Characteristics of Children Likely to Have Spontaneous Resolution of Obstructive Sleep Apnea: Results from the Childhood Adenotonsillectomy Trial (CHAT)
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Participants
2.3. Group Assignment, Sleep-Study and Cognitive Assessments
2.4. Cardiopulmonary Coupling Analysis
2.5. Outcome Variables
2.6. Statistical Analysis
3. Results
4. Discussions
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Clinical Trial Registration Name and Number
Abbreviations
References
- Lumeng, J.C.; Chervin, R.D. Epidemiology of pediatric obstructive sleep apnea. Proc. Am. Thorac. Soc. 2008, 5, 242–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcus, C.L.; Brooks, L.J.; Draper, K.A.; Gozal, D.; Halbower, A.C.; Jones, J.; Schechter, M.S.; Sheldon, S.H.; Spruyt, K.; Ward, S.D.; et al. Diagnosis and management of childhood obstructive sleep apnea syndrome. Pediatrics 2012, 130, 576–584. [Google Scholar] [CrossRef] [Green Version]
- Montgomery-Downs, H.E.; O’Brien, L.M.; Gulliver, T.E.; Gozal, D. Polysomnographic characteristics in normal preschool and early school-aged children. Pediatrics 2006, 117, 741–753. [Google Scholar] [CrossRef]
- Gulotta, G.; Iannella, G.; Vicini, C.; Polimeni, A.; Greco, A.; de Vincentiis, M.; Visconti, I.C.; Meccariello, G.; Cammaroto, G.; De Vito, A.; et al. Risk factors for obstructive sleep apnea syndrome in children: State of the art. Int. J. Environ. Res. Public Health 2019, 16, 3235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beebe, D.W. Neurobehavioral morbidity associated with disordered breathing during sleep in children: A comprehensive review. Sleep 2006, 29, 1115–1134. [Google Scholar] [CrossRef]
- Kaditis, A.G.; Alonso Alvarez, M.L.; Boudewyns, A.; Alexopoulos, E.I.; Ersu, R.; Joosten, K.; Larramona, H.; Miano, S.; Narang, I.; Trang, H.; et al. Obstructive sleep disordered breathing in 2- to 18-year-old children: Diagnosis and management. Eur. Respir. J. 2016, 47, 69–94. [Google Scholar] [CrossRef]
- Borgstrom, A.; Nerfeldt, P.; Friberg, D. Questionnaire OSA-18 has poor validity compared to polysomnography in pediatric obstructive sleep apnea. Int. J. Pediatr. Otorhinolaryngol. 2013, 77, 1864–1868. [Google Scholar] [CrossRef] [PubMed]
- Pierce, B.; Brietzke, S. Association of preoperative, subjective pediatric tonsil size with tonsillectomy outcomes: A systematic review. JAMA Otolaryngol. Head Neck Surg. 2019, 145, 854–859. [Google Scholar] [CrossRef]
- Certal, V.; Catumbela, E.; Winck, J.C.; Azevedo, I.; Teixeira-Pinto, A.; Costa-Pereira, A. Clinical assessment of pediatric obstructive sleep apnea: A systematic review and meta-analysis. Laryngoscope 2012, 122, 2105–2114. [Google Scholar] [CrossRef] [PubMed]
- Marcus, C.L.; Moore, R.H.; Rosen, C.L.; Giordani, B.; Garetz, S.L.; Taylor, H.G.; Mitchell, R.B.; Amin, R.; Katz, E.S.; Arens, R.; et al. A randomized trial of adenotonsillectomy for childhood sleep apnea. N. Engl. J. Med. 2013, 368, 2366–2376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garetz, S.L.; Mitchell, R.B.; Parker, P.D.; Moore, R.H.; Rosen, C.L.; Giordani, B.; Muzumdar, H.; Paruthi, S.; Elden, L.; Willging, P.; et al. Quality of life and obstructive sleep apnea symptoms after pediatric adenotonsillectomy. Pediatrics 2015, 135, e477–e486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, H.G.; Bowen, S.R.; Beebe, D.W.; Hodges, E.; Amin, R.; Arens, R.; Chervin, R.D.; Garetz, S.L.; Katz, E.S.; Moore, R.H.; et al. Cognitive effects of adenotonsillectomy for obstructive sleep apnea. Pediatrics 2016, 138, e20154458. [Google Scholar] [CrossRef] [Green Version]
- Paruthi, S.; Rosen, C.L.; Wang, R.; Weng, J.; Marcus, C.L.; Chervin, R.D.; Stanley, J.J.; Katz, E.S.; Amin, R.; Redline, S. End-tidal carbon dioxide measurement during pediatric polysomnography: Signal quality, association with apnea severity, and prediction of neurobehavioral outcomes. Sleep 2015, 38, 1719–1726. [Google Scholar] [CrossRef] [Green Version]
- Thomas, N.H.; Xanthopoulos, M.S.; Kim, J.Y.; Shults, J.; Escobar, E.; Giordani, B.; Hodges, E.; Chervin, R.D.; Paruthi, S.; Rosen, C.L.; et al. Effects of adenotonsillectomy on parent-reported behavior in children with obstructive sleep apnea. Sleep 2017, 40, zsx018. [Google Scholar] [CrossRef]
- Isaiah, A.; Pereira, K.D.; Das, G. Polysomnography and treatment-related outcomes of childhood sleep apnea. Pediatrics 2019, 144, e20191097. [Google Scholar] [CrossRef] [PubMed]
- Isaiah, A.; Spanier, A.J.; Grattan, L.M.; Wang, Y.; Pereira, K.D. Predictors of behavioral changes after adenotonsillectomy in pediatric obstructive sleep apnea: A secondary analysis of a randomized clinical trial. JAMA Otolaryngol. Head Neck Surg. 2020, 146, 900–908. [Google Scholar] [CrossRef] [PubMed]
- Murto, K.T.T.; Katz, S.L.; McIsaac, D.I.; Bromwich, M.A.; Vaillancourt, R.; van Walraven, C. Pediatric tonsillectomy is a resource-intensive procedure: A study of Canadian health administrative data. Can. J. Anaesth. 2017, 64, 724–735. [Google Scholar] [CrossRef]
- Witmans, M.; Shafazand, S. Adenotonsillectomy or watchful waiting in the management of childhood obstructive sleep apnea. J. Clin. Sleep Med. 2013, 9, 1225–1227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cote, C.J.; Posner, K.L.; Domino, K.B. Death or neurologic injury after tonsillectomy in children with a focus on obstructive sleep apnea: Houston, we have a problem! Anesth. Analg. 2014, 118, 1276–1283. [Google Scholar] [CrossRef] [Green Version]
- Byars, S.G.; Stearns, S.C.; Boomsma, J.J. Association of long-term risk of respiratory, allergic, and infectious diseases with removal of adenoids and tonsils in childhood. JAMA Otolaryngol. Head Neck Surg. 2018, 144, 594–603. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharjee, R.; Kheirandish-Gozal, L.; Spruyt, K.; Mitchell, R.B.; Promchiarak, J.; Simakajornboon, N.; Kaditis, A.G.; Splaingard, D.; Splaingard, M.; Brooks, L.J.; et al. Adenotonsillectomy outcomes in treatment of obstructive sleep apnea in children: A multicenter retrospective study. Am. J. Respir. Crit. Care Med. 2010, 182, 676–683. [Google Scholar] [CrossRef]
- Al Ashry, H.S.; Hilmisson, H.; Ni, Y.; Thomas, R.J. Automated apnea hypopnea index from oximetry and spectral analysis of cardiopulmonary coupling. Ann. Am. Thorac. Soc. 2021, 18, 876–883. [Google Scholar] [CrossRef]
- Hilmisson, H.; Berman, S.; Magnusdottir, S. Sleep apnea diagnosis in children using software-generated apnea-hypopnea index (AHI) derived from data recorded with a single photoplethysmogram sensor (PPG): Results from the childhood adenotonsillectomy study (CHAT) based on cardiopulmonary coupling analysis. Sleep Breath. 2020, 24, 1739–1749. [Google Scholar]
- Hilmisson, H.; Lange, N.; Magnusdottir, S. Objective sleep quality and metabolic risk in healthy weight children results from the randomized childhood adenotonsillectomy trial (CHAT). Sleep Breath. 2019, 23, 1197–1208. [Google Scholar] [CrossRef]
- Thomas, R.J.; Mietus, J.E.; Peng, C.K.; Guo, D.; Gozal, D.; Montgomery-Downs, H.; Gottlieb, D.J.; Wang, C.Y.; Goldberger, A.L. Relationship between delta power and the electrocardiogram-derived cardiopulmonary spectrogram: Possible implications for assessing the effectiveness of sleep. Sleep Med. 2014, 15, 125–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redline, S.; Amin, R.; Beebe, D.; Chervin, R.D.; Garetz, S.L.; Giordani, B.; Marcus, C.L.; Moore, R.H.; Rosen, C.L.; Arens, R.; et al. The childhood adenotonsillectomy trial (CHAT): Rationale, design, and challenges of a randomized controlled trial evaluating a standard surgical procedure in a pediatric population. Sleep 2011, 34, 1509–1517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dean, D.A., II; Goldberger, A.L.; Mueller, R.; Kim, M.; Rueschman, M.; Mobley, D.; Sahoo, S.S.; Jayapandian, C.P.; Cui, L.; Morrical, M.G.; et al. Scaling up scientific discovery in sleep medicine: The national sleep research resource. Sleep 2016, 39, 1151–1164. [Google Scholar] [CrossRef] [Green Version]
- Berry, R.B.; Budhiraja, R.; Gottlieb, D.J.; Gozal, D.; Iber, C.; Kapur, V.K.; Marcus, C.L.; Mehra, R.; Parthasarathy, S.; Quan, S.F.; et al. Rules for scoring respiratory events in sleep: Update of the 2007 AASM manual for the scoring of sleep and associated events: Deliberations of the sleep apnea definitions task force of the American Academy of Sleep Medicine. J. Clin. Sleep Med. 2012, 8, 597–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korkman, M.; Kirk, U.; Kemp, S. A Developmental Neuropshychological Assessment Manual; Psychological Corporation: New York, NY, USA, 1998. [Google Scholar]
- Korkman, M.; Kirk, U.; Kemp, S. NEPSY-II: Administrative Manual; Psychological Corporation: San Antonio, TX, USA, 2007. [Google Scholar]
- FDA. Software as a Medical Device (SAMD). Available online: https://www.fda.gov/medical-devices/digital-health-center-excellence/software-medical-device-samd (accessed on 31 May 2021).
- Thomas, R.J. Cardiopulmonary coupling sleep spectrograms. In Principles and Practices of Sleep Medicine; Kryger, M.R.T., Dement, W., Eds.; Elsevier, Inc.: Philadelphia, PA, USA, 2016. [Google Scholar]
- Lee, S.H.; Choi, J.H.; Park, I.H.; Lee, S.H.; Kim, T.H.; Lee, H.M.; Park, H.K.; Thomas, R.J.; Shin, C.; Yun, C.H. Measuring sleep quality after adenotonsillectomy in pediatric sleep apnea. Laryngoscope 2012, 122, 2115–2121. [Google Scholar] [CrossRef]
- Magnusdottir, S.; Hilmisson, H.; Thomas, R.J. Cardiopulmonary coupling-derived sleep quality is associated with improvements in blood pressure in patients with obstructive sleep apnea at high-cardiovascular risk. J. Hypertens. 2020, 38, 2287–2294. [Google Scholar] [CrossRef]
- Magnusdottir, S.; Thomas, R.J.; Hilmisson, H. Can improvements in sleep quality affect serum adiponectin-levels in patients with obstructive sleep apnea? Sleep Med. 2021, 84, 324–333. [Google Scholar] [CrossRef]
- Wu, J.G.; Wang, D.; Rowsell, L.; Wong, K.K.; Yee, B.J.; Nguyen, C.D.; Han, F.; Hilmisson, H.; Thomas, R.J.; Grunstein, R.R. The effect of acute exposure to morphine on breathing variability and cardiopulmonary coupling in men with obstructive sleep apnea: A randomized controlled trial. J. Sleep Res. 2020, 29, e1293. [Google Scholar] [CrossRef]
- Thomas, R.J.; Wood, C.; Bianchi, M.T. Cardiopulmonary coupling spectrogram as an ambulatory clinical biomarker of sleep stability and quality in health, sleep apnea and insomnia. Sleep 2018, 41, zsx196. [Google Scholar] [CrossRef]
- Wood, C.; Bianchi, M.T.; Yun, C.H.; Shin, C.; Thomas, R.J. Multicomponent analysis of sleep using electrocortical, respiratory, autonomic and hemodynamic signals reveals distinct features of stable and unstable NREM and REM sleep. Front. Physiol. 2020, 11, 592978. [Google Scholar] [CrossRef]
- Thomas, R.J.; Mietus, J.E.; Peng, C.K.; Gilmartin, G.; Daly, R.W.; Goldberger, A.L.; Gottlieb, D.J. Differentiating obstructive from central and complex sleep apnea using an automated electrocardiogram-based method. Sleep 2007, 30, 1756–1769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guilleminault, C.; Connolly, S.; Winkle, R.; Melvin, K.; Tilkian, A. Cyclical variation of the heart rate in sleep apnoea syndrome. Mechanisms, and usefulness of 24 h electrocardiography as a screening technique. Lancet 1984, 323, 126–131. [Google Scholar] [CrossRef]
- Penzel, T.; Kantelhardt, J.W.; Bartsch, R.P.; Riedl, M.; Kraemer, J.F.; Wessel, N.; Garcia, C.; Glos, M.; Fietze, I.; Schobel, C. Modu-lations of heart rate, ECG, and cardio-respiratory coupling observed in polysomnography. Front. Physiol. 2016, 7, 460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, R.J.; Mietus, J.E.; Peng, C.K.; Goldberger, A.L. An electrocardiogram-based technique to assess cardiopulmonary coupling during sleep. Sleep 2005, 28, 1151–1161. [Google Scholar] [CrossRef] [Green Version]
- Hilmisson, H.; Lange, N.; Duntley, S.P. Sleep apnea detection: Accuracy of using automated ECG analysis compared to manually scored polysomnography (apnea hypopnea index). Sleep Breath. 2019, 23, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Chervin, R.D.; Ellenberg, S.S.; Hou, X.; Marcus, C.L.; Garetz, S.L.; Katz, E.S.; Hodges, E.K.; Mitchell, R.B.; Jones, D.T.; Arens, R.; et al. Prognosis for spontaneous resolution of OSA in children. Chest 2015, 148, 1204–1213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saper, C.B.; Lowell, B.B. The hypothalamus. Curr. Biol. 2014, 24, R1111–R1116. [Google Scholar] [CrossRef] [Green Version]
- Jones, K.; Harrison, Y. Frontal lobe function, sleep loss and fragmented sleep. Sleep Med. Rev. 2001, 5, 463–475. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, S.; Mylemans, E.; Ysebaert, M.; Vermeiren, E.; De Guchtenaere, A.; Heuten, H.; Bruyndoncx, L.; De Winter, B.Y.; Van Hoorenbeeck, K.; Verhulst, S.L.; et al. The impact of obstructive sleep apnea on endothelial function during weight loss in an obese pediatric population. Sleep Med. 2021, 86, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Ogden, C.L.; Fryar, C.D.; Martin, C.B.; Freedman, D.S.; Carroll, M.D.; Gu, Q.; Hales, C.M. Trends in obesity prevalence by race and hispanic origin—1999–2000 to 2017–2018. JAMA 2020, 324, 1208–1210. [Google Scholar] [CrossRef]
- Abraham, E.J.; Bains, A.; Rubin, B.R.; Cohen, M.B.; Levi, J.R. Predictors of a normal sleep study in healthy children with sleep disordered breathing symptoms. Ann. Otol. Rhinol. Laryngol. 2021, 130, 3489421990156. [Google Scholar] [CrossRef] [PubMed]
- Galluzzi, F.; Garavello, W. Impact of adenotonsillectomy in children with severe obstructive sleep apnea: A systematic review. Auris Nasus Larynx 2021, 48, 549–554. [Google Scholar] [CrossRef]
- Beck, S.E.; Marcus, C.L. Pediatric polysomnography. Sleep Med. Clin. 2009, 4, 393–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Higher Sleep Quality and No OSA at Follow-Up (n = 43) | Lower Sleep Quality and OSA at Follow-Up (n = 160) | Contrast (p-Value) | |
---|---|---|---|
Characteristics | |||
Male (%) | 0.63 [0.45, 0.80] | 0.53 [0.42, 0.63] | 0.10 (0.234) |
African American (%) | 0.38 [0.22, 0.53] | 0.45 [0.35, 0.54] | −0.07 (0.413) |
Caucasian (%) | 0.40 [0.24, 0.55] | 0.38 [0.28, 0.47] | 0.02 (0.826) |
Other (%) | 0.23 [0.14, 0.32] | 0.18 [0.12, 0.23] | 0.05 (0.291) |
Age (years) | 6.33 [5.87, 6.79] | 6.46 [6.17, 6.75] | −0.13 (0.590) |
Body Mass Index (BMI) (Kg/m2) | 17.40 [15.90, 18.89] | 19.10 [18.16, 20.05] | −1.71 (0.033) |
BMI-z score | 0.44 [0.05, 0.83] | 0.94 [0.69, 1.19] | −0.50 (0.018) |
Waist circumference—Average (cm) | 58.34 [54.29, 62.38] | 62.74 [60.20, 65.29] | −4.40 (0.042) |
Healthy weight | 0.72 [0.56, 0.88] | 0.54 [0.44, 0.64] | 0.18 (0.035) |
Mallampati Score I and II | 0.65 [0.49, 0.81] | 0.58 [0.48, 0.68] | 0.07 (0.405) |
Friedman palate position I and II | 0.48 [0.33, 0.54] | 0.37 [0.28, 0.47] | 0.11 (0.182) |
Allergies | 0.30 [0.14, 0.45] | 0.30 [0.20, 0.39] | 0.00 (0.995) |
Asthma | 0.25 [0.10, 0.40] | 0.27 [0.18, 0.37] | −0.02 (0.806) |
Sleep Measures | |||
Sleep Quality Index (SQI) | 79.96 [75.07, 84.86] | 72.44 [69.50, 75.39] | 7.52 (0.005) |
Apnea hypopnea index 3% (AHI) | 4.01 [2.34, 5.68] | 6.52 [5.47, 7.57] | −2.51 (0.005) |
Respiratory Disturbance Index 3% (RDI) | 5.39 [3.66, 7.12] | 8.13 [7.04, 9.22] | −2.74 (0.003) |
Questionnaires | |||
PedQoL Parent Total Score | 83.74 [78.95, 88.54] | 77.51 [74.49, 80.53] | 6.23 (0.015) |
PedQoL Child Total Score | 70.84 [65.91, 75.77] | 67.59 [64.49, 70.68] | 3.25 (0.217) |
Child Behavior Checklist Total score | 51.51 [47.91, 55.10] | 53.73 [51.50, 55.97] | −2.23 (0.244) |
Conners DSM-IV Total Score | 52.21 [48.54, 55.87] | 52.66 [50.26, 56.13] | −1.61 (0.408) |
OSA-18 Summary-Average | 2.78 [2.43, 3.13] | 3.12 [2.90, 3.34] | −0.34 (0.067) |
PSQ-SRBD Total | 0.44 [0.38, 0.50] | 0.48 [0.44, 0.51] | 0.04 [0.222] |
NEPSY | |||
Core Domain: Attention/Executive function | 106.22 [101.67, 110.77] | 101.14 [98.56, 103.72] | 5.08 (0.037) |
Tower: Attention/Executive function | 11.54 [10.64, 12.43] | 10.03 [9.46, 10.6] | 1.27 (0.008) |
Higher Sleep Quality and No OSA at Follow-Up (n = 43) | Lower Sleep Quality and OSA at Follow-Up (n = 160) | Contrast (p-Value) | |
---|---|---|---|
Characteristics | |||
Body Mass Index (BMI) (Kg/m2) | 0.48 [0.13, 0.82] | 0.53 [0.31, 0.75] | −0.06 (0.763) |
BMI-z score | −0.01 [−0.33, 0.31] | −0.23 [−0.43, −0.03] | 0.22 (0.204) |
Waist circumference—Average (cm) | 1.48 [0.18, 2.79] | 2.37 [1.53, 3.20] | −0.88 (0.203) |
Sleep Measures | |||
Sleep Quality Index (SQI) | 6.31 [−0.05, 12.67] | −1.65 [−5.59, 2.29] | 7.96 (0.023) |
Apnea hypopnea index 3% (AHI) | −3.08 [−5.79, −0.38] | 0.05 [−1.65, 1.76] | −3.14 (0.030) |
Respiratory Disturbance Index 3% (RDI) | -3.08 [−5.95, −0.22] | 0.26 [−1.55, 2.06] | −3.34 (0.029) |
Questionnaires | |||
PedQoL Parent Total Score | −4.53 [−8.66, −0.39] | −1.58 [−4.18, 1.03] | −2.95 (0.182) |
PedQoL Child Total Score | 0.78 [−5.05, 6.61] | 1.63 [−2.37, 5.62] | −0.85 (0.781) |
Child Behavior Checklist Total score | −1.17 [−3.84, 1.50] | −1.41 [−3.07, 0.26] | 0.24 (0.868) |
Conners DSM-IV Total Score | −0.18 [−3.21, 2.85] | −0.38 [−2.30, 1.55] | 0.20 (0.902) |
OSA-18 Summary-Average | −0.11 [−0.48, 0.26] | −0.16 [−0.39, 0.07] | 0.05 (0.793) |
PSQ-SRBD Total | −0.03 [−0.09, 0.03] | 0.001 [−0.03, 0.05] | −0.04 (0.215) |
NEPSY | |||
Core Domain: Attention/Executive function | 0.72 [−3.6, 5.03] | 3.45 [0.73, 6.16] | −2.73 (0.235) |
Tower: Attention/Executive function | −0.09 [−1.06, 0.87] | 0.53 [-0.07, 1.14] | −0.63 (0.233) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magnusdottir, S.; Hilmisson, H.; Raymann, R.J.E.M.; Witmans, M. Characteristics of Children Likely to Have Spontaneous Resolution of Obstructive Sleep Apnea: Results from the Childhood Adenotonsillectomy Trial (CHAT). Children 2021, 8, 980. https://doi.org/10.3390/children8110980
Magnusdottir S, Hilmisson H, Raymann RJEM, Witmans M. Characteristics of Children Likely to Have Spontaneous Resolution of Obstructive Sleep Apnea: Results from the Childhood Adenotonsillectomy Trial (CHAT). Children. 2021; 8(11):980. https://doi.org/10.3390/children8110980
Chicago/Turabian StyleMagnusdottir, Solveig, Hugi Hilmisson, Roy J. E. M. Raymann, and Manisha Witmans. 2021. "Characteristics of Children Likely to Have Spontaneous Resolution of Obstructive Sleep Apnea: Results from the Childhood Adenotonsillectomy Trial (CHAT)" Children 8, no. 11: 980. https://doi.org/10.3390/children8110980
APA StyleMagnusdottir, S., Hilmisson, H., Raymann, R. J. E. M., & Witmans, M. (2021). Characteristics of Children Likely to Have Spontaneous Resolution of Obstructive Sleep Apnea: Results from the Childhood Adenotonsillectomy Trial (CHAT). Children, 8(11), 980. https://doi.org/10.3390/children8110980