rekik, G.; Khacharem, A.; Belkhir, Y.; Bali, N.; Jarraya, M. The instructional benefits of dynamic visualizations in the acquisition of basketball tactical actions. J. Comput. Assist. Learn. 2019, 35, 74–81. [Google Scholar] [CrossRef] [Green Version]
- Rekik, G.; Khacharem, A.; Belkhir, Y.; Bali, N.; Jarraya, M. The effect of visualization format and content complexity on acquisition of tactical actions in basketball. Learn. Motiv. 2019, 65, 10–19. [Google Scholar] [CrossRef]
- H’mida, C.; Degrenne, O.; Souissi, N.; Rekik, G.; Trabelsi, K.; Jarraya, M.; Bragazzi, N.L.; Khacharem, A. Learning a Motor Skill from Video and Static Pictures in Physical Education Students—Effects on Technical Performances, Motivation and Cognitive Load. Int. J. Environ. Res. Public Health 2020, 17, 9067. [Google Scholar] [CrossRef] [PubMed]
- H’mida, C.; Kalyuga, S.; Souissi, N.; Rekik, G.; Jarraya, M.; Khacharem, A. Is the human movement effect stable over time? The effects of presentation format on acquisition and retention of a motor skill. J. Comput. Assist. Learn. 2021. [Google Scholar] [CrossRef]
- Rizzolatti, G.; Craighero, L. The mirror-neuron system. Annu. Rev. Neurosci. 2004, 27, 169–192. [Google Scholar] [CrossRef] [Green Version]
- Van-Gog, T.; Paas, F.; Marcus, N.; Ayres, P.; Sweller, J. The mirror neuron system and observational learning: Implications for the effectiveness of dynamic visualizations. Educ. Psychol. Rev. 2009, 21, 21–30. [Google Scholar] [CrossRef]
- Paas, F.; Sweller, J. An evolutionary upgrade of cognitive load theory: Using the human motor system and collaboration to support the learning of complex cognitive tasks. Educ. Psychol. Rev. 2012, 24, 27–45. [Google Scholar] [CrossRef] [Green Version]
- Castro-Alonso, J.C.; Wong, M.; Adesope, O.O.; Ayres, P.; Paas, F. Gender imbalance in instructional dynamic versus static visualizations: A meta-analysis. Educ. Psychol. Rev. 2019, 31, 361–387. [Google Scholar] [CrossRef]
- Griffin, A.L.; MacEachren, A.M.; Hardisty, F.; Steiner, E.; Li, B. A comparison of animated maps with static small-multiple maps for visually identifying space-time clusters. Ann. Am. Assoc. Geogr. 2006, 96, 740–753. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.F.; Hung, Y.H.; Chang, R.I.; Hung, S.H. Developing a problem-solving learning system to assess the effects of different materials on learning performance and attitudes. Comput. Educ. 2014, 77, 50–66. [Google Scholar] [CrossRef]
- Mayer, R.E.; Sims, V.K. For whom is a picture worth a thousand words? Extensions of a dual-coding theory of multimedia learning. J. Educ. Psychol. 1994, 86, 389–401. [Google Scholar] [CrossRef]
- Höffler, T.N. Spatial ability: Its influence on learning with visualizations—a meta-analytic review. Educ. Psychol. Rev. 2010, 22, 245–269. [Google Scholar] [CrossRef]
- Linn, M.C.; Petersen, A.C. Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Dev. 1985, 56, 1479–1498. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Spence, I.; Pratt, J. Playing an action video game reduces gender differences in spatial cognition. Psychol. Sci. 2007, 18, 850–855. [Google Scholar] [CrossRef] [PubMed]
- Campbell, S.M.; Collaer, M.L. Stereotype threat and gender differences in performance on a novel visuospatial task. Psychol. Women. Q. 2009, 33, 437–444. [Google Scholar] [CrossRef]
- Uttal, D.H.; Meadow, N.G.; Tipton, E.; Hand, L.L.; Alden, A.R.; Warren, C.; Newcombe, N.S. The Malleability of spatial skills: A Meta-analysis of training studies. Psychol. Bull. 2013, 139, 352–402. [Google Scholar] [CrossRef]
- Voyer, D.; Hou, J. Type of items and the magnitude of gender differences on the Mental Rotations Test. Can. J. Exp. Psychol. 2006, 60, 91–100. [Google Scholar] [CrossRef]
- Yezierski, E.J.; Birk, J.P. Misconceptions about the particulate nature of matter: Using animations to close the gender gap. J. Chem. Educ. 2006, 83, 954–960. [Google Scholar] [CrossRef]
- Sánchez, C.A.; Wiley, J. Sex differences in science learning: Closing the gap through animations. Learn. Individ. Differ. 2010, 20, 271–275. [Google Scholar] [CrossRef]
- Wong, M.; Castro-Alonso, J.C.; Ayres, P.; Paas, F. Gender effects when learning manipulative tasks from instructional animations and static presentations. J. Educ. Techno. Soc. 2015, 18, 37–52. [Google Scholar]
- Höffler, T.N.; Leutner, D. The role of spatial ability in learning from instructional animations–Evidence for an ability-as-compensator hypothesis. Comput. Hum. Behav. 2011, 27, 209–216. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smeeton, N.J.; Ward, P.; Williams, A.M. Do pattern recognition skills transfer across sports? A preliminary analysis. J. Sports Sci. 2004, 22, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Kalyuga, S. Relative effectiveness of animated and static diagrams: An effect of learner prior knowledge. Comput. Hum. Behav. 2008, 24, 852–861. [Google Scholar] [CrossRef]
- Ekstrom, R.B.; Dermen, D.; Harman, H.H. Manual for Kit of Factor-Referenced Cognitive Tests, 1st ed.; Educational Testing Service: Princeton, NJ, USA, 1976; pp. 147–149. [Google Scholar]
- Paas, F. Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive-load approach. J. Educ. Psychol. 1992, 84, 429–434. [Google Scholar] [CrossRef]
- Chase, W.G.; Simon, H.A. Perception in chess. Cogn. Psychol. 1973, 4, 55–81. [Google Scholar] [CrossRef]
- Kalyuga, S.; Sweller, J. Rapid dynamic assessment of expertise to improve the efficiency of adaptive e-learning. Educ. Technol. Res. Dev. 2005, 53, 83–93. [Google Scholar] [CrossRef]
- Rekik, G.; Belkhir, Y.; Mnif, M.; Masmoudi, L.; Jarraya, M. Decreasing the Presentation Speed of Animated Soccer Scenes Does Not Always Lead to Better Learning Outcomes in Young Players. Int. J. Hum. Comput. Int. 2020, 36, 717–724. [Google Scholar] [CrossRef]
- Rekik, G.; Belkhir, Y.; Jarraya, M. Improving Soccer Knowledge from Computerized Game Diagrams: Benefits of Sequential Instructional Arrows. Percept. Mot. Ski. 2021, 128, 912–931. [Google Scholar] [CrossRef]
- Garland, T.B.; Sanchez, C.A. Rotational perspective and learning procedural tasks from dynamic media. Comput. Educ. 2013, 69, 31–37. [Google Scholar] [CrossRef]
- Boucheix, J.M.; Forestier, C. Reducing the transience effect of animations does not (always) lead to better performance in children learning a complex hand procedure. Comput. Hum. Behav. 2017, 69, 358–370. [Google Scholar] [CrossRef]
- Gur, R.C.; Turetsky, B.I.; Matsui, M.; Yan, M.; Bilker, W.; Hughett, P.; Gur, R.E. Sex differences in brain gray and white matter in healthy young adults: Correlations with cognitive performance. J. Neurosci. 1999, 19, 4065–4072. [Google Scholar] [CrossRef]
- Solianik, R.; Brazaitis, M.; Skurvydas, A. Sex-related differences in attention and memory. Medicina 2016, 52, 372–377. [Google Scholar] [CrossRef]
- Kanai, R.; Rees, G. The structural basis of inter-individual differences in human behaviour and cognition. Nat. Rev. Neurosci. 2011, 12, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Hadjikhani, N.; Joseph, R.M.; Snyder, J.; Tager-Flusberg, H. Anatomical differences in the mirror neuron system and social cognition network in autism. Cereb. Cortex. 2006, 16, 1276–1282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bevilacqua. Commentary: Should gender differences be included in the evolutionary upgrade to cognitive load theory? Educ. Psychol. Rev. 2017, 29, 189–194. [Google Scholar] [CrossRef]
- Jarraya, S.; Jarraya, M. The effects of music and the time-of-day on cognitive abilities of tennis player. Int. J. Sport. Exerc. Psychol. 2019, 17, 185–196. [Google Scholar] [CrossRef]
Steps | Criteria | Scores | |
---|---|---|---|
Action | Position | ||
1 |
| 0 or 1 0 or 1 0 or 1 | 0 or 1 0 or 1 0 or 1 |
2 |
| 0 or 1 0 or 1 0 or 1 | 0 or 1 0 or 1 0 or 1 |
3 |
| 0 or 1 0 or 1 0 or 1 | 0 or 1 0 or 1 0 or 1 |
4 |
| 0 or 1 0 or 1 0 or 1 | 0 or 1 0 or 1 0 or 1 |
Video Modeling | Static Pictures | |
---|---|---|
Male | 139.4 (2.98) † | 142.8 (3.97) † |
Female | 92.3 (4.32) | 89.45 (5.03) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rekik, G.; Belkhir, Y.; Mezghanni, N.; Jarraya, M.; Chen, Y.-S.; Kuo, C.-D. Learning Basketball Tactical Actions from Video Modeling and Static Pictures: When Gender Matters. Children 2021, 8, 1060. https://doi.org/10.3390/children8111060
Rekik G, Belkhir Y, Mezghanni N, Jarraya M, Chen Y-S, Kuo C-D. Learning Basketball Tactical Actions from Video Modeling and Static Pictures: When Gender Matters. Children. 2021; 8(11):1060. https://doi.org/10.3390/children8111060
Chicago/Turabian StyleRekik, Ghazi, Yosra Belkhir, Nourhen Mezghanni, Mohamed Jarraya, Yung-Sheng Chen, and Cheng-Deng Kuo. 2021. "Learning Basketball Tactical Actions from Video Modeling and Static Pictures: When Gender Matters" Children 8, no. 11: 1060. https://doi.org/10.3390/children8111060
APA StyleRekik, G., Belkhir, Y., Mezghanni, N., Jarraya, M., Chen, Y. -S., & Kuo, C. -D. (2021). Learning Basketball Tactical Actions from Video Modeling and Static Pictures: When Gender Matters. Children, 8(11), 1060. https://doi.org/10.3390/children8111060