An Assessment of the Validity and Reliability of the Pediatric Child Health Utility 9D in Children with Inflammatory Bowel Disease
Abstract
:1. Introduction
1.1. The Child Health Utility 9 Dimensions
1.2. The Health Utilities Index
1.3. Inflammatory Bowel Disease
2. Materials and Methods
2.1. Ethics
2.2. Study Design
2.3. Data Collection
2.4. Participants
2.5. Questionnaires
2.6. Statistical Analysis
2.6.1. Validity
2.6.2. Agreement
2.6.3. Test-Retest Reliability
3. Results
3.1. Sample Characteristics
3.2. Validity
3.3. Agreement
3.4. Test–Retest Reliability
4. Discussion
4.1. Health-Related Quality of Life in Pediatric IBD
4.2. Validity
4.3. Strengths and Limitations
4.4. Challenges in Assessing Health Utilities in Children
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Drummond, M.F.; Sculpher, M.J.; Torrance, G.W.; O’Brien, B.J.; Stoddart, G.L. Methods for the Economic Evaluation of Health Care Programmes, 3rd ed.; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Torrance, G.W.; Furlong, W.; Feeny, D. Health utility estimation. Expert Rev. Pharm. Outcomes Res. 2002, 2, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Eiser, C.; Morse, R. The Measurement of Quality of Life in Children: Past and Future Perspectives. J. Dev. Behav. Pediatr. 2001, 22, 248–256. [Google Scholar] [CrossRef]
- National Institute of Health and Care Excellence (NICE). Guide to the Methods of Technology Appraisal 2013; National Institute of Health and Care Excellence United Kingdom: London, UK, 2013. [Google Scholar]
- Canadian Agency for Drugs and Technologies in Health (CADTH). Guidelines for the Economic Evaluation of Health Technologies: Canada, 4th ed.; Canadian Agency for Drugs and Technologies in Health: Ottawa, ON, Canada, 2017. [Google Scholar]
- Stevens, K. Developing a descriptive system for a new preference-based measure of health-related quality of life for children. Qual. Life Res. 2009, 18, 1105–1113. [Google Scholar] [CrossRef] [Green Version]
- Stevens, K. Assessing the performance of a new generic measure of health-related quality of life for children and refining it for use in health state valuation. Appl. Health Econ. Health Policy 2011, 9, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Stevens, K.; Ratcliffe, J. Measuring and valuing health benefits for economic evaluation in adolescence: An assessment of the practicality and validity of the Child Health Utility 9D in the Australian adolescent population. Value Health 2012, 15, 1092–1099. [Google Scholar] [CrossRef] [Green Version]
- Stevens, K.J. The Child Health Utility 9D (CHU9D). A new, paediatric, preference-based measure of health related quality of life. PRO Newsl. 2010, 43, 11–12. [Google Scholar]
- Ratcliffe, J.; Huynh, E.; Stevens, K.; Brazier, J.; Sawyer, M.; Flynn, T. Nothing about Us without Us? A Comparison of Adolescent and Adult Health-State Values for the Child Health Utility-9D Using Profile Case Best-Worst Scaling. Health Econ. 2016, 25, 486–496. [Google Scholar] [CrossRef]
- Ratcliffe, J.; Huynh, E.; Chen, G.; Stevens, K.; Swait, J.; Brazier, J.; Sawyer, M.; Roberts, R.; Flynn, T. Valuing the Child Health Utility 9D: Using profile case best worst scaling methods to develop a new adolescent specific scoring algorithm. Soc. Sci. Med. 2016, 157, 48–59. [Google Scholar] [CrossRef] [PubMed]
- Furber, G.; Segal, L. The validity of the Child Health Utility instrument (CHU9D) as a routine outcome measure for use in child and adolescent mental health services. Health Qual. Life Outcomes 2015, 13, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foster Page, L.A.; Beckett, D.M.; Cameron, C.M.; Thomson, W.M. Can the Child Health Utility 9D measure be useful in oral health research? Int. J. Paediatr. Dent. 2015, 25, 349–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, J.M.; McKay, E.; Anokye, N.; Noorkoiv, M.; Theis, N.; Lavelle, G. Comparison of the CHU-9D and the EQ-5D-Y instruments in children and young people with cerebral palsy: A cross-sectional study. BMJ Open 2020, 10, e037089. [Google Scholar] [CrossRef]
- Boyer, N.R.; Miller, S.; Connolly, P.; McIntosh, E. Paving the way for the use of the SDQ in economic evaluations of school-based population health interventions: An empirical analysis of the external validity of SDQ mapping algorithms to the CHU9D in an educational setting. Qual. Life Res. 2016, 25, 913–923. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Stevens, K.; Rowen, D.; Ratcliffe, J. From KIDSCREEN-10 to CHU9D: Creating a unique mapping algorithm for application in economic evaluation. Health Qual. Life Outcomes 2014, 12, 134. [Google Scholar] [CrossRef] [Green Version]
- Lambe, T.; Frew, E.; Ives, N.J.; Woolley, R.L.; Cummins, C.; Brettell, E.A.; Barsoum, E.N.; Webb, N.J.A.; Team, P.T. Mapping the Paediatric Quality of Life Inventory (PedsQL) Generic Core Scales onto the Child Health Utility Index-9 Dimension (CHU-9D) Score for Economic Evaluation in Children. Pharmacoeconomics 2018, 36, 451–465. [Google Scholar] [CrossRef] [PubMed]
- Frew, E.; Lambe, T. Comment on: “Mapping the Paediatric Quality of Life Inventory (PedsQL) Generic Core Scales Onto the Child Health Utility Index-9 Dimension (CHU-9D) Score for Economic Evaluation in Children”. Pharmacoeconomics 2018, 36, 1029. [Google Scholar] [CrossRef] [Green Version]
- Mpundu-Kaambwa, C.; Chen, G.; Russo, R.; Stevens, K.; Petersen, K.D.; Ratcliffe, J. Mapping CHU9D Utility Scores from the PedsQL(TM) 4.0 SF-15. Pharmacoeconomics 2017, 35, 453–467. [Google Scholar] [CrossRef] [PubMed]
- Robinson, T.; Oluboyede, Y. Estimating CHU-9D Utility Scores from the WAItE: A Mapping Algorithm for Economic Evaluation. Value Health 2019, 22, 239–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horsmann, J.; Furlong, W.; Feeny, D.; Torrance, G. The Health Utilities Index (HUI): Concepts, measurement properties and applications. Health Qual. Life Outcomes 2003, 1, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Horsmann, J.; Gauld, M. Health Utilities Inc. Available online: http://healthutilities.com/ (accessed on 17 January 2021).
- Crohn’s and Colitis Canada. The Impact of Inflammatory Bowel Disease in Canada; Crohn’s and Colitis Canada: Toronto, ON, Canada, 2018; Available online: http://crohnsandcolitis.ca/Crohns_and_Colitis/documents/reports/2018-Impact-Report-LR.pdf?ext=.pdf (accessed on 4 January 2018).
- Benchimol, E.I.; Bernstein, C.N.; Bitton, A.; Carroll, M.W.; Singh, H.; Otley, A.R.; Vutcovici, M.; El-Matary, W.; Nguyen, G.C.; Griffiths, A.M. Trends in Epidemiology of Pediatric Inflammatory Bowel Disease in Canada: Distributed Network Analysis of Multiple Population-Based Provincial Health Administrative Databases. Am. J. Gastroenterol. 2017, 112, 1120–1134. [Google Scholar] [CrossRef] [Green Version]
- Goodman, W.A.; Erkkila, I.P.; Pizarro, T.T. Sex matters: Impact on pathogenesis, presentation and treatment of inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 740–754. [Google Scholar] [CrossRef]
- Chen, X.-L.; Zhong, L.-H.; Wen, Y.; Liu, T.-W.; Li, X.-Y.; Hou, Z.-K.; Hu, Y.; Mo, C.-W.; Liu, F.-B. Inflammatory bowel disease-specific health-related quality of life instruments: A systematic review of measurement properties. Health Qual Life Outcomes 2017, 15, 1–13. [Google Scholar] [CrossRef]
- Sawicki, G.S.; Lukens-Bull, K.; Yin, X.; Demars, N.; Huang, I.C.; Livingood, W.; Reiss, J.; Wood, D. Measuring the Transition Readiness of Youth with Special Healthcare Needs: Validation of the TRAQ—Transition Readiness Assessment Questionnaire. J. Pediatr. Psychol. 2011, 36, 160–171. [Google Scholar] [CrossRef] [Green Version]
- Greenberg, D.; Schwartz, D.; Vardi, H.; Friger, M.; Sarid, O.; Slonim-Nevo, V.; Odes, S. Health-Related Utility Weights in a Cohort of Real-World Crohn’s Disease Patients. J. Crohns Colitis 2015, 9, 1138–1145. [Google Scholar] [CrossRef] [Green Version]
- Gregor, J.C.; McDonald, J.W.D.; Klar, N.; Wall, R.; Atkinson, K.; Lamba, B.; Feagan, B.G. An Evaluation of Utility Measurement in Crohn’s Disease. Inflamm. Bowel Dis. 1997, 3, 265–270. [Google Scholar] [CrossRef]
- McLeod, R.S.; Churchill, D.N.; Lock, A.M.; Vanderburgh, S.; Cohen, Z. Quality of life of patients with ulcerative colitis preoperatively and postoperatively. Gastroenterology 1991, 101, 1307–1313. [Google Scholar] [CrossRef]
- Malinowski, K.P.; Kawalec, P. Health utility of patients with Crohn’s disease and ulcerative colitis: A systematic review and meta-analysis. Expert Rev. Pharm. Outcomes Res. 2016, 16, 441–453. [Google Scholar] [CrossRef]
- Kelsen, J.; Baldassano, R.N. Inflammatory bowel disease: The difference between children and adults. Inflamm. Bowel Dis. 2008, 14, S9–S11. [Google Scholar] [CrossRef] [PubMed]
- Gasparetto, M.; Guariso, G. Crohn’s disease and growth deficiency in children and adolescents. World J. Gastroenterol. 2014, 20, 13219. [Google Scholar] [CrossRef]
- Ratcliffe, J.; Stevens, K.; Flynn, T.; Brazier, J.; Sawyer, M.G. Whose values in health? An empirical comparison of the application of adolescent and adult values for the CHU-9D and AQOL-6D in the Australian adolescent general population. Value Health 2012, 15, 730–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Torrance, G.W.; Feeny, D.H.; Furlong, W.J.; Barr, R.D.; Zhang, Y.; Wang, Q. Multiattribute utility function for a comprehensive health status classification system: Health Utilities Index Mark 2. Med Care 1996, 702–722. [Google Scholar] [CrossRef] [PubMed]
- Turner, D.; Griffiths, A.M.; Walters, T.D.; Seah, T.; Markowitz, J.; Pfefferkorn, M.; Keljo, D.; Waxman, J.; Otley, A.; LeLeiko, N.S. Mathematical weighting of the pediatric Crohn’s disease activity index (PCDAI) and comparison with its other short versions. Inflamm. Bowel Dis. 2012, 18, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Turner, D.; Hyams, J.; Markowitz, J.; Lerer, T.; Mack, D.R.; Evans, J.; Pfefferkorn, M.; Rosh, J.; Kay, M.; Crandall, W. Appraisal of the pediatric ulcerative colitis activity index (PUCAI). Inflamm. Bowel Dis. 2009, 15, 1218–1223. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Bohn, J.; Yoshida, M.K. Package ‘tableone’ v. 0.12.0. 2020. Available online: https://github.com/kaz-yos/tableone (accessed on 18 January 2021).
- Bland, J.M.; Altman, D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Datta, D. Package ‘blandr’. 2018. Available online: https://github.com/deepankardatta/blandr/ (accessed on 18 January 2021).
- Gamer, M.; Lemon, J.; Fellows, I.; Singh, P. Package ‘irr’. 2019. Available online: https://www.r-project.org (accessed on 18 January 2021).
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartko, J.J. On various intraclass correlation reliability coefficients. Psychol. Bull. 1976, 83, 762. [Google Scholar] [CrossRef]
- Whitehurst, D.G.T.; Norman, R.; Brazier, J.E.; Viney, R. Comparison of Contemporaneous EQ-5D and SF-6D Responses Using Scoring Algorithms Derived from Similar Valuation Exercises. Value Health 2014, 17, 570–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grootendorst, P.; Feeny, D.; Furlong, W. Health Utilities Index Mark 3: Evidence of construct validity for stroke and arthritis in a population health survey. Med. Care 2000, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Greuter, T.; Manser, C.; Pittet, V.; Vavricka, S.R.; Biedermann, L. Gender Differences in Inflammatory Bowel Disease. Digestion 2020, 101, 98–104. [Google Scholar] [CrossRef]
- Ratcliffe, J.; Flynn, T.; Terlich, F.; Stevens, K.; Brazier, J.; Sawyer, M. Developing Adolescent-Specific Health State Values for Economic Evaluation. Pharmacoeconomics 2012, 30, 713–727. [Google Scholar] [CrossRef]
- Ratcliffe, J.; Stevens, K.; Flynn, T.; Brazier, J.; Sawyer, M. An assessment of the construct validity of the CHU9D in the Australian adolescent general population. Qual. Life Res. 2012, 21, 717–725. [Google Scholar] [CrossRef]
- Kwon, J.; Kim, S.W.; Ungar, W.J.; Tsiplova, K.; Madan, J.; Petrou, S. A systematic review and meta-analysis of childhood health utilities. Med. Decis Mak. 2018, 38, 277–305. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Ratcliffe, J. A Review of the Development and Application of Generic Multi-Attribute Utility Instruments for Paediatric Populations. Pharmacoeconomics 2015, 33, 1013–1028. [Google Scholar] [CrossRef] [PubMed]
- Ungar, W.J.; Boydell, K.; Dell, S.; Feldman, B.M.; Marshall, D.; Willan, A.; Wright, J.G. A parent-child dyad approach to the assessment of health status and health-related quality of life in children with asthma. Pharmacoeconomics 2012, 30, 697–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristic | CD | UC | ||
---|---|---|---|---|
Males | Females | Males | Females | |
n | 127 | 72 | 35 | 51 |
Mean age, years (SD) | 13.8 (2.3) | 14.2 (2.5) | 14.2 (2.4) | 13.9 (3.1) |
Age range (minimum to maximum, years) | 7.3–17.8 | 7.6–18.1 | 9.4–18.0 | 6.5–18.1 |
Ethnicity (%) | ||||
Caucasian | 73 (57.5) | 46 (63.9) | 25 (62.9) | 34 (66.7) |
Mixed | 13 (10.2) | 7 (9.7) | 2 (5.7) | 4 (7.8) |
South Asian | 14 (11.0) | 2 (2.8) | 7 (20.0) | 7 (13.7) |
East and Southeast Asian | 5 (3.9) | 1 (1.4) | 0 (0.0) | 1 (2.0) |
Caribbean, Latin, Central or South American | 3 (2.4) | 5 (6.9) | 0 (0.0) | 1 (2.0) |
West Central Asian and Middle Eastern | 2 (1.6) | 2 (2.8) | 1 (2.9) | 3 (5.9) |
North, Southern, East, Central or West African | 5 (3.9) | 2 (2.8) | 2 (5.7) | 1 (2.0) |
Other or Unknown | 12 (9.4) | 7 (9.7) | 1 (2.6) | 0 (0.0) |
Clinical Site | ||||
Toronto | 98 (77.2) | 54 (75.0) | 30 (85.7) | 44 (86.3) |
Halifax | 29 (22.8) | 15 (20.8) | 5 (14.3) | 6 (11.8) |
St. John’s | 0 (0.0) | 3 (4.2) | 0 (0.0) | 1 (2.0) |
Characteristic | CD | UC | ||
---|---|---|---|---|
Males | Females | Males | Females | |
n | 127 | 72 | 35 | 51 |
wPCDAI or PUCAI Score mean (SD) | 22.6 (24.0) Mild | 30.4 (29.4) Mild | 17.2 (24.2) Mild | 19.2 (26.4) Mild |
wPCDAI or PUCAI Score median (IQR) | 15.0 (37.5) Mild | 25.0 (40.0) Mild | 5.0 (23.8) Remission | 5.0 (30.0) Remission |
wPCDAI or PUCAI Range (minimum to maximum) | 0.0–105.0 (Remission to Severe) | 0.0–110.0 (Remission to Severe) | 0–80.0 (Remission to Severe) | 0–80.0 (Remission to Severe) |
wPCDAI Category or PUCAI Category n (%) | ||||
Remission | 51 (40.2) | 24 (33.3) | 18 (51.4) | 28 (54.9) |
Mild | 30 (23.6) | 22 (30.6) | 9 (25.7) | 9 (17.6) |
Moderate | 13 (10.2) | 4 (5.6) | 3 (8.6) | 7 (13.7) |
Severe | 11 (8.7) | 13 (18.1) | 4 (11.4) | 5 (9.8) |
Missing (Unknown) | 22 (17.3) | 9 (12.5) | 1 (2.9) | 2 (3.9) |
CHU9D Utility (Adult Tariffs) | CHU9D Utility (Youth Tariffs) | HUI2 Utility | HUI3 Utility | |||
---|---|---|---|---|---|---|
CD | Males (n = 127) | Mean (SD) | 0.862 (0.122) | 0.773 (0.203) | 0.885 (0.152) | 0.821 (0.220) |
Median (IQR) | 0.880 (0.148) | 0.810 (0.232) | 0.926 (0.136) | 0.879 (0.230) | ||
Range (minimum to maximum) | 0.380–1.000 | 0.052–1.000 | 0.174–1.000 | −0.160–1.000 | ||
Females (n = 72) | Mean (SD) | 0.838 (0.112) | 0.721 (0.200) | 0.855 (0.155) | 0.791 (0.216) | |
Median (IQR) | 0.866 (0.163) | 0.757 (0.274) | 0.907 (0.177) | 0.846 (0.224) | ||
Range (minimum to maximum) | 0.558–1.000 | 0.167–1.000 | 0.266–1.000 | 0.081–1.000 | ||
UC | Males (n = 35) | Mean (SD) | 0.869 * (0.115) | 0.778 * (0.210) | 0.854 (0.200) | 0.799 (0.212) |
Median (IQR) | 0.885 (0.154) | 0.810 (0.311) | 0.937 (0.189) | 0.879 (0.264) | ||
Range (minimum to maximum) | 0.567–1.000 | 0.230–1.000 | 0.212–1.000 | 0.232–1.000 | ||
Females (n = 51) | Mean (SD) | 0.806 * (0.129) | 0.675 * (0.216) | 0.791 (0.214) | 0.706 (0.251) | |
Median (IQR) | 0.826 (0.174) | 0.686 (0.296) | 0.868 (0.222) | 0.748 (0.307) | ||
Range (minimum to maximum) | 0.480–1.000 | 0.174–1.000 | 0.257–1.000 | 0.011–1.000 |
CD | UC | |||
---|---|---|---|---|
N = 199 | N = 86 | |||
CHU-9D with Adult Tariffs | CHU-9D with Youth Tariffs | CHU-9D with Adult Tariffs | CHU-9D with Youth Tariffs | |
HUI2 | 0.65 * | 0.67 * | 0.67 * | 0.69 * |
HUI3 | 0.62 * | 0.65 * | 0.67 * | 0.69 * |
CHU9D Domains | HUI2 Domains | HUI3 Domains | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Emotion | Cognition | Mobility | Self-Care | Pain | Emotion | Cognition | Ambulation | Dexterity | Pain | |
Worry | 0.43 | 0.30 | ||||||||
0.37 | 0.21 | |||||||||
Sad | 0.38 | 0.42 | ||||||||
0.47 | 0.33 | |||||||||
Pain (adult tariff/youth tariff) | 0.65/0.66 | 0.66/0.70 | ||||||||
0.53/0.61 | 0.61/0.67 | |||||||||
Annoyed | 0.44 | 0.40 | ||||||||
0.40 | 0.37 | |||||||||
Schoolwork (adult tariff/youth tariff) | 0.22/0.23 | 0.24 | ||||||||
0.32 | 0.3 | |||||||||
Daily Routine | 0.31 | 0.26 | 0.33 | −0.04 * | ||||||
0.12 | 0.41 | 0.12 * | −0.01 * | |||||||
Activities | 0.30 | 0.29 | 0.33 | 0.10 * | ||||||
0.36 | 0.4 | 0.36 | 0.15 * |
CHU9D with Adult Tariffs | CHU9D with Youth Tariffs | HUI2 | HUI3 | |||||
---|---|---|---|---|---|---|---|---|
CD | UC | CD | UC | CD | UC | CD | UC | |
Lowest scoring domain | Pain | Pain | Sleep | Sleep | Pain | Pain | Pain | Pain |
Tired | Tired | Annoyed | Daily Routine | Emotion | Emotion | Emotion | Emotion | |
Sleep | Sleep | Daily Routine | Annoyed | Sensation | Sensation | Cognition | Cognition | |
Annoyed | Annoyed | School | Pain | Cognition | Cognition | Vision | Ambulation | |
Sad | Sad | Pain | School | Self-care | Mobility | Ambulation | Vision | |
Worry | Worry | Tired | Tired | Mobility | Self-care | Speech | Dexterity | |
School | Daily Routine | Activities | Activities | Hearing | Speech | |||
Daily Routine | School | Sad | Sad | Dexterity | Hearing | |||
Highest scoring domain | Activities | Activities | Worry | Worry |
Instrument | Intraclass Correlation (95% CI) in CD Based on wPCDAI Health Status (n = 11) | Intraclass Correlation (95% CI) in UC Based on PUCAI Health Status (n = 9) |
---|---|---|
CHU9D (adult tariffs) | 0.844 (0.54, 0.955) * | 0.455 (−0.174, 0.839) |
CHU9D (youth tariffs) | 0.889 (0.613, 0.97) * | 0.476 (−0.154, 0.847) |
HUI2 | 0.706 (0.223, 0.911) * | −0.0783 (−0.643, 0.573) |
HUI3 | 0.886 (0.587, 0.969) * | −0.103 (−0.692, 0.567) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bashir, N.S.; Walters, T.D.; Griffiths, A.M.; Ungar, W.J. An Assessment of the Validity and Reliability of the Pediatric Child Health Utility 9D in Children with Inflammatory Bowel Disease. Children 2021, 8, 343. https://doi.org/10.3390/children8050343
Bashir NS, Walters TD, Griffiths AM, Ungar WJ. An Assessment of the Validity and Reliability of the Pediatric Child Health Utility 9D in Children with Inflammatory Bowel Disease. Children. 2021; 8(5):343. https://doi.org/10.3390/children8050343
Chicago/Turabian StyleBashir, Naazish S., Thomas D. Walters, Anne M. Griffiths, and Wendy J. Ungar. 2021. "An Assessment of the Validity and Reliability of the Pediatric Child Health Utility 9D in Children with Inflammatory Bowel Disease" Children 8, no. 5: 343. https://doi.org/10.3390/children8050343
APA StyleBashir, N. S., Walters, T. D., Griffiths, A. M., & Ungar, W. J. (2021). An Assessment of the Validity and Reliability of the Pediatric Child Health Utility 9D in Children with Inflammatory Bowel Disease. Children, 8(5), 343. https://doi.org/10.3390/children8050343