DNA Methylation in LIME1 and SPTBN2 Genes Is Associated with Attention Deficit in Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Collecting Clinical Blood Samples and M850K Examination
2.3. Pyrosequencing and Sequence Analysis
2.4. Neuropsychological Assessments
2.5. Clinical Measurements
2.6. Statistical Analysis
3. Results
3.1. DNA Methylation Profile
3.2. Pyro-Sequencing Analysis Result
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thapar, A.; Cooper, M. Attention deficit hyperactivity disorder. Lancet 2016, 387, 1240–1250. [Google Scholar] [CrossRef]
- Polanczyk, G.V.; Willcutt, E.G.; Salum, G.A.; Kieling, C.; Rohde, L.A. ADHD prevalence estimates across three decades: An updated systematic review and meta-regression analysis. Int. J. Epidemiol. 2014, 43, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Faraone, S.V.; Perlis, R.H.; Doyle, A.E.; Smoller, J.W.; Goralnick, J.J.; Holmgren, M.A.; Sklar, P. Molecular genetics of attention-deficit/hyperactivity disorder. Biol. Psychiatry 2005, 57, 1313–1323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babenko, O.; Kovalchuk, I.; Metz, G.A. Stress-induced perinatal and transgenerational epigenetic programming of brain development and mental health. Neurosci. Biobehav. Rev. 2014, 48, 70–91. [Google Scholar] [CrossRef] [PubMed]
- Banik, A.; Kandilya, D.; Ramya, S.; Stunkel, W.; Chong, Y.S.; Dheen, S.T. Maternal factors that induce epigenetic changes contribute to neurological disorders in offspring. Genes 2017, 8, 150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, C.; Schneper, L.M.; Notterman, D.A. DNA methylation, early life environment, and health outcomes. Pediatr. Res. 2015, 79, 212–219. [Google Scholar] [CrossRef] [Green Version]
- Udagawa, J.; Hino, K. Impact of maternal stress in pregnancy on brain function of the offspring. Nihon Eiseigaku Zasshi 2016, 71, 188–194. [Google Scholar] [CrossRef] [Green Version]
- Cecil, C.A.; Walton, E.; Barker, E.D. Prenatal diet and childhood ADHD: Exploring the potential role of IGF2 methylation. Epigenomics 2016, 8, 1573–1576. [Google Scholar] [CrossRef] [Green Version]
- Sengupta, S.M.; Smith, A.K.; Grizenko, N.; Joober, R. Locus-specific DNA methylation changes and phenotypic variability in children with attention-deficit hyperactivity disorder. Psychiatry Res. 2017, 256, 298–304. [Google Scholar] [CrossRef]
- Barker, E.D.; Walton, E.; Cecil, C.A.M.; Rowe, R.; Jaffee, S.R.; Maughan, B.; O’Connor, T.G.; Stringaris, A.; Meehan, A.J.; McArdle, W.; et al. A methylome-wide association study of trajectories of oppositional defiant behaviors and biological overlap with attention deficit hyperactivity disorder. Child Dev. 2018, 89, 1839–1855. [Google Scholar] [CrossRef] [Green Version]
- van Dongen, J.; Zilhao, N.R.; Sugden, K.; Consortium, B.; Hannon, E.J.; Mill, J.; Caspi, A.; Agnew-Blais, J.; Arseneault, L.; Corcoran, D.L.; et al. Epigenome-wide Association Study of Attention-Deficit/Hyperactivity Disorder Symptoms in Adults. Biol. Psychiatry 2019, 86, 599–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitz, J.; Kumsta, R.; Moser, D.; Gunturkun, O.; Ocklenburg, S. DNA methylation of dopamine-related gene promoters is associated with line bisection deviation in healthy adults. Sci. Rep. 2019, 9, 5902. [Google Scholar] [CrossRef] [PubMed]
- Wilmot, B.; Fry, R.; Smeester, L.; Musser, E.D.; Mill, J.; Nigg, J.T. Methylomic analysis of salivary DNA in childhood ADHD identifies altered DNA methylation in VIPR2. J. Child Psychol. Psychiatry 2016, 57, 152–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dall’Aglio, L.; Muka, T.; Cecil, C.A.M.; Bramer, W.M.; Verbiest, M.; Nano, J.; Hidalgo, A.C.; Franco, O.H.; Tiemeier, H. The role of epigenetic modifications in neurodevelopmental disorders: A systematic review. Neurosci. Biobehav. Rev. 2018, 94, 17–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arpon, A.; Milagro, F.I.; Laja, A.; Segura, V.; de Pipaon, M.S.; Riezu-Boj, J.I.; Alfredo Martinez, J. Methylation changes and pathways affected in preterm birth: A role for SLC6A3 in neurodevelopment. Epigenomics 2018, 10, 91–103. [Google Scholar] [CrossRef]
- van Mil, N.H.; Steegers-Theunissen, R.P.; Bouwland-Both, M.I.; Verbiest, M.M.; Rijlaarsdam, J.; Hofman, A.; Steegers, E.A.; Heijmans, B.T.; Jaddoe, V.W.; Verhulst, F.C.; et al. DNA methylation profiles at birth and child ADHD symptoms. J. Psychiatr. Res. 2014, 49, 51–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perroud, N.; Zewdie, S.; Stenz, L.; Adouan, W.; Bavamian, S.; Prada, P.; Nicastro, R.; Hasler, R.; Nallet, A.; Piguet, C.; et al. Methylation of serotonin receptor 3A in Adhd, borderline personality, and bipolar disorders: Link with severity of the disorders and childhood maltreatment. Depress. Anxiety 2016, 33, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Lee, J.M.; Kim, J.W.; Cho, D.Y.; Yun, H.J.; Han, D.H.; Cheong, J.H.; Kim, B.N. Associations between serotonin transporter gene (SLC6A4) methylation and clinical characteristics and cortical thickness in children with ADHD. Psychol. Med. 2015, 45, 3009–3017. [Google Scholar] [CrossRef]
- Dadds, M.R.; Schollar-Root, O.; Lenroot, R.; Moul, C.; Hawes, D.J. Epigenetic regulation of the DRD4 gene and dimensions of attention-deficit/hyperactivity disorder in children. Eur. Child Adolesc. Psychiatry 2016, 25, 1081–1089. [Google Scholar]
- Hamza, M.; Halayem, S.; Bourgou, S.; Daoud, M.; Charfi, F.; Belhadj, A. Epigenetics and ADHD: Toward an Integrative Approach of the Disorder Pathogenesis. J. Atten. Disord. 2019, 23, 655–664. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, X.T.; Luo, M.; Tang, Y.; Zhang, G.; Wu, D.; Yang, B.; Ruan, D.Y.; Wang, H.L. Multiple epigenetic factors predict the attention deficit/hyperactivity disorder among the Chinese Han children. J. Psychiatr. Res. 2015, 64, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Rijlaarsdam, J.; Cecil, C.A.; Walton, E.; Mesirow, M.S.; Relton, C.L.; Gaunt, T.R.; McArdle, W.; Barker, E.D. Prenatal unhealthy diet, insulin-like growth factor 2 gene (IGF2) methylation, and attention deficit hyperactivity disorder symptoms in youth with early-onset conduct problems. J. Child Psychol. Psychiatry 2017, 58, 19–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Liang, X.; Zhu, F.; Wen, Y.; Xu, J.; Yang, J.; Ding, M.; Cheng, B.; Ma, M.; Zhang, L.; et al. A large-scale integrative analysis of GWAS and common meQTLs across whole life course identifies genes, pathways and tissue/cell types for three major psychiatric disorders. Neurosci. Biobehav. Rev. 2018, 95, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Peter, C.J.; Fischer, L.K.; Kundakovic, M.; Garg, P.; Jakovcevski, M.; Dincer, A.; Amaral, A.C.; Ginns, E.I.; Galdzicka, M.; Bryce, C.P.; et al. DNA Methylation Signatures of Early Childhood Malnutrition Associated With Impairments in Attention and Cognition. Biol. Psychiatry 2016, 80, 765–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Starnawska, A.; Hansen, C.S.; Sparso, T.; Mazin, W.; Olsen, L.; Bertalan, M.; Buil, A.; Bybjerg-Grauholm, J.; Baekvad-Hansen, M.; Hougaard, D.M.; et al. Differential DNA methylation at birth associated with mental disorder in individuals with 22q11.2 deletion syndrome. Transl. Psychiatry 2017, 7, e1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinrich, H.; Grunitz, J.; Stonawski, V.; Frey, S.; Wahl, S.; Albrecht, B.; Goecke, T.W.; Beckmann, M.W.; Kornhuber, J.; Fasching, P.A.; et al. Attention, cognitive control and motivation in ADHD: Linking event-related brain potentials and DNA methylation patterns in boys at early school age. Sci. Rep. 2017, 7, 3823. [Google Scholar] [PubMed] [Green Version]
- Neumann, A.; Walton, E.; Alemany, S.; Cecil, C.; Gonzalez, J.R.; Jima, D.D.; Lahti, J.; Tuominen, S.T.; Barker, E.D.; Binder, E.; et al. Association between DNA methylation and ADHD symptoms from birth to school age: A prospective meta-analysis. Transl. Psychiatry 2020, 10, 398. [Google Scholar] [CrossRef]
- Sullivan, P.F. The psychiatric GWAS consortium: Big science comes to psychiatry. Neuron 2010, 68, 182–186. [Google Scholar] [CrossRef] [Green Version]
- Walton, E.; Pingault, J.B.; Cecil, C.A.; Gaunt, T.R.; Relton, C.L.; Mill, J.; Barker, E.D. Epigenetic profiling of ADHD symptoms trajectories: A prospective, methylome-wide study. Mol. Psychiatry 2017, 22, 250–256. [Google Scholar] [CrossRef]
- Cecil, C.A.M.; Walton, E.; Pingault, J.B.; Provencal, N.; Pappa, I.; Vitaro, F.; Cote, S.; Szyf, M.; Tremblay, R.E.; Tiemeier, H.; et al. DRD4 methylation as a potential biomarker for physical aggression: An epigenome-wide, cross-tissue investigation. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2018, 177, 746–764. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, J.; Birmaher, B.; Brent, D.; Rao, U.; Flynn, C.; Moreci, P.; Williamson, D.; Ryan, N. Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version (K-SADS-PL): Initial reliability and validity data. J. Am. Acad. Child Adolesc. Psychiatry 1997, 36, 980–988. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.H.; Lin, C.H.; Tsai, K.W.; Lin, M.H.; Ho, C.J.; Lu, Y.T.; Weng, K.P.; Lin, Y.; Lin, P.H.; Li, S.C. S100A6 promotes B lymphocyte penetration through the blood-brain barrier in autoimmune encephalitis. Front. Genet. 2019, 10, 1188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fortin, J.P.; Labbe, A.; Lemire, M.; Zanke, B.W.; Hudson, T.J.; Fertig, E.J.; Greenwood, C.M.; Hansen, K.D. Functional normalization of 450k methylation array data improves replication in large cancer studies. Genome Biol. 2014, 15, 503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conners, C.K. The computerized continuous performance test. Psychopharmacol. Bull. 1985, 21, 891–892. [Google Scholar] [PubMed]
- Conners, C.K. (Ed.) Conners’ Continuous Performance Test II (CPTII) for Windows Technical Guide and Software Manual; Multi-Health Systems Inc.: North Tonawanda, NY, USA, 2004. [Google Scholar]
- Baron, I.S. Test review: Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV). Child Neuropsychol. 2005, 11, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Bussing, R.; Fernandez, M.; Harwood, M.; Wei, H.; Garvan, C.W.; Eyberg, S.M.; Swanson, J.M. Parent and teacher SNAP-IV ratings of attention deficit hyperactivity disorder symptoms: Psychometric properties and normative ratings from a school district sample. Assessment 2008, 15, 317–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, L.H.; Kuo, H.C.; Pan, C.T.; Lin, Y.S.; Huang, Y.H.; Li, S.C. Multiomics analyses identified epigenetic modulation of the S100A gene family in Kawasaki disease and their significant involvement in neutrophil transendothelial migration. Clin. Epigenetics 2018, 10, 135. [Google Scholar] [CrossRef] [Green Version]
- Mooney, M.A.; Ryabinin, P.; Wilmot, B.; Bhatt, P.; Mill, J.; Nigg, J.T. Large epigenome-wide association study of childhood ADHD identifies peripheral DNA methylation associated with disease and polygenic risk burden. Transl. Psychiatry 2020, 10, 8. [Google Scholar] [CrossRef]
- LIME1 Lck Interacting Transmembrane Adaptor 1 [Homo Sapiens (Human)]. Available online: https://www.ncbi.nlm.nih.gov/gene/54923 (accessed on 20 December 2020).
- Mohandas, N.; Bass-Stringer, S.; Maksimovic, J.; Crompton, K.; Loke, Y.J.; Walstab, J.; Reid, S.M.; Amor, D.J.; Reddihough, D.; Craig, J.M. Epigenome-wide analysis in newborn blood spots from monozygotic twins discordant for cerebral palsy reveals consistent regional differences in DNA methylation. Clin. Epigenetics 2018, 10, 25. [Google Scholar] [CrossRef] [Green Version]
- Verlaet, A.A.; Noriega, D.B.; Hermans, N.; Savelkoul, H.F. Nutrition, immunological mechanisms and dietary immunomodulation in ADHD. Eur. Child Adolesc. Psychiatry 2014, 23, 519–529. [Google Scholar] [CrossRef]
- Dunn, G.A.; Nigg, J.T.; Sullivan, E.L. Neuroinflammation as a risk factor for attention deficit hyperactivity disorder. Pharmacol. Biochem. Behav. 2019, 182, 22–34. [Google Scholar] [CrossRef] [PubMed]
- Dark, C.; Homman-Ludiye, J.; Bryson-Richardson, R.J. The role of ADHD associated genes in neurodevelopment. Dev. Biol. 2018, 438, 69–83. [Google Scholar] [CrossRef] [PubMed]
- Forman, O.P.; De Risio, L.; Stewart, J.; Mellersh, C.S.; Beltran, E. Genome-wide mRNA sequencing of a single canine cerebellar cortical degeneration case leads to the identification of a disease associated SPTBN2 mutation. BMC Genet. 2012, 13, 55. [Google Scholar] [CrossRef] [Green Version]
- Lise, S.; Clarkson, Y.; Perkins, E.; Kwasniewska, A.; Sadighi Akha, E.; Schnekenberg, R.P.; Suminaite, D.; Hope, J.; Baker, I.; Gregory, L.; et al. Recessive mutations in SPTBN2 implicate beta-III spectrin in both cognitive and motor development. PLoS Genet. 2012, 8, e1003074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemeth, A.H.; Kwasniewska, A.C.; Lise, S.; Parolin Schnekenberg, R.; Becker, E.B.; Bera, K.D.; Shanks, M.E.; Gregory, L.; Buck, D.; Zameel Cader, M.; et al. Next generation sequencing for molecular diagnosis of neurological disorders using ataxias as a model. Brain 2013, 136 (Pt 10), 3106–3118. [Google Scholar]
- Nicita, F.; Nardella, M.; Bellacchio, E.; Alfieri, P.; Terrone, G.; Piccini, G.; Graziola, F.; Pignata, C.; Capuano, A.; Bertini, E.; et al. Heterozygous missense variants of SPTBN2 are a frequent cause of congenital cerebellar ataxia. Clin. Genet. 2019, 96, 169–175. [Google Scholar] [CrossRef]
- Yildiz Bolukbasi, E.; Afzal, M.; Mumtaz, S.; Ahmad, N.; Malik, S.; Tolun, A. Progressive SCAR14 with unclear speech, developmental delay, tremor, and behavioral problems caused by a homozygous deletion of the SPTBN2 pleckstrin homology domain. Am. J. Med. Genet. A 2017, 173, 2494–2499. [Google Scholar] [CrossRef]
- Solanto, M.V.; Alvir, J. Reliability of DSM-IV Symptom Ratings of ADHD: Implications for DSM-V. J. Atten. Disord. 2009, 13, 107–116. [Google Scholar] [CrossRef]
- Hall, C.L.; Valentine, A.Z.; Groom, M.J.; Walker, G.M.; Sayal, K.; Daley, D.; Hollis, C. The clinical utility of the continuous performance test and objective measures of activity for diagnosing and monitoring ADHD in children: A systematic review. Eur. Child Adolesc. Psychiatry 2016, 25, 677–699. [Google Scholar] [CrossRef] [Green Version]
- Miranda, M.C.; Barbosa, T.; Muszkat, M.; Rodrigues, C.C.; Sinnes, E.G.; Coelho, L.F.; Rizzuti, S.; Palma, S.M.; Bueno, O.F. Performance patterns in Conners’ CPT among children with attention deficit hyperactivity disorder and dyslexia. Arq. Neuropsiquiatr. 2012, 70, 91–96. [Google Scholar]
- Lichtenstein, J.D.; Flaro, L.; Baldwin, F.S.; Rai, J.; Erdodi, L.A. Further evidence for embedded performance validity tests in children within the conners’ continuous performance test—Second edition. Dev. Neuropsychol. 2019, 44, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.J.; Huang, Y.S.; Hsiao, C.C.; Chiang, Y.L.; Wu, C.C.; Shang, Z.Y.; Chen, C.K. Salivary dehydroepiandrosterone, but not cortisol, is associated with attention deficit hyperactivity disorder. World J. Biol. Psychiatry 2011, 12, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.J.; Lee, S.Y.; Chou, M.C.; Lee, M.J.; Chou, W.J. Dehydroepiandrosterone sulfate, free testosterone, and sex hormone-binding globulin on susceptibility to attention-deficit/hyperactivity disorder. Psychoneuroendocrinology 2019, 103, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Kebir, O.; Tabbane, K.; Sengupta, S.; Joober, R. Candidate genes and neuropsychological phenotypes in children with ADHD: Review of association studies. J. Psychiatry Neurosci. 2009, 34, 88–101. [Google Scholar] [PubMed]
- Tylee, D.S.; Kawaguchi, D.M.; Glatt, S.J. On the outside, looking in: A review and evaluation of the comparability of blood and brain “-omes”. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2013, 162, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Pearce, N. Analysis of matched case-control studies. BMJ 2016, 352, i969. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Qiu, Y.; Tu, G.; Yang, C. Single-cell RNA Sequencing in Immunology. Curr. Genom. 2020, 21, 564–575. [Google Scholar] [CrossRef]
Characteristics | ADHD (N = 126) | Controls (N = 72) | Statistic | p-Value |
---|---|---|---|---|
Sex | 5.967 | 0.015 * | ||
Male | 99 (78.6) | 45 (62.5) | ||
Female | 27 (21.4) | 27 (37.5) | ||
Age(years) | 9.2 ± 2.1 | 9.3 ± 2.2 | 0.342 | 0.733 |
FSIQ of the WISC-IV | 97.1 ± 10.5 | 108.3 ± 13.7 | 5.960 | <0.001 * |
Clinical measures | ||||
SNAP-IV parent form (I) | 16.4 ± 5.5 | 5.8 ± 6.0 | 12.921 | <0.001 * |
SNAP-IV parent form (H) | 14.3 ± 6.5 | 4.5 ± 5.5 | 10.916 | <0.001 * |
SNAP-IV teacher form (I) | 14.8 ± 5.9 | 4.5 ± 4.9 | 13.188 | <0.001 * |
SNAP-IV teacher form (H) | 11.7 ± 6.9 | 2.9 ± 3.5 | 11.844 | <0.001 * |
CPT | ||||
Confidence Index | 62.5 ± 22.6 | 46.7 ± 21.0 | 4.966 | <0.001 * |
Omission | 58.8 ± 18.1 | 51.6 ± 13.8 | 3.142 | 0.002 * |
Commission | 49.2 ± 9.8 | 46.2 ± 10.5 | 2.079 | 0.039 * |
Hit Reaction Time | 55.4 ± 12.9 | 55.5 ± 11.4 | 0.012 | 0.990 |
Detectability | 51.2 ± 9.1 | 48.1 ± 10.9 | 2.109 | 0.036 * |
Gene | CpG | ADHD (N = 126) Mean (SD) | Controls (N = 72) Mean (SD) | F | p-Value |
---|---|---|---|---|---|
LIME1 | cg00446123+5 | 57.9 ± 9.4 | 58.9 ± 7.6 | 0.110 | 0.740 |
LIME1 | cg00446123+9 | 50.6 ± 8.8 | 50.2 ± 7.8 | 0.054 | 0.817 |
LIME1 | cg20513976 | 51.9 ± 8.0 | 51.6 ± 7.0 | 0.000 | 0.990 |
LIME1 | cg20513976+5 | 58.6 ± 9.4 | 59.8 ± 8.2 | 0.832 | 0.363 |
LIME1 | cg20513976+9 | 50.6 ± 9.0 | 50.0 ± 7.6 | 0.025 | 0.875 |
KCNAB2 | cg07922513 | 49.5 ± 6.7 | 48.9 ± 5.7 | 0.295 | 0.588 |
CAPN9 | cg17096979 | 78.6 ± 15.4 | 81.6 ± 15.7 | 0.963 | 0.328 |
SPTBN2 | cg02506324 | 35.5 ± 5.5 | 35.2 ± 6.2 | 0.134 | 0.714 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.-C.; Kuo, H.-C.; Huang, L.-H.; Chou, W.-J.; Lee, S.-Y.; Chan, W.-C.; Wang, L.-J. DNA Methylation in LIME1 and SPTBN2 Genes Is Associated with Attention Deficit in Children. Children 2021, 8, 92. https://doi.org/10.3390/children8020092
Li S-C, Kuo H-C, Huang L-H, Chou W-J, Lee S-Y, Chan W-C, Wang L-J. DNA Methylation in LIME1 and SPTBN2 Genes Is Associated with Attention Deficit in Children. Children. 2021; 8(2):92. https://doi.org/10.3390/children8020092
Chicago/Turabian StyleLi, Sung-Chou, Ho-Chang Kuo, Lien-Hung Huang, Wen-Jiun Chou, Sheng-Yu Lee, Wen-Ching Chan, and Liang-Jen Wang. 2021. "DNA Methylation in LIME1 and SPTBN2 Genes Is Associated with Attention Deficit in Children" Children 8, no. 2: 92. https://doi.org/10.3390/children8020092
APA StyleLi, S. -C., Kuo, H. -C., Huang, L. -H., Chou, W. -J., Lee, S. -Y., Chan, W. -C., & Wang, L. -J. (2021). DNA Methylation in LIME1 and SPTBN2 Genes Is Associated with Attention Deficit in Children. Children, 8(2), 92. https://doi.org/10.3390/children8020092