Growth of Very Preterm Infants in a Low-Resourced Rural Setting after Affiliation with a Human Milk Bank
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Setting and Affiliation with Human Milk Bank
2.3. Nutrition Protocol
2.3.1. Parental Nutrition
2.3.2. Enteral Nutrition
2.4. Outcomes and Data Collection
2.5. Statistics and Analysis
3. Results
4. Discussion
4.1. The Influence of DHM Accessibility on Feeding Policy
4.2. Renewal of Nutritional Protocol, Growth Outcomes, and Neonatal Morbidities
4.3. The Benefits, Cost, and Challenge of HMB during COVID-19 Pandemic
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Epoch-I (n = 39) 1 | Epoch-II (n = 41) 1 | p-Value | |
---|---|---|---|
Age of initial nutrition management, days | |||
PN | 1.13 ± 0.74 | 0.22 ± 0.42 | <0.001 |
First enteral feeding | 3.27 ± 3.75 | 0.02 ± 0.16 | <0.001 |
Milk type at first feeding2 | <0.001 | ||
MOM | 5 (13.5%) | 1 (2.5%) | |
DHM | 0 (0%) | 32 (80%) | |
Preterm formula | 32 (86.5%) | 7 (17.5%) | |
Fortification initiating3 | |||
Fortification with exclusive MOM or DHM | 5 (13.5%) 2 | 31 (77.5%) 2 | <0.001 |
Post-menstrual age, weeks | 31.8 ± 2.4 | 30.0 ± 2.0 | 0.008 |
Postnatal age, days | 19.1 ± 16.1 | 10.9 ± 4.0 | 0.003 |
Length of PN use, days | 28.4 ± 14.6 | 8.0 ± 4.9 | <0.001 |
Feeding amount (with or without fortification) reached 120mL/kg/day, days | 30.1 ± 14.0 | 10.6 ± 3.7 | <0.001 |
PICC insertion | 29 (74.4%) | 10 (25.6%) | <0.001 |
References
- Radmacher, P.G.; Looney, S.W.; Rafail, S.T.; Adamkin, D.H. Prediction of extrauterine growth retardation (EUGR) in VVLBW infants. J. Perinatol. 2003, 23, 392–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chien, H.C.; Chen, C.H.; Wang, T.M.; Hsu, Y.C.; Lin, M.C. Neurodevelopmental outcomes of infants with very low birth weights are associated with the severity of their extra-uterine growth retardation. Pediatr. Neonatol. 2018, 59, 168–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Jimenez, M.D.; Gomez-Garcia, F.J.; Gil-Campos, M.; Perez-Navero, J.L. Comorbidities in childhood associated with extrauterine growth restriction in preterm infants: A scoping review. Eur. J. Pediatr. 2020, 179, 1255–1265. [Google Scholar] [CrossRef]
- Ordonez-Diaz, M.D.; Perez-Navero, J.L.; Flores-Rojas, K.; Olza-Meneses, J.; Munoz-Villanueva, M.C.; Aguilera-Garcia, C.M.; Gil-Campos, M. Prematurity with Extrauterine Growth Restriction Increases the Risk of Higher Levels of Glucose, Low-Grade of Inflammation and Hypertension in Prepubertal Children. Front. Pediatr. 2020, 8, 180. [Google Scholar] [CrossRef] [Green Version]
- Pampanini, V.; Boiani, A.; De Marchis, C.; Giacomozzi, C.; Navas, R.; Agostino, R.; Dini, F.; Ghirri, P.; Cianfarani, S. Preterm infants with severe extrauterine growth retardation (EUGR) are at high risk of growth impairment during childhood. Eur. J. Pediatr. 2015, 174, 33–41. [Google Scholar] [CrossRef]
- Takayanagi, T.; Shichijo, A.; Egashira, M.; Egashira, T.; Mizukami, T. Extrauterine growth restriction was associated with short stature and thinness in very low birthweight infants at around six years of age. Acta Paediatr. 2019, 108, 112–117. [Google Scholar] [CrossRef]
- Zhao, X.; Ding, L.; Chen, X.; Zhu, X.; Wang, J. Characteristics and risk factors for extrauterine growth retardation in very-low-birth-weight infants. Medicine 2020, 99, e23104. [Google Scholar] [CrossRef]
- Liao, W.L.; Lin, M.C.; Wang, T.M.; Chen, C.H.; Taiwan Premature Infant Follow-up, N. Risk factors for postdischarge growth retardation among very-low-birth-weight infants: A nationwide registry study in Taiwan. Pediatr. Neonatol. 2019, 60, 641–647. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.; Tang, Q.; Wang, Y.; Wu, J.; Ruan, H.; Lu, L.; Tao, Y.; Cai, W. Analysis of Nutrition Support in Very Low-Birth-Weight Infants With Extrauterine Growth Restriction. Nutr. Clin. Pract. 2019, 34, 436–443. [Google Scholar] [CrossRef] [Green Version]
- Gidi, N.W.; Goldenberg, R.L.; Nigussie, A.K.; McClure, E.; Mekasha, A.; Worku, B.; Siebeck, M.; Genzel-Boroviczeny, O.; Muhe, L.M. Incidence and associated factors of extrauterine growth restriction (EUGR) in preterm infants, a cross-sectional study in selected NICUs in Ethiopia. BMJ Paediatr. Open 2020, 4, e000765. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.C.; Lin, Y.J.; Lin, C.H. Growth and neurodevelopmental outcomes of extremely low birth weight infants: A single center’s experience. Pediatr. Neonatol. 2011, 52, 342–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevens, T.P.; Shields, E.; Campbell, D.; Combs, A.; Horgan, M.; La Gamma, E.F.; Xiong, K.; Kacica, M. Statewide Initiative to Reduce Postnatal Growth Restriction among Infants <31 Weeks of Gestation. J. Pediatr. 2018, 197, 82–89.e82. [Google Scholar] [CrossRef]
- McKenzie, B.L.; Edmonds, L.; Thomson, R.; Haszard, J.J.; Houghton, L.A. Nutrition Practices and Predictors of Postnatal Growth in Preterm Infants During Hospitalization: A Longitudinal Study. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.H.; Hsu, Y.C.; Lin, M.C.; Chen, C.H.; Wang, T.M. The association of macronutrients in human milk with the growth of preterm infants. PLoS ONE 2020, 15, e0230800. [Google Scholar] [CrossRef]
- Darrow, M.C.J.; Li, H.; Prince, A.; McClary, J.; Walsh, M.C. Improving extrauterine growth: Evaluation of an optimized, standardized neonatal parenteral nutrition protocol. J. Perinatol. 2019, 39, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Baillat, M.; Pauly, V.; Dagau, G.; Berbis, J.; Boubred, F.; Fayol, L. Association of First-Week Nutrient Intake and Extrauterine Growth Restriction in Moderately Preterm Infants: A Regional Population-Based Study. Nutrients 2021, 13, 227. [Google Scholar] [CrossRef] [PubMed]
- Alburaki, W.; Yusuf, K.; Dobry, J.; Sheinfeld, R.; Alshaikh, B. High Early Parenteral Lipid in Very Preterm Infants: A Randomized-Controlled Trial. J. Pediatr. 2021, 228, 16–23.e11. [Google Scholar] [CrossRef] [PubMed]
- Klingenberg, C.; Embleton, N.D.; Jacobs, S.E.; O’Connell, L.A.; Kuschel, C.A. Enteral feeding practices in very preterm infants: An international survey. Arch. Dis. Child. Fetal Neonatal Ed. 2012, 97, F56–F61. [Google Scholar] [CrossRef] [Green Version]
- Stevens, T.P.; Shields, E.; Campbell, D.; Combs, A.; Horgan, M.; La Gamma, E.F.; Xiong, K.; Kacica, M. Variation in Enteral Feeding Practices and Growth Outcomes among Very Premature Infants: A Report from the New York State Perinatal Quality Collaborative. Am. J. Perinatol. 2016, 33, 9–19. [Google Scholar] [CrossRef]
- Nakubulwa, C.; Musiime, V.; Namiiro, F.B.; Tumwine, J.K.; Hongella, C.; Nyonyintono, J.; Hedstrom, A.B.; Opoka, R. Delayed initiation of enteral feeds is associated with postnatal growth failure among preterm infants managed at a rural hospital in Uganda. BMC Pediatr. 2020, 20, 86. [Google Scholar] [CrossRef]
- Jadcherla, S.R.; Dail, J.; Malkar, M.B.; McClead, R.; Kelleher, K.; Nelin, L. Impact of Process Optimization and Quality Improvement Measures on Neonatal Feeding Outcomes at an All-Referral Neonatal Intensive Care Unit. JPEN J. Parenter. Enteral Nutr. 2016, 40, 646–655. [Google Scholar] [CrossRef]
- Arslanoglu, S.; Moro, G.E.; Bellu, R.; Turoli, D.; De Nisi, G.; Tonetto, P.; Bertino, E. Presence of human milk bank is associated with elevated rate of exclusive breastfeeding in VLBW infants. J. Perinat. Med. 2013, 41, 129–131. [Google Scholar] [CrossRef]
- Sparks, H.; Linley, L.; Beaumont, J.L.; Robinson, D.T. Donor milk intake and infant growth in a South African neonatal unit: A cohort study. Int. Breastfeed. J. 2018, 13, 41. [Google Scholar] [CrossRef]
- Alyahya, W.; Barnett, D.; Cooper, A.; Garcia, A.L.; Edwards, C.A.; Young, D.; Simpson, J.H. Donated human milk use and subsequent feeding pattern in neonatal units. Int. Breastfeed. J. 2019, 14, 39. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, M.; Farshbaf-Khalili, A.; Seyyedzavvar, A.; Fuladi, N.; Hosseini, N.; Talashi, S. Short-term Outcomes of Launching Mother’s Milk Bank in Neonatal Intensive Care Unit: A Retrospective Study. Arch. Iran. Med. 2021, 24, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Torres-Munoz, J.; Jimenez-Fernandez, C.A.; Murillo-Alvarado, J.; Torres-Figueroa, S.; Castro, J.P. Clinical Results of the Implementation of a Breast Milk Bank in Premature Infants (under 37 Weeks) at the Hospital Universitario del Valle 2018–2020. Nutrients 2021, 13, 2187. [Google Scholar] [CrossRef] [PubMed]
- Taiwan Society of Neonatology. Available online: http://www.tsn-neonatology.com (accessed on 1 October 2021).
- Brown, N.C.; Doyle, L.W.; Bear, M.J.; Inder, T.E. Alterations in neurobehavior at term reflect differing perinatal exposures in very preterm infants. Pediatrics 2006, 118, 2461–2471. [Google Scholar] [CrossRef]
- Lin, Y.C.; Chen, Y.J.; Huang, C.C.; Shieh, C.C. Concentrated Preterm Formula as a Liquid Human Milk Fortifier at Initiation Stage in Extremely Low Birth Weight Preterm Infants: Short Term and 2-year Follow-up Outcomes. Nutrients 2020, 12, 2229. [Google Scholar] [CrossRef] [PubMed]
- Calgary, U.O. Research Bulk Calculator for Gestational Age Size at Birth. Available online: https://live-ucalgary.ucalgary.ca/resource/preterm-growth-chart/calculators (accessed on 1 October 2021).
- Jobe, A.H.; Bancalari, E. Bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 2001, 163, 1723–1729. [Google Scholar] [CrossRef]
- International Committee for the Classification of Retinopathy of Prematurity. The International Classification of Retinopathy of Prematurity revisited. Arch. Ophthalmol. 2005, 123, 991–999. [Google Scholar] [CrossRef]
- Neu, J.; Walker, W.A. Necrotizing enterocolitis. N. Engl. J. Med. 2011, 364, 255–264. [Google Scholar] [CrossRef] [Green Version]
- Kantorowska, A.; Wei, J.C.; Cohen, R.S.; Lawrence, R.A.; Gould, J.B.; Lee, H.C. Impact of Donor Milk Availability on Breast Milk Use and Necrotizing Enterocolitis Rates. Pediatrics 2016, 137, e20153123. [Google Scholar] [CrossRef] [Green Version]
- Leaf, A.; Dorling, J.; Kempley, S.; McCormick, K.; Mannix, P.; Linsell, L.; Juszczak, E.; Brocklehurst, P.; Abnormal Doppler Enteral Prescription Trial Collaborative Group. Early or delayed enteral feeding for preterm growth-restricted infants: A randomized trial. Pediatrics 2012, 129, e1260–e1268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrmann, K.; Carroll, K. An exclusively human milk diet reduces necrotizing enterocolitis. Breastfeed. Med. 2014, 9, 184–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abiramalatha, T.; Thanigainathan, S.; Ninan, B. Routine monitoring of gastric residual for prevention of necrotising enterocolitis in preterm infants. Cochrane Database Syst. Rev. 2019, 7, CD012937. [Google Scholar] [CrossRef] [PubMed]
- Stey, A.; Barnert, E.S.; Tseng, C.H.; Keeler, E.; Needleman, J.; Leng, M.; Kelley-Quon, L.I.; Shew, S.B. Outcomes and costs of surgical treatments of necrotizing enterocolitis. Pediatrics 2015, 135, e1190–e1197. [Google Scholar] [CrossRef] [Green Version]
- Fengler, J.; Heckmann, M.; Lange, A.; Kramer, A.; Flessa, S. Cost analysis showed that feeding preterm infants with donor human milk was significantly more expensive than mother’s milk or formula. Acta Paediatr. 2020, 109, 959–966. [Google Scholar] [CrossRef] [PubMed]
- Ganapathy, V.; Hay, J.W.; Kim, J.H. Costs of necrotizing enterocolitis and cost-effectiveness of exclusively human milk-based products in feeding extremely premature infants. Breastfeed. Med. 2012, 7, 29–37. [Google Scholar] [CrossRef]
- Delfosse, N.M.; Ward, L.; Lagomarcino, A.J.; Auer, C.; Smith, C.; Meinzen-Derr, J.; Valentine, C.; Schibler, K.R.; Morrow, A.L. Donor human milk largely replaces formula-feeding of preterm infants in two urban hospitals. J. Perinatol. 2013, 33, 446–451. [Google Scholar] [CrossRef] [Green Version]
- Shenker, N.; Virtual Collaborative Network of Human Milk Banks and Associations. Maintaining safety and service provision in human milk banking: A call to action in response to the COVID-19 pandemic. Lancet Child Adolesc. Health 2020, 4, 484–485. [Google Scholar] [CrossRef]
- Merjaneh, N.; Williams, P.; Inman, S.; Schumacher, M.; Ciurte, A.; Smotherman, C.; Alissa, R.; Hudak, M. The impact on the exclusive breastfeeding rate at 6 months of life of introducing supplementary donor milk into the level 1 newborn nursery. J. Perinatol. 2020, 40, 1109–1114. [Google Scholar] [CrossRef]
n for Analysis | Epoch-I (n = 40) | Epoch-II (n = 42) | p-Value | |
---|---|---|---|---|
Perinatal variables | ||||
Gestational age, weeks | 82 | 28.7 ± 2.4 | 28.1 ± 2.6 | 0.229 |
Birth weight, grams | 82 | 1120 ± 363 | 1132 ± 360 | 0.912 |
Z-score of birth weight | 82 | −0.32 ± 0.93 | 0.07 ± 0.71 | 0.033 |
Small for gestational age | 82 | 8 (20.0%) | 1 (2.4%) | 0.007 |
Gender: male | 82 | 26 (65.0%) | 26 (61.9%) | 0.771 |
Cesarean delivery | 82 | 21 (52.5%) | 20 (47.6%) | 0.659 |
AEDV/REDV | 82 | 8 (20.0%) | 1 (2.4%) | 0.007 |
Multi-gestational pregnancy | 82 | 4 (10.0%) | 10 (23.8%) | 0.097 |
Antenatal steroid | 82 | 34 (85.0%) | 36 (85.7%) | 0.927 |
Neonatal variables APGAR score | ||||
1st minute, median (range) | 82 | 7 (2–9) | 7 (1–10) | 0.167 |
5th minute, median (range) | 82 | 9 (5–10) | 9 (2–10) | 0.111 |
pH of 1st blood gas analysis | 82 | 7.29 ± 0.96 | 7.24 ± 0.91 | 0.008 |
Surfactant administration | 82 | 16 (40%) | 11 (26.2%) | 0.183 |
Umbilical line | 82 | 8 (20%) | 2 (4.8%) | 0.035 |
hsPDA requiring surgery | 82 | 7 (17.5%) | 3 (7.1%) | 0.185 |
Late onset sepsis | 80 1 | 12 (30.8%) | 1 (2.4%) | <0.001 |
Necrotizing enterocolitis ≥ IIA | 80 1 | 3 (7.7%) | 3 (7.3%) | 1.000 |
Treated retinopathy of prematurity | 73 2 | 2 (5.3%) | 6 (16.2%) | 0.279 |
Bronchopulmonary dysplasia | 73 2 | 15 (41.6%) | 9 (24.3%) | 0.115 |
Death | 82 | 4 (10%) | 5 (11.9%) | 0.938 |
Discharge PMA, weeks | 70 3 | 38.5 ± 3.0 | 38.5 ± 5.1 | 0.987 |
Length of hospital stay, days | 70 3 | 67.1 ± 30.0 | 72.1 ± 47.1 | 0.600 |
Z-score of body weight at TEA | 68 4 | −0.84 ± 1.08 | −0.02 ± 1.00 | 0.002 |
EUGR | 68 4 | 11 (33%) | 4 (11.4%) | 0.029 |
Persistent MOM feeding after discharge (with or without mixing with PDF) | 68 4 | 12 (36.4%) | 16 (45.7%) | 0.434 |
Univariate | |||
---|---|---|---|
B | 95%CI (LB, UB) | p-Value | |
Gestational age, week | 0.198 | (0.098, 0.298) | <0.001 |
Small for gestational age | 0.292 | (−0.544, 1.129) | 0.488 |
Z-score of birth weight | −0.234 | (−0.527, 0.060) | 0.117 |
Sex | 0.331 | (−0.146, 0.808) | 0.171 |
Cesarean section | 0.024 | (−0.453, 0.510) | 0.920 |
Antenatal steroid | −0.106 | (−0.778, 0.567) | 0.755 |
Multi-gestational pregnancy | 0.587 | (−0.079, 1.244) | 0.079 |
PDA ligation | −0.957 | (−1.705, −0.209) | 0.013 |
Bronchopulmonary dysplasia | −0.659 | (−1.156, −0.162) | 0.010 |
Late onset sepsis | −0.580 | (−1.217, 0.056) | 0.073 |
Epoch (ref. Epoch I) | 0.347 | (−0.122, 0.816) | 0.145 |
Multivariate Model 1 | Multivariate Model 2 | Multivariate Model 3 | |||||||
---|---|---|---|---|---|---|---|---|---|
B | 95%CI (LB, UB) | p | B | 95%CI (LB, UB) | p | B | 95%CI (LB, UB) | p | |
Gestational age | 0.204 | (0.102, 0.306) | <0.001 | 0.200 | (0.099, 0.301) | <0.001 | 0.189 | (0.084, 0.295) | 0.001 |
Z-score of birth weight | −0.123 | (−0.406, 0.161) | 0.392 | −0.130 | (−0.411, 0.150) | 0.356 | −0.122 | (−0.404, 0.160) | 0.389 |
Sex | 0.373 | (−0.047, 0.794) | 0.081 | 0.339 | (−0.078, 0.756) | 0.109 | 0.320 | (−0.101, 0.742) | 0.133 |
Multi-gestational Pregnancy | 0.481 | (−0.095, 1.057) | 0.100 | 0.456 | (−0.126, 1.037) | 0.122 | |||
PDA ligation | −0.276 | (−1.014, 0.461) | 0.457 | ||||||
Epoch (ref. Epoch I) | 0.501 | (0.073, 0.929) | 0.022 | 0.479 | (0.056, 0.902) | 0.027 | 0.429 | (−0.016, 0.874) | 0.058 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.-H.; Chiu, H.-Y.; Lee, S.-C.; Chang, H.-Y.; Chang, J.-H.; Chen, Y.-J.; Kang, L.; Shen, S.-P.; Lin, Y.-C. Growth of Very Preterm Infants in a Low-Resourced Rural Setting after Affiliation with a Human Milk Bank. Children 2022, 9, 80. https://doi.org/10.3390/children9010080
Chen C-H, Chiu H-Y, Lee S-C, Chang H-Y, Chang J-H, Chen Y-J, Kang L, Shen S-P, Lin Y-C. Growth of Very Preterm Infants in a Low-Resourced Rural Setting after Affiliation with a Human Milk Bank. Children. 2022; 9(1):80. https://doi.org/10.3390/children9010080
Chicago/Turabian StyleChen, Chia-Huei, Hui-Ya Chiu, Szu-Chia Lee, Hung-Yang Chang, Jui-Hsing Chang, Yen-Ju Chen, Lin Kang, Shang-Po Shen, and Yung-Chieh Lin. 2022. "Growth of Very Preterm Infants in a Low-Resourced Rural Setting after Affiliation with a Human Milk Bank" Children 9, no. 1: 80. https://doi.org/10.3390/children9010080
APA StyleChen, C. -H., Chiu, H. -Y., Lee, S. -C., Chang, H. -Y., Chang, J. -H., Chen, Y. -J., Kang, L., Shen, S. -P., & Lin, Y. -C. (2022). Growth of Very Preterm Infants in a Low-Resourced Rural Setting after Affiliation with a Human Milk Bank. Children, 9(1), 80. https://doi.org/10.3390/children9010080