Is Chest Compression Superimposed with Sustained Inflation during Cardiopulmonary Resuscitation an Alternative to 3:1 Compression to Ventilation Ratio in Newborn Infants?
Abstract
:1. Introduction
2. 3:1 Compression-to-Ventilation Ratio: Rationale and Evidence
3. Chest Compression with Sustained Inflations (CC + SI)
Mechanism of CC + SI
4. Chest Compression Rate
5. Peak Inflation Pressures
6. Passive Ventilation
7. Tidal Volume
8. Duration of Sustained Inflations
9. Oxygen Concentration with CC + SI
10. Type of Cardiac Arrest
11. Inflammatory Markers
12. Clinical Studies
13. Limitations
14. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CC | chest compression |
DR | delivery room |
CPR | cardiopulmonary resuscitation |
C:V | compression:ventilation |
SI | sustained inflation |
CC + SI | sustained inflation during chest compression |
ROSC | return of spontaneous circulation |
CCaV | continuous CC with asynchronous ventilations |
References
- Shah, P.S.; Shah, P.; Tai, K.F.Y.; Tai, K.F.Y. Chest compression and/or epinephrine at birth for preterm infants <32 weeks gestational age: Matched cohort study of neonatal outcomes. J. Perinatol. 2009, 29, 693–697. [Google Scholar]
- Shah, P.K.; Narendran, V.; Kalpana, N. Aggressive posterior retinopathy of prematurity in large preterm babies in South India. Arch. Dis. Child. Fetal Neonatal Ed. 2012, 97, F371–F375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wyckoff, M.H.; Perlman, J.M. Cardiopulmonary resuscitation in very low birth weight infants. Pediatrics 2000, 106, 618–620. [Google Scholar] [CrossRef] [PubMed]
- Wyckoff, M.H.; Salhab, W.A.; Heyne, R.J.; Kendrick, D.E.; Stoll, B.; Laptook, A.R.; National Institute of Child Health and Human Development Neonatal Research Network. Outcome of extremely low birth weight infants who received delivery room cardiopulmonary resuscitation. J. Pediatr. 2012, 160, 239–244.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soraisham, A.S.; Lodha, A.K.; Singhal, N.; Aziz, K.; Yang, J.; Lee, S.K.; Shah, P.S. On behalf of the Canadian Neonatal Network. Neonatal outcomes following extensive cardiopulmonary resuscitation in the delivery room for infants born at less than 33 weeks gestational age. Resuscitation 2014, 85, 238–243. [Google Scholar] [CrossRef]
- Foglia, E.E.; Weiner, G.; de Almeida, M.F.B.; Wyllie, J.P.; Wyckoff, M.H.; Rabi, Y.; Guinsburg, R.; International Liaison Committee on Resuscitation Neonatal Life Support Task Force. Duration of Resuscitation at Birth, Mortality, and Neurodevelopment: A Systematic Review. Pediatrics 2020, 146, e20201449. [Google Scholar] [CrossRef]
- Harrington, D.J.; Redman, C.W.; Redman, C.W.; Moulden, M.; Greenwood, C.E. The long-term outcome in surviving infants with Apgar zero at 10 minutes: A systematic review of the literature and hospital-based cohort. Am. J. Obstet. Gynecol. 2007, 196, 463.e1–463.e5. [Google Scholar] [CrossRef]
- Wyckoff, M.H.; Wyllie, J.P.; Aziz, K.; de Almeida, M.F.; Fabres, J.; Fawke, J.; Guinsburg, R.; Hosono, S.; Isayama, T.; Kapadia, V.S.; et al. Neonatal Life Support: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Circulation 2020, 142, S185–S221. [Google Scholar] [CrossRef]
- Aziz, K.; Lee, H.C.; Escobedo, M.B.; Hoover, A.V.; Kamath-Rayne, B.D.; Kapadia, V.S.; Magid, D.J.; Niermeyer, S.; Schmölzer, G.M.; Szyld, E.G.; et al. Part 5: Neonatal Resuscitation: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2020, 142, S524–S550. [Google Scholar] [CrossRef]
- Solevåg, A.; Dannevig, I.; Wyckoff, M.H.; Saugstad, O.D.; Nakstad, B. Extended series of cardiac compressions during CPR in a swine model of perinatal asphyxia. Resuscitation 2010, 81, 1571–1576. [Google Scholar] [CrossRef]
- Solevåg, A.; Dannevig, I.; Wyckoff, M.H.; Saugstad, O.D.; Nakstad, B. Return of spontaneous circulation with a compression:ventilation ratio of 15:2 versus 3:1 in newborn pigs with cardiac arrest due to asphyxia. Arch. Dis. Child. Fetal Neonatal Ed. 2011, 96, F417–F421. [Google Scholar] [CrossRef] [PubMed]
- Solevåg, A.; Schmölzer, G.M.; O’Reilly, M.; Lu, M.; Lee, T.-F.; Hornberger, L.K.; Nakstad, B.; Cheung, P.-Y. Myocardial perfusion and oxidative stress after 21% vs. 100% oxygen ventilation and uninterrupted chest compressions in severely asphyxiated piglets. Resuscitation 2016, 106, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Schmölzer, G.M.; O’Reilly, M.; LaBossiere, J.; Lee, T.-F.; Cowan, S.; Nicoll, J.; Bigam, D.L.; Cheung, P.-Y. 3:1 compression to ventilation ratio versus continuous chest compression with asynchronous ventilation in a porcine model of neonatal resuscitation. Resuscitation 2014, 85, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Pasquin, M.P.; Cheung, P.-Y.; Patel, S.; Lu, M.; Lee, T.-F.; Wagner, M.; O’Reilly, M.; Schmölzer, G.M. Comparison of Different Compression to Ventilation Ratios (2: 1, 3: 1, and 4: 1) during Cardiopulmonary Resuscitation in a Porcine Model of Neonatal Asphyxia. Neonatology 2018, 114, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Schmölzer, G.M.; O’Reilly, M.; LaBossiere, J.; Lee, T.-F.; Cowan, S.; Qin, S.; Bigam, D.L.; Cheung, P.-Y. Cardiopulmonary resuscitation with chest compressions during sustained inflations: A new technique of neonatal resuscitation that improves recovery and survival in a neonatal porcine model. Circulation 2013, 128, 2495–2503. [Google Scholar] [CrossRef] [Green Version]
- Berg, R.A.; Kern, K.B.; Sanders, A.B.; Otto, C.W.; Hilwig, R.W.; Ewy, G.A. Bystander cardiopulmonary resuscitation. Is ventilation necessary? Circulation 1993, 88, 1907–1915. [Google Scholar] [CrossRef] [Green Version]
- Berg, R.A.; Hilwig, R.W.; Kern, K.B.; Ewy, G.A. “Bystander” Chest Compressions and Assisted Ventilation Independently Improve Outcome From Piglet Asphyxial Pulseless “Cardiac Arrest”. Circulation 2000, 101, 1743–1748. [Google Scholar] [CrossRef] [Green Version]
- Berg, R.A.; Hilwig, R.W.; Kern, K.B.; Barbar, I.; Ewy, G.A. Simulated mouth-to-mouth ventilation and chest compressions (bystander cardiopulmonary resuscitation) improves outcome in a swine model of prehospital pediatric asphyxial cardiac arrest. Crit. Care Med. 1999, 27, 1893–1899. [Google Scholar] [CrossRef]
- Boldingh, A.M.; Solevåg, A.; Aasen, E.; Nakstad, B. Resuscitators who compared four simulated infant cardiopulmonary resuscitation methods favoured the three-to-one compression-to-ventilation ratio. Acta Paediatr. 2016, 105, 910–916. [Google Scholar] [CrossRef]
- Schmölzer, G.M.; Bhatia, R.; Davis, P.G.; Tingay, D.G. A comparison of different bedside techniques to determine endotracheal tube position in a neonatal piglet model. Pediatr. Pulmonol. 2013, 48, 138–145. [Google Scholar] [CrossRef]
- Mustofa, J.; Cheung, P.-Y.; Patel, S.; Lee, T.-F.; Lu, M.; Pasquin, M.P.; O’Reilly, M.; Schmölzer, G.M. Effects of different durations of sustained inflation during cardiopulmonary resuscitation on return of spontaneous circulation and hemodynamic recovery in severely asphyxiated piglets. Resuscitation 2018, 129, 82–89. [Google Scholar] [PubMed]
- Shim, G.-H.; Kim, S.Y.; Cheung, P.-Y.; Lee, T.-F.; O’Reilly, M.; Schmölzer, G.M. Effects of sustained inflation pressure during neonatal cardiopulmonary resuscitation of asphyxiated piglets. PLoS ONE 2020, 15, e0228693. [Google Scholar] [CrossRef] [PubMed]
- La Garde, R.P.; Cheung, P.-Y.; Yaskina, M.; Lee, T.-F.; O’Reilly, M.; Schmölzer, G.M. Sex Differences Between Female and Male Newborn Piglets During Asphyxia, Resuscitation, and Recovery. Front. Pediatr. 2019, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.Y.; Shim, G.-H.; O’Reilly, M.; Cheung, P.-Y.; Lee, T.-F.; Schmölzer, G.M. Asphyxiated Female and Male Newborn Piglets Have Similar Outcomes with Different Cardiopulmonary Resuscitation Interventions. Front. Pediatr. 2020, 8. [Google Scholar] [CrossRef]
- Rudikoff, M.; Maughan, W.L.; Effron, M.; Fresson, J.; Weisfeldt, M.L. Mechanisms of blood flow during cardiopulmonary resuscitation. Circulation 1980, 61, 345–352. [Google Scholar] [CrossRef] [Green Version]
- Chandra, N.; Weisfeldt, M.L.; Tsitlik, J.; Vaghaiwalla, F.; Snyder, L.D.; Hoffecker, M.; Rudikoff, M. Augmentation of carotid flow during cardiopulmonary resuscitation by ventilation at high airway pressure simultaneous with chest compression. Am. J. Cardiol. 1981, 48, 1053–1063. [Google Scholar] [CrossRef]
- Chandra, N.; Rudikoff, M.; Weisfeldt, M.L. Simultaneous chest compression and ventilation at high airway pressure during cardiopulmonary resuscitation. Lancet 1980, 315, 175–178. [Google Scholar] [CrossRef]
- Koehler, R.C.; Tsitlik, J.; Chandra, N.; Guerci, A.D.; Rogers, M.C.; Weisfeldt, M.L. Augmentation of cerebral perfusion by simultaneous chest compression and lung inflation with abdominal binding after cardiac arrest in dogs. Circulation 1983, 67, 266–275. [Google Scholar] [CrossRef] [Green Version]
- Berkowitz, I.D.; Chantarojanasiri, T.; Koehler, R.C.; Schleien, C.L.; Dean, J.M.; Michael, J.R.; Rogers, M.C.; Traystman, R.J. Blood Flow during Cardiopulmonary Resuscitation with Simultaneous Compression and Ventilation in Infant Pigs. Pediatr. Res. 1989, 26, 558–559. [Google Scholar] [CrossRef] [Green Version]
- Sobotka, K.; Hooper, S.B.; Allison, B.J.; Davis, P.G.; Morley, C.J.; Moss, T.J.M. An initial sustained inflation improves the respiratory and cardiovascular transition at birth in preterm lambs. Pediatr. Res. 2011, 70, 56–60. [Google Scholar] [CrossRef] [Green Version]
- Vali, P.; Chandrasekharan, P.K.; Rawat, M.; Gugino, S.F.; Koenigsknecht, C.; Helman, J.; Mathew, B.; Berkelhamer, S.; Nair, J.; Lakshminrusimha, S. Continuous Chest Compressions During Sustained Inflations in a Perinatal Asphyxial Cardiac Arrest Lamb Model. Pediatr. Crit. Care Med. 2017, 18, e370–e377. [Google Scholar] [CrossRef] [PubMed]
- Li, E.S.; Görens, I.; Cheung, P.Y.; Lee, T.F.; Lu, M.; O’Reilly, M.; Schmölzer, G.M. Chest Compressions during Sustained Inflations Improve Recovery When Compared to a 3:1 Compression:Ventilation Ratio during Cardiopulmonary Resuscitation in a Neonatal Porcine Model of Asphyxia. Neonatology 2017, 112, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Babbs, C.; Meyer, A.; Nadkarni, V. Neonatal CPR: Room at the top—A mathematical study of optimal chest compression frequency versus body size. Resuscitation 2009, 80, 1280–1284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solevåg, A.; Cheung, P.-Y.; Li, E.S.-S.; Xue, S.Z.; O’Reilly, M.; Fu, B.; Zheng, B.; Schmölzer, G.M. Chest Compression Quality in a Newborn Manikin: A Randomized Crossover Trial (August 2016). IEEE J. Transl. Eng. Health Med. 2018, 6, 1–5. [Google Scholar] [CrossRef]
- Enriquez, D.; Meritano, J.; Shah, B.A.; Song, C.; Szyld, E. Fatigue during Chest Compression Using a Neonatal Patient Simulator. Amer. J. Perinatol. 2018, 35, 796–800. [Google Scholar] [CrossRef]
- Haque, I.U.; Udassi, J.P.; Udassi, S.; Theriaque, D.W.; Shuster, J.J.; Zaritsky, A.L. Chest compression quality and rescuer fatigue with increased compression to ventilation ratio during single rescuer pediatric CPR. Resuscitation 2008, 79, 82–89. [Google Scholar] [CrossRef]
- Te Pas, A.B.; Davis, P.G.; Hooper, S.B.; Morley, C.J. From liquid to air: Breathing after birth. J. Pediatr. 2008, 152, 607–611. [Google Scholar] [CrossRef]
- Hooper, S.B.; Te Pas, A.B.; Kitchen, M. Respiratory transition in the newborn: A three-phase process. Arch. Dis. Child. Fetal Neonatal Ed. 2016, 101, F266–F271. [Google Scholar]
- Solevåg, A.; Lee, T.-F.; Lu, M.; Schmölzer, G.M.; Cheung, P.-Y. Tidal volume delivery during continuous chest compressions and sustained inflation. Arch. Dis. Child. Fetal Neonatal Ed. 2017, 102, F85–F87. [Google Scholar] [CrossRef]
- Tsui, B.C.H.; Horne, S.; Tsui, J.; Corry, G.N. Generation of tidal volume via gentle chest pressure in children over one year old. Resuscitation 2015, 92, 148–153. [Google Scholar] [CrossRef]
- Schmölzer, G.M.; O’Reilly, M.; Fray, C.; van Os, S.; Cheung, P.-Y. Chest compression during sustained inflation versus 3:1 chest compression:ventilation ratio during neonatal cardiopulmonary resuscitation: A randomised feasibility trial. Arch. Dis. Child. Fetal Neonatal Ed. 2018, 103, F455–F460. [Google Scholar] [CrossRef] [PubMed]
- Li, E.S.-S.; Cheung, P.-Y.; O’Reilly, M.; Schmölzer, G.M. Change in tidal volume during cardiopulmonary resuscitation in newborn piglets. Arch. Dis. Child. Fetal Neonatal Ed. 2015, 100, F530–F533. [Google Scholar] [CrossRef] [PubMed]
- Li, E.S.-S.; Cheung, P.-Y.; Pichler, G.; Aziz, K.; Schmölzer, G.M. Respiratory function and near infrared spectroscopy recording during cardiopulmonary resuscitation in an extremely preterm newborn. Neonatology 2014, 105, 200–204. [Google Scholar] [CrossRef]
- Foglia, E.E.; Te Pas, A.B. Sustained Lung Inflation: Physiology and Practice. Clin. Perinatol. 2016, 43, 633–646. [Google Scholar] [CrossRef] [PubMed]
- Foglia, E.E.; Te Pas, A.B.; Kirpalani, H.M.; Davis, P.G.; Owen, L.; van Kaam, A.H.; Onland, W.; Keszler, M.; Schmölzer, G.M.; Hummler, H.D.; et al. Sustained Inflation vs Standard Resuscitation for Preterm Infants. JAMA Pediatr. 2020, 174. [Google Scholar] [CrossRef]
- Kapadia, V.S.; Urlesberger, B.; Soraisham, A.S.; Liley, H.G.; Schmölzer, G.M.; Rabi, Y.; Wyllie, J.P.; Wyckoff, M.H. On behalf of the International Liaison Committee on Resuscitation Neonatal Life Support Task Force. Sustained Lung Inflations During Neonatal Resuscitation at Birth: A Meta-analysis. Pediatrics 2021, 147. [Google Scholar] [CrossRef]
- Wyllie, J.P.; Bruinenberg, J.; Roehr, C.-C.; Rüdiger, M.; Trevisanuto, D.; Urlesberger, B. European Resuscitation Council Guidelines for Resuscitation 2015: Section 7. Resuscitation and support of transition of babies at birth. Resuscitation 2015, 95, 249–263. [Google Scholar] [CrossRef] [Green Version]
- Klingenberg, C.; Sobotka, K.; Ong, T.; Allison, B.J.; Schmölzer, G.M.; Moss, T.J.M.; Polglase, G.R.; Dawson, J.A.; Davis, P.G.; Hooper, S.B. Effect of sustained inflation duration; resuscitation of near-term asphyxiated lambs. Arch. Dis. Child. Fetal Neonatal Ed. 2013, 98, F222–F227. [Google Scholar] [CrossRef]
- Garcia-Hidalgo, C.; Cheung, P.-Y.; Vento, M.; O’Reilly, M.; Schmölzer, G.M. A Review of Oxygen Use During Chest Compressions in Newborns—A Meta-Analysis of Animal Data. Front. Pediatr. 2018, 6, 400. [Google Scholar] [CrossRef]
- Garcia-Hidalgo, C.; Solevåg, A.; Kim, S.Y.; Shim, G.-H.; Cheung, P.-Y.; Lee, T.-F.; O’Reilly, M.; Schmölzer, G.M. Sustained inflation with 21% versus 100% oxygen during cardiopulmonary resuscitation of asphyxiated newborn piglets—A randomized controlled animal study. Resuscitation 2020, 155, 39–47. [Google Scholar] [CrossRef]
- Perlman, J.M.; Wyllie, J.P.; Kattwinkel, J.; Wyckoff, M.H.; Aziz, K.; Guinsburg, R.; Kim, H.-S.; Liley, H.G.; Mildenhall, L.F.J.; Simon, W.M.; et al. Neonatal Resuscitation Chapter Collaborators Part 7: Neonatal Resuscitation: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations (Reprint). Pediatrics 2015, 136, S120–S166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wyckoff, M.H.; Aziz, K.; Escobedo, M.B.; Kapadia, V.S.; Kattwinkel, J.; Perlman, J.M.; Simon, W.M.; Weiner, G.M.; Zaichkin, J.G. Part 13: Neonatal Resuscitation: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care (Reprint). Pediatrics 2015, 136, S196–S218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luong, D.H.; Cheung, P.-Y.; Barrington, K.J.; Davis, P.G.; Unrau, J.; Dakshinamurti, S.; Schmölzer, G.M. Cardiac arrest with pulseless electrical activity rhythm in newborn infants: A case series. Arch. Dis. Child. Fetal Neonatal Ed. 2019, 104, F572–F574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sillers, L.; Handley, S.C.; James, J.R. Pulseless Electrical Activity Complicating Neonatal Resuscitation. Neonatology 2018, 115, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Cheung, P.-Y.; Solevåg, A.; Barrington, K.J.; Kamlin, C.O.F.; Davis, P.G.; Schmölzer, G.M. Pulseless electrical activity: A misdiagnosed entity during asphyxia in newborn infants? Arch. Dis. Child. Fetal Neonatal Ed. 2019, 104, F215–F217. [Google Scholar] [CrossRef] [PubMed]
- Solevåg, A.L.; Luong, D.; Lee, T.F.; O’Reilly, M.; Cheung, P.Y.; Schmölzer, G.M. Non-perfusing cardiac rhythms in asphyxiated newborn piglets. PLoS ONE 2019, 14. [Google Scholar] [CrossRef]
- Luong, D.H.; Cheung, P.-Y.; O’Reilly, M.; Lee, T.-F.; Schmölzer, G.M. Electrocardiography vs. Auscultation to Assess Heart Rate During Cardiac Arrest with Pulseless Electrical Activity in Newborn Infants. Front. Pediatr. 2018, 6, 366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lista, G.; Boni, L.; Scopesi, F.; Mosca, F.; Trevisanuto, D.; Messner, H.; Vento, G.; Magaldi, R.; Del Vecchio, A.; Agosti, M.; et al. SLI Trial Investigators Sustained lung inflation at birth for preterm infants: A randomized clinical trial. Pediatrics 2015, 135, e457–e464. [Google Scholar] [CrossRef] [Green Version]
- Polglase, G.R.; Miller, S.L.; Barton, S.K.; Baburamani, A.A.; Wong, F.Y.; Aridas, J.D.S.; Gill, A.W.; Moss, T.J.M.; Tolcos, M.; Kluckow, M.; et al. Initiation of resuscitation with high tidal volumes causes cerebral hemodynamic disturbance, brain inflammation and injury in preterm lambs. PLoS ONE 2012, 7, e39535. [Google Scholar] [CrossRef] [Green Version]
- La Verde, A.; Franchini, S.; Lapergola, G.; Lista, G.; Barbagallo, I.; Livolti, G.; Gazzolo, D. Effects of Sustained Inflation or Positive Pressure Ventilation on the Release of Adrenomedullin in Preterm Infants with Respiratory Failure at Birth. Amer. J. Perinatol. 2019, 36, S110–S114. [Google Scholar] [CrossRef] [Green Version]
- Harling, A.E.; Beresford, M.W.; Vince, G.S.; Bates, M.; Yoxall, C.W. Does sustained lung inflation at resuscitation reduce lung injury in the preterm infant? Arch. Dis. Child. Fetal Neonatal Ed. 2005, 90, F406–F410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobotka, K.; Hooper, S.B.; Crossley, K.J.; Ong, T.; Schmölzer, G.M.; Barton, S.K.; McDougall, A.R.A.; Miller, S.L.; Tolcos, M.; Klingenberg, C.; et al. Single Sustained Inflation followed by Ventilation Leads to Rapid Cardiorespiratory Recovery but Causes Cerebral Vascular Leakage in Asphyxiated Near-Term Lambs. PLoS ONE 2016, 11, e0146574. [Google Scholar]
- Schmölzer, G.M. Chest Compressions During Sustained Inflation During Cardiopulmonary Resuscitation in Newborn Infants Translating Evidence From Animal & Bench Studies to the Bedside. JACC Basic Transl. Sci. 2019, 4, 116–121. [Google Scholar] [PubMed]
- Schmölzer, G.M.; Pichler, G.; Solevåg, A.; Fray, C.; van Os, S.; Cheung, P.-Y. The SURV1VE trial—Sustained inflation and chest compression versus 3:1 chest compression-to-ventilation ratio during cardiopulmonary resuscitation of asphyxiated newborns: Study protocol for a cluster randomized controlled trial. Trials 2019, 20, 39. [Google Scholar] [CrossRef] [PubMed]
- Aziz, K.; Chadwick, M.; Baker, M.; Andrews, W. Ante- and intra-partum factors that predict increased need for neonatal resuscitation. Resuscitation 2008, 79, 444–452. [Google Scholar] [CrossRef]
- Schmölzer, G.M.; Kumar, M.; Aziz, K.; Pichler, G.; O’Reilly, M.; Lista, G.; Cheung, P.Y. Sustained inflation versus positive pressure ventilation at birth: A systematic review and meta-analysis. Arch. Dis. Child. Fetal Neonatal Ed. 2015, 100, F361–F368. [Google Scholar] [CrossRef]
- Kirpalani, H.M.; Ratcliffe, S.J.; Keszler, M.; Davis, P.G.; Foglia, E.E.; Te Pas, A.B.; Fernando, M.; Chaudhary, A.; Localio, R.; van Kaam, A.H.; et al. Effect of Sustained Inflations vs Intermittent Positive Pressure Ventilation on Bronchopulmonary Dysplasia or Death Among Extremely Preterm Infants. JAMA 2019, 321, 1165–1175. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.Y.; Shim, G.-H.; Schmölzer, G.M. Is Chest Compression Superimposed with Sustained Inflation during Cardiopulmonary Resuscitation an Alternative to 3:1 Compression to Ventilation Ratio in Newborn Infants? Children 2021, 8, 97. https://doi.org/10.3390/children8020097
Kim SY, Shim G-H, Schmölzer GM. Is Chest Compression Superimposed with Sustained Inflation during Cardiopulmonary Resuscitation an Alternative to 3:1 Compression to Ventilation Ratio in Newborn Infants? Children. 2021; 8(2):97. https://doi.org/10.3390/children8020097
Chicago/Turabian StyleKim, Seung Yeon, Gyu-Hong Shim, and Georg M. Schmölzer. 2021. "Is Chest Compression Superimposed with Sustained Inflation during Cardiopulmonary Resuscitation an Alternative to 3:1 Compression to Ventilation Ratio in Newborn Infants?" Children 8, no. 2: 97. https://doi.org/10.3390/children8020097
APA StyleKim, S. Y., Shim, G. -H., & Schmölzer, G. M. (2021). Is Chest Compression Superimposed with Sustained Inflation during Cardiopulmonary Resuscitation an Alternative to 3:1 Compression to Ventilation Ratio in Newborn Infants? Children, 8(2), 97. https://doi.org/10.3390/children8020097