Exploring the Moderation Effect of Educational Stage on Visual Magnocellular Functioning Linked to Reading: A Study in French Primary School Children
Abstract
:1. Introduction
2. The Present Study
3. Method
3.1. Participants
3.2. Materials
3.2.1. Reading Abilities
Text Reading
Word and Pseudoword Reading
3.2.2. Visual Magnocellular Functioning
Coherent Dot Motion (CDM) Task
3.3. Data Selection and Analyses
4. Results
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
CDM_HL | Regular Word Reading (Fluency) | Pseudoword Reading (Fluency) | Text Reading (Accuracy) | Text Reading (Fluency) | |
---|---|---|---|---|---|
CDM_LL | 0.673 *** | 0.368 ° | 0.259 | 0.598 *** | 0.657 *** |
CDM_HL | 0.504 ** | 0.302 | 0.658 *** | 0.679 *** | |
Regular wod reading (fluency) | 0.731 *** | 0.702 *** | 0.757 *** | ||
Pseudoword reading (fluency) | 0.572 ** | 0.616 *** | |||
Text reading (accuracy) | 0.801 *** |
CDM_HL | Regular Word Reading (Fluency) | Pseudoword Reading (Fluency) | Text Reading (Accuracy) | Text Reading (Fluency) | |
---|---|---|---|---|---|
CDM_LL | 0.628 *** | 0.090 | 0.049 | 0.266 | 0.440 * |
CDM_HL | 0.011 | −0.089 | 0.311 | 0.406 ° | |
Regular word reading (fluency) | 0.549 ** | 0.053 | 0.193 | ||
Pseudoword reading (fluency) | 0.323 | 0.598 ** | |||
Text reading (accuracy) | 0.704 *** |
References
- Bellocchi, S.; Muneaux, M.; Huau, A.; Lévêque, Y.; Jover, M.; Ducrot, S. Exploring the Link between Visual Perception, Visual-Motor Integration, and Reading in Normal Developing and Impaired Children using DTVP-2. Dyslexia 2017, 23, 296–315. [Google Scholar] [CrossRef] [PubMed]
- Boets, B.; De Smedt, B.; Cleuren, L.; Vandewalle, E.; Wouters, J.; Ghesquière, P. Towards a further characterization of phonological and literacy problems in Dutch-speaking children with dyslexia. Br. J. Dev. Psychol. 2010, 28, 5–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gough, P.B.; Hillinger, M.L. Learning to read: An unnatural act. Ann. Dyslexia 1980, 30, 179–196. [Google Scholar] [CrossRef]
- Hadad, B.-S.; Maurer, D.; Lewis, T.L. Long trajectory for the development of sensitivity to global and biological motion. Dev. Sci. 2011, 14, 1330–1339. [Google Scholar] [CrossRef] [PubMed]
- Bellocchi, S.; Massendari, D.; Grainger, J.; Ducrot, S. Effects of inter-character spacing on saccade programming in beginning readers and dyslexics. Child Neuropsychol. 2019, 25, 482–506. [Google Scholar]
- Besner, D.; Risko, E.F.; Sklair, N. Spatial Attention as a Necessary Preliminary to Early Processes in Reading. Can. J. Exp. Psychol. 2005, 59, 99–108. [Google Scholar] [CrossRef]
- Leclercq, V.; Siéroff, E. Attentional Processing of Letter Strings by Children. Child Neuropsychol. 2016, 22, 110–132. [Google Scholar] [CrossRef]
- Plaza, M.; Cohen, H. The contribution of phonological awareness and visual attention in early reading and spelling. Dyslexia 2007, 13, 67–76. [Google Scholar] [CrossRef]
- Brannan, J.R.; Williams, M.C. Allocation of visual attention in good and poor readers. Percept. Psychophys. 1987, 41, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Casco, C.; Tressoldi, P.E.; Dellantonio, A. Visual Selective Attention and Reading Efficiency are Related in Children. Cortex 1998, 34, 531–546. [Google Scholar] [CrossRef]
- Giovagnoli, G.; Vicari, S.; Tomassetti, S.; Menghini, D. The Role of Visual-Spatial Abilities in Dyslexia: Age Differences in Children’s Reading? Front. Psychol. 2016, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LaBerge, D.; Brown, V. Theory of attentional operations in shape identification. Psychol. Rev. 1989, 96, 101–124. [Google Scholar] [CrossRef]
- Laberge, D.; Samuels, S.J. Toward a theory of automatic information processing in reading. Cogn. Psychol. 1974, 6, 293–323. [Google Scholar] [CrossRef]
- Perry, C.; Ziegler, J.C.; Zorzi, M. Nested incremental modeling in the development of computational theories: The CDP+ model of reading aloud. Psychol. Rev. 2007, 114, 273–315. [Google Scholar] [CrossRef] [Green Version]
- Vidyasagar, T.R.; Pammer, K. Dyslexia: A deficit in visuo-spatial attention, not in phonological processing. Trends Cogn. Sci. 2010, 14, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Facoetti, A. Spatial attention disorders in developmental dyslexia: Towards the prevention of reading acquisition deficits. In Visual Aspect of Dyslexia; Stein, J., Kapoula, Z., Eds.; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Ebrahimi, L.; Pouretemad, H.; Khatibi, A.; Stein, J. Magnocellular based visual motion training improves reading in Persian. Sci. Rep. 2019, 9, 1142. [Google Scholar] [CrossRef]
- Stein, J. The current status of the magnocellular theory of developmental dyslexia. Neuropsychologia 2019, 130, 66–77. [Google Scholar] [CrossRef]
- Cornelissen, P.; Richardson, A.; Mason, A.; Fowler, S.; Stein, J. Contrast sensitivity and coherent motion detection measured at photopic luminance levels in dyslexics and controls. Vis. Res. 1995, 35, 1483–1494. [Google Scholar] [CrossRef] [Green Version]
- Crewther, S.G.; Crewther, D.P.; Klistorner, A.; Kiely, P.M. Development of the magnocellular VEP in children: Implications for reading disability. Electroencephalogr. Clin. Neurophysiol. Suppl. 1999, 49, 123. [Google Scholar]
- Eden, G.F.; VanMeter, J.W.; Rumsey, J.M.; Maisog, J.M.; Woods, R.P.; Zeffiro, T.A. Abnormal processing of visual motion in dyslexia revealed by functional brain imaging. Nature 1996, 382, 66–69. [Google Scholar] [CrossRef]
- Flint, S.; Pammer, K. It is the egg, not the chicken; dorsal visual deficitspresent in dyslexia are not present in illiterate adults. Dyslexia 2018, 25, 69–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gori, S.; Seitz, A.; Ronconi, L.; Franceschini, S.; Facoetti, A. The causal link between magnocellular-dorsal pathway functioning and dyslexia. J. Vis. 2015, 15, 195. [Google Scholar] [CrossRef]
- Laycock, R.; Crewther, S.G. Towards an understanding of the role of the ‘magnocellular advantage’ in fluent reading. Neurosci. Biobehav. Rev. 2008, 32, 1494–1506. [Google Scholar] [CrossRef] [PubMed]
- Livingstone, M.S.; Rosen, G.D.; Drislane, F.W.; Galaburda, A.M. Physiological and anatomical evidence for a magnocellular defect in developmental dyslexia. Proc. Natl. Acad. Sci. USA 1991, 88, 7943–7947. [Google Scholar] [CrossRef] [Green Version]
- Lovegrove, W.J.; Bowling, A.; Badcock, D.; Blackwood, M. Specific reading disability: Differences in contrast sensitivity as a function of spatial frequency. Science 1980, 210, 439–440. [Google Scholar] [CrossRef]
- Peters, J.L.; Bavin, E.L.; Brown, A.; Crewther, D.P.; Crewther, S.G. Flicker fusion thresholds as a clinical identifier of a magnocellular-deficit dyslexic subgroup. Sci. Rep. 2020, 10, 21638. [Google Scholar] [CrossRef]
- Stein, J.; Walsh, V. To see but not to read: The magnocellular theory of dyslexia. Trends Neurosci. 1997, 20, 147–152. [Google Scholar] [CrossRef]
- Joo, S.J.; Donnelly, P.M.; Yeatman, J.D. The causal relationship between dyslexia and motion perception reconsidered. Sci. Rep. 2017, 7, 4185. [Google Scholar] [CrossRef] [Green Version]
- Facoetti, A.; Zorzi, M.; Cestnick, L.; Lorusso, M.L.; Molteni, M.; Paganoni, P.; Umiltà, C.; Mascetti, G.G. The relationship between visuo-spatial attention and nonword reading in developmental dyslexia. Cogn. Neuropsychol. 2006, 23, 841–855. [Google Scholar] [CrossRef]
- Facoetti, A. Reading and selective spatial attention: Evidence from behavioral studies in dyslexic children. In Trends in Dyslexia Research; Tobias, H.D., Ed.; Nova Science Publishers: New York, NY, USA, 2004; pp. 35–71. [Google Scholar]
- Hari, R.; Renvall, H. Impaired processing of rapid stimulus sequences in dyslexia. Trends Cogn. Sci. 2001, 5, 525–532. [Google Scholar] [CrossRef]
- Valdois, S.; Bosse, M.-L.; Tainturier, M.-J. The cognitive deficits responsible for developmental dyslexia: Review of evidence for a selective visual attentional disorder. Dyslexia 2004, 10, 339–363. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, J. Review of human visual development: Crowding and dyslexia. In Vision and Visual Dyslexia; Stein, J.F., Ed.; MacMillan: New York, NY, USA, 1991; pp. 44–77. [Google Scholar]
- Bertoni, S.; Franceschini, S.; Ronconi, L.; Gori, S.; Facoetti, A. Is excessive visual crowding causally linked to developmental dyslexia? Neuropsychologia 2019, 130, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Bouma, H.; Legein, C.P. Foveal and parafoveal recognition of letters and words by dyslexics and by average readers. Neuropsychologia 1977, 15, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Zorzi, M.; Barbiero, C.; Facoetti, A.; Lonciari, I.; Carrozzi, M.; Montico, M.; Bravar, L.; George, F.; Pech-Georgel, C.; Ziegler, J.C. Extra-large letter spacing improves reading in dyslexia. Proc. Natl. Acad. Sci. USA 2012, 109, 11455–11459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellocchi, S.; Muneaux, M.; Bastien-Toniazzo, M.; Ducrot, S. I can read it in your eyes: What eye movements tell us about visuo-attentional processes in developmental dyslexia. Res. Dev. Disabil. 2013, 34, 452–460. [Google Scholar] [CrossRef]
- Kevan, A.; Pammer, K. Predicting early reading skills from pre-reading measures of dorsal stream functioning. Neuropsychologia 2009, 47, 3174–3181. [Google Scholar] [CrossRef]
- Barnard, N.; Crewther, S.G.; Crewther, D.P. Development of a Magnocellular Function in Good and Poor Primary School-Age Readers. Optom. Vis. Sci. 1998, 75, 62–68. [Google Scholar] [CrossRef]
- Talcott, J.B.; Hansen, P.C.; Assoku, E.L.; Stein, J.F. Visual motion sensitivity in dyslexia: Evidence for temporal and energy integration deficits. Neuropsychologia 2000, 38, 935–943. [Google Scholar] [CrossRef] [Green Version]
- Piotrowska, B.; Willis, A. Beyond the global motion deficit hypothesis of developmental dyslexia: A cross-sectional study of visual, cognitive, and socio-economic factors influencing reading ability in children. Vision. Res. 2019, 159, 48–60. [Google Scholar] [CrossRef]
- Kinsey, K.; Rose, M.; Hansen, P.; Richardson, A.; Stein, J. Magnocellular mediated visual-spatial attention and reading ability. NeuroReport 2004, 15, 2215–2218. [Google Scholar] [CrossRef] [Green Version]
- Facoetti, A.; Trussardi, A.N.; Ruffino, M.; Lorusso, M.L.; Cattaneo, C.; Galli, R.; Molteni, M.; Zorzi, M. Multisensory Spatial Attention Deficits Are Predictive of Phonological Decoding Skills in Developmental Dyslexia. J. Cogn. Neurosci. 2010, 22, 1011–1025. [Google Scholar] [CrossRef] [PubMed]
- Gori, S.; Cecchini, P.; Bigoni, A.; Molteni, M.; Facoetti, A. Magnocellular-dorsal pathway and sub-lexical route in developmental dyslexia. Front. Hum. Neurosci. 2014, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pugh, K.R.; Mencl, W.; Jenner, A.R.; Katz, L.; Frost, S.J.; Lee, J.R.; Shaywitz, S.E.; A Shaywitz, B. Neurobiological studies of reading and reading disability. J. Commun. Disord. 2001, 34, 479–492. [Google Scholar] [CrossRef] [Green Version]
- Lefavrais, P. Test de l’Alouette-R; ECPA: Paris, France, 2005. [Google Scholar]
- World Medical Association. Declaration of Helsinki. Ethical Principles for Medical Research Involving Human Subjects, as Amended by the 59th WMA General Assembly; World Medical Association: Seoul, Korea, 2008. [Google Scholar]
- Theurel, A.; Gentaz, E.; Sprenger-Charolles, L. Evaluer les capacités de lecture chez les enfants de 6-7 ans; Document édité par la Faculté de Psychologie et de sciences de l’éducation (FAPSE); Université de Genève: Geneva, Switzerland, 2017. [Google Scholar]
- Jacquier-Roux, M.; Valdois, S.; Zorman, M.; Lequette, C.; Pouget, G. ODEDYS: Un Outil de Dépistage des Dyslexies Version 2; Laboratoire cogni-sciences, IUFM de Grenoble: Grenoble, France, 2005. [Google Scholar]
- Brainard, D.H. The Psychophysics Toolbox. Spat. Vis. 1997, 10, 433–436. [Google Scholar] [CrossRef] [Green Version]
- Pelli, D.G. The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spat. Vis. 1997, 10, 437–442. [Google Scholar] [CrossRef] [Green Version]
- Pilly, P.K.; Seitz, A.R. What a difference a parameter makes: A psychophysical comparison of random dot motion algorithms. Vis. Res. 2009, 49, 1599–1612. [Google Scholar] [CrossRef] [Green Version]
- Hayes, A.F. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach; Guilford Press: New York, NY, USA, 2017. [Google Scholar]
- Judd, C.M.; McClelland, G.H.; Ryan, C.S. Data Analysis: A Model Comparison Approach to Regression, ANOVA, and Beyond, 3rd ed.; Routledge: Abingdon, UK; New York, NY, USA, 2017. [Google Scholar]
- Crewther, S.G.; Crewther, D.P.; Barnard, N.; Klistorner, A. Electrophysiological and psychophysical evidence for the development of magnocellular function in children. Aust. N. Z. J. Ophthalmol. 1996, 24, 38–40. [Google Scholar] [CrossRef]
- Ans, B.; Carbonnel, S.; Valdois, S. A connectionist multi-trace memory model of polysyllabic word reading. Psychol. Rev. 1998, 105, 678–723. [Google Scholar] [CrossRef]
- Cheng, A.; Eysel, U.T.; Vidyasagar, T.R. The role of the magnocellular pathway in serial deployment of visual attention. Eur. J. Neurosci. 2004, 20, 2188–2192. [Google Scholar] [CrossRef]
- Martens, V.E.G.; de Jong, P.F. Effects of repeated reading on the length effect in word and pseudoword reading. J. Res. Read. 2008, 31, 40–54. [Google Scholar] [CrossRef]
Grade 1 | Grade 5 | |||
---|---|---|---|---|
Mean (SD) | Mean (SD) | t (76) | p | |
Regular word reading (accuracy; % of correct responses) | ||||
raw scores | _ | 91.585 (5.527) | _ | _ |
z-scores | −0.157 (0.614) | |||
Regular word reading (speed; s) | ||||
raw scores | _ | 23.780 (7.185) | _ | _ |
z-scores | 0.152 (0.844) | |||
Regular word reading (fluency) | ||||
raw scores | 39.384 (14.810) | 50.093 (14.571) | −3.216 | <0.001 |
z-scores | −0.012 (0.827) | −0.003 (0.729) | ||
Irregular word reading (accuracy; % of correct responses) | ||||
raw scores | _ | 78.780 (14.040) | _ | _ |
z-scores | 0.159 (0.802) | |||
Irregular word reading (speed; s) | ||||
raw scores | _ | 26.805 (11.724) | _ | _ |
z-scores relative to the norm | −0.039 (1.292) | |||
Irregular word reading (fluency) | ||||
raw scores | _ | 52.875 (14.653) | _ | _ |
z-scores | 0.060 (1.047) | |||
Pseudoword reading (accuracy; % of correct responses) | ||||
raw scores | _ | 82.320 (11.020) | _ | _ |
z-scores | −0.190 (0.958) | |||
Pseudoword reading (speed; s) | ||||
raw scores | _ | 29.439 (10.092) | _ | _ |
z-scores | 0.320 (1.023) | |||
Pseudoword reading (fluency) | ||||
raw scores | 28.784 (8.616) | 37.264 (12.110) | −3.528 | <0.001 |
z-scores | 0.057 (0.724) | 0.065 (0.991) | ||
Text reading (accuracy; %) | ||||
raw scores | 81.253 (8.982) | 94.388 (2.419) | −9.014 | <0.001 |
z-scores | −0.416 (0.998) | −0.153 (0.605) | ||
Text reading (fluency) | ||||
raw scores | 83.108 (34.374) | 274.206 (63.462) | −16.281 | <0.001 |
z-scores | 0.415 (1.001) | 0.076 (0.774) | ||
CDM_LL (% of correct responses) | ||||
raw scores | 31.284(7.985) | 47.659 (13.710) | −6.355 | <0.001 |
CDM_HL (% of correct responses) | ||||
raw scores | 59.193 (22.646) | 89.732 (11.562) | −7.609 | <0.001 |
CDM_HL | Regular Word Reading (Fluency) | Pseudoword Reading (Fluency) | Text Reading (Accuracy) | Text Reading (Fluency) | |
---|---|---|---|---|---|
CDM_LL | 0.614 *** | 0.374 * | 0.397 * | 0.523 ** | 0.549 *** |
CDM_HL | 0.302 ° | 0.289 | 0.315 ° | 0.339 * | |
Regular word reading (fluency) | 0.875 *** | 0.626 *** | 0.871 *** | ||
Pseudoword reading (fluency) | 0.655 ** | 0.837 *** | |||
Text reading (accuracy) | 0.701 *** |
CDM_HL | Regular Word Reading (Speed) | Regular Word Reading (Accuracy) | Regular Word Reading (Fluency) | Irregular Word Reading (Speed) | Irregular Word Reading (Accuracy) | Regular Word Reading (Fluency) | Pseudo-Word Reading (Speed) | Pseudo-Word Reading (Accuracy) | Pseudo-Word Reading (Fluency) | Text Reading (Accuracy) | Text Reading (Fluency) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CDM_LL | 0.538 *** | 0.037 | −0.086 | −0.021 | 0.228 | 0.035 | −0.103 | 0.075 | 0.120 | −0.087 | 0.215 | 0.121 |
CDM_HL | 0.116 | 0.134 | −0.063 | 0.192 | 0.071 | −0.048 | 0.170 | −0.078 | −0.150 | 0.359 * | 0.012 | |
Regular word reading (speed) | −0.164 | −0.903 *** | 0.857 *** | −0.222 | −0.680 *** | 0.613 *** | −0.281 | −0.712 *** | −0.461 ** | −0.782 *** | ||
Regular word reading (accuracy) | 0.343 * | −0.284 ° | 0.332 * | 0.289 ° | 0.193 | 0.205 | −0.073 | 0.378 * | 0.033 | |||
Regular word reading (fluency) | −0.723 *** | 0.212 | 0.706 *** | −0.549 *** | 0.213 | 0.669 *** | 0.354 * | 0.759 *** | ||||
Irregular word reading (speed) | −0.377 * | −0.788 *** | 0.389 * | −0.294 ° | −0.488 ** | −0.509 *** | −0.603 *** | |||||
Irregular word reading (accuracy) | 0.675 *** | 0.206 | 0.463 ** | −0.008 | 0.456 ** | 0.269 | ||||||
Irregular word reading (fluency) | −0.164 | 0.280 | 0.315 * | 0.439 ** | 0.612 *** | |||||||
Pseudoword reading (speed) | −0.192 | −0.916 *** | −0.195 | −0.607 *** | ||||||||
Pseudoword reading (accuracy) | 0.430 ** | 0.560 *** | 0.257 | |||||||||
Pseudoword reading (fluency) | 0.328 * | 0.696 *** | ||||||||||
Text reading (accuracy) | 0.458 ** |
Variables | b | SE B | t | p | 95% CI | |
---|---|---|---|---|---|---|
Regular word reading (fluency) R2 = 0.067 | Constant | 0.000 | 0.111 | 0.000 | 1.000 | [−0.221, 0.221] |
CDM | 0.177 | 0.103 | 1.572 | 0.120 | [−0.047, 0.401] | |
Educational stage | 0.000 | 0.222 | 0.000 | 1.000 | [−0.442, 0.442] | |
CDM x Educational stage | −0.395 | 0.225 | −1.756 | 0.083 | [−0.843, 0.053] | |
Pseudoword reading (fluency) R2 = 0.079 | Constant | 0.000 | 0.110 | 0.000 | 1.000 | [−0.220, 0.220] |
CDM | 0.155 | 0.110 | 1.386 | 0.170 | [−0.068, 0.378] | |
Educational stage | 0.000 | 0.221 | 0.000 | 1.000 | [−0.440, 0.440] | |
CDM x Educational stage | −0.484 | 0.224 | −2.17 | 0.034* | [−0.929, −0.039] | |
Text reading (accuracy) R2 = 0.154 | Constant | 0.000 | 0.106 | 0.000 | 1.000 | [−0.211, 0.211] |
CDM | 0.369 | 0.107 | 3.445 | 0.001 * | [0.156, 0.582] | |
Educational stage | 0.000 | 0.211 | 0.000 | 1.000 | [−0.421, 0.421] | |
CDM x Educational stage | −0.301 | 0.214 | −1.437 | 0.155 | [−0.735, 0.119] | |
Text reading (fluency) R2 = 0.150 | Constant | 0.000 | 0.106 | 0.000 | 1.000 | [−0.211, 0.211] |
CDM | 0.335 | 0.107 | 3.120 | 0.003 * | [0.121, 0.548] | |
Educational stage | 0.000 | 0.212 | 0.000 | 1.000 | [−0.422, 0.422] | |
CDM x Educational stage | −0.428 | 0.215 | −1.994 | 0.049 * | [−0.855, −0.000] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellocchi, S.; Leclercq, V. Exploring the Moderation Effect of Educational Stage on Visual Magnocellular Functioning Linked to Reading: A Study in French Primary School Children. Children 2021, 8, 68. https://doi.org/10.3390/children8020068
Bellocchi S, Leclercq V. Exploring the Moderation Effect of Educational Stage on Visual Magnocellular Functioning Linked to Reading: A Study in French Primary School Children. Children. 2021; 8(2):68. https://doi.org/10.3390/children8020068
Chicago/Turabian StyleBellocchi, Stéphanie, and Virginie Leclercq. 2021. "Exploring the Moderation Effect of Educational Stage on Visual Magnocellular Functioning Linked to Reading: A Study in French Primary School Children" Children 8, no. 2: 68. https://doi.org/10.3390/children8020068
APA StyleBellocchi, S., & Leclercq, V. (2021). Exploring the Moderation Effect of Educational Stage on Visual Magnocellular Functioning Linked to Reading: A Study in French Primary School Children. Children, 8(2), 68. https://doi.org/10.3390/children8020068