Microcephaly in Neurometabolic Diseases
Abstract
:1. Introduction
2. Congenital Microcephaly
2.1. CK Syndrome—X-Linked Syndromic Intellectual Disability Disorder Characterized by Thin Body Habitus and Cortical Malformations, OMIM 300831
2.2. Asparagine Synthetase Deficiency (ASD), OMIM 615574
2.3. Neu–Laxova Syndrome, OMIM NLS1-256520; NLS2-616038
2.3.1. NLS 1
2.3.2. NLS 2
2.4. Maternal Phenylketonuria, OMIM 261600
2.5. Microcephaly, Amish Type (MCPHA), OMIM 607196
2.6. Hyperphenylalaninemia with BH4 Deficiency Due to GTPCH Deficiency, OMIM 233910
2.7. Dihydropteridine Reductase Deficiency (Phenylketonuria Type 2), OMIM 261630
2.8. Smith–Lemli–Opitz Syndrome (SLOS), OMIM 270400
3. Acquired Microcephaly
3.1. Neurodevelopmental Disorder with Progressive Microcephaly, Spasticity, and Brain Imaging Abnormalities (NEDMISBA), OMIM 616486
3.2. De Vivo Disease, OMIM 606777
3.3. Neurodevelopmental Disorder with or without Hyperkinetic Movements and Seizures Due to NMDA Receptor Dysfunction-NDHMSA, OMIM 614254
3.4. Krabbe Disease (Globoid Leukodystrophy), OMIM 245200
3.5. Menkes Disease (Curly Hair Disease), OMIM 309400
3.6. Cerebral Folate Deficiency (CFD), OMIM 613068
3.7. Rhizomelic Chondrodysplasia Punctata Type 1 (RCDP1), OMIM 215100
- -
- Decreased concentration of plasmalogens in erythrocytes;
- -
- High levels of phytanic acid [57].
3.8. Congenital Glycosylation Disorder Type I, OMIM 212065
3.9. Molybdenum Cofactor Deficiency (MoCoD), OMIM 252150
3.10. Isolated Sulfite Oxidase Deficiency (ISOD), OMIM 272300
3.11. Pelizaeus–Merzbacher Disease (PMD), OMIM 312080
4. Congenital and Acquired Microcephaly
4.1. Methylenetetrahydrofolate Reductase Deficiency (Homocystinuria Due to MTHFR Deficiency), OMIM 236250
4.2. Methylmalonic Acidemia with Homocystinuria, OMIM 277400
5. Other Diseases Causing Microcephaly and Microcephaly Prevention
5.1. Virus Zika Syndrome
5.2. Congenital Rubella Syndrome
5.3. Fetal Alcohol Syndrome (FAS)
5.4. Folates—Prevention of Microcephaly
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Karimzadeh, P.; Beheshti, S.; Karimzadeh, P.; Ave, S. Approach to neurometabolic diseases from a pediatric neurological point of view. Iran J. Child Neurol. 2015, 9, 1–16. [Google Scholar]
- Passemard, S.; Kaindl, A.M.; Verloes, A. Microcephaly. Handb. Clin. Neurol. 2013, 111, 129–141. [Google Scholar] [CrossRef]
- Harris, S.H. Measuring head circumference: Update on infant microcephaly. Can. Fam. Phys. 2015, 61, 680–684. [Google Scholar]
- Simanjuntak, Y.; Ko, H.Y.; Lee, Y.L.; Yu, G.Y.; Lin, Y.L. Preventive effects of folic acid on Zika virus-associated poor pregnancy outcomes in immunocompromised mice. PLoS Pathog. 2020, 16, e1008521. [Google Scholar] [CrossRef]
- McLarren, K.W.; Severson, T.M.; duSouich, C.; Stockton, D.W.; Kratz, L.E.; Cunningham, D.; Hendson, G.; Morin, R.D.; Wu, D.; Paul, J.E.; et al. Hypomorphic temperature-sensitive alleles of NSDHL cause CK syndrome. Am. J. Hum. Genet. 2010, 87, 905–914. [Google Scholar] [CrossRef]
- Alfadhel, M.; Alrifai, M.T.; Trujillano, D.; Alshaalan, H.; Al Othaim, A.; Al Rasheed, S.; Assiri, H.; Alqahtani, A.A.; Alaamery, M.; Rolfs, A.; et al. Asparagine Synthetase Deficiency: New Inborn Errors of Metabolism. JIMD Rep. 2015, 22, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Seidahmed, M.Z.; Salih, M.A.; Abdulbasit, O.B.; Samadi, A.; Al Hussien, K.; Miqdad, A.M.; Biary, M.S.; Alazami, A.M.; Alorainy, I.A.; Kabiraj, M.M.; et al. Hyperekplexia, microcephaly and simplified gyral pattern caused by novel ASNS mutations, case report. BMC Neurol. 2016, 16, 105. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; He, G.; Ge, Y.; Li, R.; Li, Z.; Lin, Y. A novel compound heterozygous missense mutation in ASNS broadens the spectrum of asparagine synthetase deficiency. Mol. Genet. Genom. Med. 2020, 8, e1235. [Google Scholar] [CrossRef] [Green Version]
- Ben-Salem, S.; Gleeson, J.G.; Al-Shamsi, A.M.; Islam, B.; Hertecant, J.; Ali, B.R.; Al-Gazali, L. Asparagine synthetase deficiency detected by whole exome sequencing causes congenital microcephaly, epileptic encephalopathy and psychomotor delay. Metab. Brain Dis. 2015, 30, 687–694. [Google Scholar] [CrossRef] [Green Version]
- Acuna-Hidalgo, R.; Schanze, D.; Kariminejad, A.; Nordgren, A.; Kariminejad, M.H.; Conner, P.; Grigelioniene, G.; Nilsson, D.; Nordenskjöld, M.; Wedell, A.; et al. Neu-Laxova syndrome is a heterogeneous metabolic disorder caused by defects in enzymes of the L-serine biosynthesis pathway. Am. J. Hum. Genet. 2014, 95, 285–293. [Google Scholar] [CrossRef] [Green Version]
- Takeichi, T.; Okuno, Y.; Kawamoto, A.; Inoue, T.; Nagamoto, E.; Murase, C.; Shimizu, E.; Tanaka, K.; Kageshita, Y.; Fukushima, S.; et al. Reduction of stratum corneum ceramides in Neu-Laxova syndrome caused by phosphoglycerate dehydrogenase deficiency. J. Lipid Res. 2018, 59, 2413–2420. [Google Scholar] [CrossRef] [Green Version]
- Kaur, A.; Suranagi, V.; Patil, K.; Bannur, H. Neu-Laxova Syndrome: An Unusual Association with Kyphosis. Turk. Patoloji Derg. 2018, 34, 259–261. [Google Scholar] [CrossRef] [Green Version]
- Shaheen, R.; Rahbeeni, Z.; Alhashem, A.; Faqeih, E.; Zhao, Q.; Xiong, Y.; Almoisheer, A.; Al-Qattan, S.M.; Almadani, H.A.; Al-Onazi, N.; et al. Neu-Laxovasyndrome, an inborn error of serine metabolism, is caused by mutations in PHGDH. Am. J. Hum. Genet. 2014, 94, 898–904. [Google Scholar] [CrossRef] [Green Version]
- Barekatain, B.; Sadeghnia, A.; Rouhani, E.; Soofi, G.J. A New Case of Neu-Laxova Syndrome: Infant with Facial Dysmorphism, Arthrogryposis, Ichthyosis, and Microcephalia. Adv. Biomed. Res. 2018, 7, 68. [Google Scholar] [CrossRef]
- Vockley, J.; Andersson, H.C.; Antshel, K.M.; Braverman, N.E.; Burton, B.K.; Frazier, D.M.; Mitchell, J.; Smith, W.E.; Thompson, B.H.; Berry, S.A. Phenylalanine hydroxylase deficiency: Diagnosis and management guideline. Genet. Med. 2014, 16, 188–200. [Google Scholar] [CrossRef] [Green Version]
- Waisbren, S.; Burton, B.K.; Feigenbaum, A.; Konczal, L.L.; Lilienstein, J.; McCandless, S.E.; Rowell, R.; Sanchez-Valle, A.; Whitehall, K.B.; Longo, N. Long-term preservation of intellectual functioning in sapropterin-treated infants and young children with phenylketonuria: A seven-year analysis. Mol. Genet. Metab. 2021, 132, 119–127. [Google Scholar] [CrossRef]
- Mitchell, J.J.; Trakadis, Y.J.; Scriver, C.R. Phenylalanine hydroxylase deficiency. Genet. Med. 2011, 13, 697–707. [Google Scholar] [CrossRef]
- Siu, V.M.; Ratko, S.; Prasad, A.N.; Prasad, C.; Rupar, C.A. Amish microcephaly: Long-term survival and biochemical characterization. Am. J. Med. Genet. 2010, 152, 1747–1751. [Google Scholar] [CrossRef]
- Kelley, R.I.; Robinson, D.; Puffenberger, E.G.; Strauss, K.A.; Morton, D.H. Amish lethal microcephaly: A new metabolic disorder with severe congenital microcephaly and 2-ketoglutaric aciduria. Am. J. Med. Genet. 2002, 112, 318–326. [Google Scholar] [CrossRef]
- Dayasiri, K.C.; Suraweera, N.; Nawarathne, D.; Senanayake, U.E.; Dayanath, B.K.T.P.; Jasinge, E.; Weerasekara, K. GTP-Cyclohydrolase I deficiency presenting as malignant hyperphenylalaninemia, recurrent hyperthermia and progressive neurological dysfunction in a South Asian child—A case report. BMC Pediatr. 2019, 19, 199. [Google Scholar] [CrossRef]
- Opladen, T.; López-Laso, E.; Cortès-Saladelafont, E.; Pearson, T.S.; Sivri, H.S.; Yildiz, Y.; Assmann, B.; Kurian, M.A.; Leuzzi, V.; Heales, S.; et al. Consensus guideline for the diagnosis and treatment of tetrahydrobiopterin (BH4) deficiencies. Orphanet J. Rare Dis. 2020, 15, 202. [Google Scholar] [CrossRef]
- Saudubray, J.M.; Garcia-Cazorla, A. An overview of inborn errors of metabolism affecting the brain: From neurodevelopment to neurodegenerative disorders. Dialogues Clin. Neurosci. 2018, 20, 301–325. [Google Scholar] [CrossRef] [Green Version]
- Lilleväli, H.; Pajusalu, S.; Wojcik, M.H.; Goodrich, J.; Collins, R.L.; Murumets, Ü.; Tammur, P.; Blau, N.; Lilleväli, K.; Õunap, K. Genome sequencing identifies a homozygous inversion disrupting QDPR as a cause for dihydropteridine reductase deficiency. Mol. Genet. Genom. Med. 2020, 8, 1154. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, Y.; Manabe, Y.; Nakano, Y.; Yunoki, T.; Kono, S.; Narai, H.; Furujo, M.; Abe, K. Parkinsonism in Association with Dihydropteridine Reductase Deficiency. Case Rep. Neurol. 2017, 9, 17–21. [Google Scholar] [CrossRef]
- Porta, F.; Ponzone, A.; Spada, M. Long-term safety and effectiveness of pramipexole in tetrahydrobiopterin deficiency. Eur. J. Paediatr. Neurol. 2016, 20, 839–842. [Google Scholar] [CrossRef]
- Temple, S.E.L.; Sachdev, R.; Ellaway, C. Familial DHCR7 genotype presenting as a verymild form of Smith-Lemli-Opitz syndrome and lethal holoprosencephaly. JIMD Rep. 2020, 56, 3–8. [Google Scholar] [CrossRef]
- Gedam, R.; Shah, I.; Ali, U.; Ohri, A. Smith-Lemli-Opitz-syndrome. Indian J. Hum. Genet. 2012, 18, 235–237. [Google Scholar] [CrossRef]
- Park, J.E.; Lee, T.; Ha, K.; Ki, C.S. Carrier frequency and incidence estimation of Smith-Lemli-Opitz syndrome in East Asian populations by Genome Aggregation Database (gnomAD) based analysis. Orphanet J. Rare Dis. 2021, 16, 166. [Google Scholar] [CrossRef]
- Wassif, C.A.; Kratz, L.; Sparks, S.E.; Wheeler, C.; Bianconi, S.; Gropman, A.; Calis, K.A.; Kelley, R.I.; Tierney, E.; Porter, F.D. A placebo-controlled trial of simvastatin therapy in Smith-Lemli-Opitz syndrome. Genet. Med. 2017, 19, 297–305. [Google Scholar] [CrossRef] [Green Version]
- Svoboda, M.D.; Christie, J.M.; Eroglu, Y.; Freeman, K.A.; Steiner, R.D. Treatment of Smith-Lemli-Opitz syndrome and other sterol disorders. Am. J. Med. Genet. C. Semin. Med. Genet. 2012, 160, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Stepanow, K.P.; Liput, M. Rola kwasu dokozaheksaenowego (DHA) w prawidłowym rozwoju I funkcjonowaniu mózgu oraz siatkówki. Zesz. Nauk. Tow. Dr. UJ Nauk. Ścisłe 2018, 17, 7–43. [Google Scholar] [CrossRef]
- Guemez-Gamboa, A.; Nguyen, L.N.; Yang, H.; Zaki, M.S.; Kara, M.; Ben-Omran, T.; Akizu, N.; Rosti, R.O.; Rosti, B.; Scott, E.; et al. Inactivating mutations in MFSD2A, required for omega-3 fatty acid transport in brain, cause a lethal microcephaly syndrome. Nat. Genet. 2015, 47, 809–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harel, T.; Quek, D.; Wong, B.H.; Cazenave-Gassiot, A.; Wenk, M.R.; Fan, H.; Berger, I.; Shmueli, D.; Shaag, A.; Silver, D.L.; et al. Homozygous mutation in MFSD2A, encoding a lysolipid transporter for docosahexanoic acid, is associated with microcephaly and hypomyelination. Neurogenetics 2018, 19, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Scala, M.; Chua, G.L.; Chin, C.F.; Alsaif, H.S.; Borovikov, A.; Riazuddin, S.; Riazuddin, S.; Chiara Manzini, M.; Severino, M.; Kuk, A.; et al. Biallelic MFSD2A variants associated with congenital microcephaly, developmental delay, and recognizable neuroimaging features. Eur. J. Hum. Genet. 2020, 28, 1509–1519. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Gao, G.; Rueda, C.B.; Yu, H.; Thibodeaux, D.N.; Awano, T.; Engelstad, K.M.; Sanchez-Quintero, M.J.; Yang, H.; Li, F.; et al. Brain microvasculature defects and Glut1 deficiency syndrome averted by early repletion of the glucose transporter-1 protein. Nat. Commun. 2017, 8, 14152. [Google Scholar] [CrossRef]
- Klepper, J.; Akman, C.; Armeno, M.; Auvin, S.; Cervenka, M.; Cross, H.J.; de Giorgis, V.; della Marina, A.; Engelstad, K.; Heussinger, N.; et al. Glut1 Deficiency Syndrome (Glut1DS): State of the art in 2020 and recommendations of the international Glut1DS study group. Epilepsia Open 2020, 5, 354–365. [Google Scholar] [CrossRef]
- Klepper, J.; Leiendecker, B. GLUT1 deficiency syndrome--2007 update. Dev. Med. Child Neurol. 2007, 49, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Ohba, C.; Shiina, M.; Tohyama, J.; Haginoya, K.; Lerman-Sagie, T.; Okamoto, N.; Blumkin, L.; Lev, D.; Mukaida, S.; Nozaki, F.; et al. GRIN1 mutations cause encephalopathy with infantile-onset epilepsy, and hyperkinetic and stereotyped movement disorders. Epilepsia 2015, 56, 841–848. [Google Scholar] [CrossRef]
- Lemke, J.R.; Geider, K.; Helbig, K.L.; Heyne, H.O.; Schütz, H.; Hentschel, J.; Courage, C.; Depienne, C.; Nava, C.; Heron, D.; et al. Delineating the GRIN1 phenotypic spectrum: A distinctgenetic NMDA receptor encephalopathy. Neurology 2016, 86, 2171–2178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blakes, A.; English, J.; Banka, S.; Basu, H. A homozygous GRIN1 null variant causes a more severe phenotype of early infantile epileptic encephalopathy. Am. J. Med. Genet. A 2021. [Google Scholar] [CrossRef]
- Zehavi, Y.; Mandel, H.; Zehavi, A.; Rashid, M.A.; Straussberg, R.; Jabur, B.; Shaag, A.; Elpeleg, O.; Spiegel, R. De novo GRIN1 mutations: An emerging cause of severe early infantile encephalopathy. Eur. J. Med. Genet. 2017, 60, 317–320. [Google Scholar] [CrossRef]
- Beltran-Quintero, M.L.; Bascou, N.A.; Poe, M.D.; Wenger, D.A.; Saavedra-Matiz, C.A.; Nichols, M.J.; Escolar, M.L. Early progression of Krabbe disease in patients with symptom onset between 0 and 5 months. Orphanet J. Rare Dis. 2019, 14, 46. [Google Scholar] [CrossRef] [Green Version]
- Yoon, I.C.; Bascou, N.A.; Poe, M.D.; Szabolcs, P.; Escolar, M.L. Long-term neurodevelopmental outcomes of hematopoietic stem cell transplantation for late-infantile Krabbe disease. Blood 2021, 137, 1719–1730. [Google Scholar] [CrossRef]
- Wasserstein, M.P.; Andriola, M.; Arnold, G.; Aron, A.; Duffner, P.; Erbe, R.W.; Escolar, M.L.; Estrella, L.; Galvin-Parton, P.; Iglesias, A.; et al. Clinical outcomes of children with abnormal newborn screening results for Krabbe disease in New York State. Genet. Med. 2016, 18, 1235–1243. [Google Scholar] [CrossRef] [Green Version]
- Krieg, S.I.; Krägeloh-Mann, I.; Groeschel, S.; Beck-Wödl, S.; Husain, R.A.; Schöls, L.; Kehrer, C. Natural history of Krabbe disease—A nationwide study in Germany using clinical and MRI data. Orphanet J. Rare Dis. 2020, 15, 243. [Google Scholar] [CrossRef]
- Tümer, Z.; Møller, L.B. Menkesdisease. Eur. J. Hum. Genet. 2010, 18, 511–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rangarh, P.; Kohli, N. Neuroimaging findings in Menkesdisease: A rare neurodegenerative disorder. BMJ Case Rep. 2018, 2018, bcr2017223858. [Google Scholar] [CrossRef] [PubMed]
- Von der Hagen, M.; Pivarcsi, M.; Liebe, J.; von Bernuth, H.; Didonato, N.; Hennermann, J.B.; Bührer, C.; Wieczorek, D.; Kaindl, A.M. Diagnostic approach to microcephaly in childhood: A two-center study and review of the literature. Dev. Med. Child. Neurol. 2014, 56, 732–741. [Google Scholar] [CrossRef]
- Kapka-Skrzypczak, L.; Niedźwiecka, J.; Diatczyk, J.; Skrzypczak, M.; Wojtyła, A. Kwas foliowy- skutki niedoboru i zasadność suplementacji. Med. Og. Nauk. Zdr. 2012, 18, 65–69. [Google Scholar]
- Pope, S.; Artuch, R.; Heales, S.; Rahman, S. Cerebral folate deficiency: Analytical tests and differential diagnosis. J. Inherit. Metab. Dis. 2019, 42, 655–672. [Google Scholar] [CrossRef]
- Zhang, C.; Deng, X.; Wen, Y.; He, F.; Yin, F.; Peng, J. First case report of cerebral folate deficiency caused by a novel mutation of FOLR1 gene in a Chinese patient. BMC Med. Genet. 2020, 21, 235. [Google Scholar] [CrossRef] [PubMed]
- Lanska, D.J. Cerebral folate deficiency. MedLinkNeurology, 11 June 2012. [Google Scholar]
- Frye, R.Y.; Sequeira, J.M.; Quadros, E.V.; James, S.J.; Rossignol, D.A. Cerebral folate receptor autoantibodies in autism spectrum disorder. Mol. Psychiatry 2013, 18, 369–381. [Google Scholar] [CrossRef] [PubMed]
- Shoffner, J.; Trommer, B.; Thurm, A.; Farmer, C.; Langley, W.A.; Soskey, L.; Rodriguez, A.N.; d’Souza, P.; Spence, S.J.; Hyland, K.; et al. CSF concentrations of 5-methyltetrahydrofolate in a cohort of young children with autism. Neurology. 2016, 86, 2258–2263. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Ortiz, C.L.; Jaimes Leguizamon, S.B.; Contreras-Garcia, G.A. Peroxisomal disorder, rhizomelyc chondrodysplasia punctata type 1: Case report. Rev. Chil. Pediatr. 2017, 88, 511–516. [Google Scholar] [CrossRef] [Green Version]
- Baroy, T.; Koster, J.; Stromme, P.; Ebberink, M.S.; Misceo, D.; Ferdinandusse, S.; Holmgren, A.; Hughes, T.; Merckoll, E.; Westvik, J. A novel type of rhizomelic chondrodysplasia punctata, RCDP5, is caused by loss of the PEX5 long isoform. Hum. Mol. Genet. 2015, 24, 5845–5854. [Google Scholar] [CrossRef] [Green Version]
- Bams-Mengerink, A.M.; Koelman, J.; Waterham, H.; Barth, P.G.; Poll-The, B.T. The neurology of rhizomelic chondrodysplasia punctata. Orphanet J. Rare Dis. 2013, 8, 174. [Google Scholar] [CrossRef] [Green Version]
- Chang, I.J.; He, M.; Lam, C.T. Congenital disorders of glycosylation. Ann. Transl. Med. 2018, 6, 477. [Google Scholar] [CrossRef]
- Péanne, R.; de Lonlay, P.; Foulquier, F.; Kornak, U.; Lefeber, D.J.; Morava, E.; Pérez, B.; Seta, N.; Thiel, C.; Van Schaftingen, E.; et al. Congenital disorders of glycosylation (CDG): Quo vadis? Eur. J. Med. Genet. 2018, 61, 643–663. [Google Scholar] [CrossRef]
- Bogdańska, A.; Tylki-Szymańska, A. Wrodzone zaburzenia glikozylacji białek—Stale powiększająca się grupa chorób metabolicznych. Postępy Biochem. 2020, 66, 213–228. [Google Scholar] [CrossRef] [PubMed]
- Abe, Y.; Aihara, Y.; Endo, W.; Hasegawa, H.; Ichida, K.; Uematsu, M.; Kure, S. The effect of dietary protein restriction in a case of molybdenum cofactor deficiency with MOCS1 mutation. Mol. Genet. Metab. Rep. 2021, 1, 100716. [Google Scholar] [CrossRef]
- Scelsa, B.; Gasperini, S.; Righini, A.; Iascone, M.; Brazzoduro, V.G.; Veggiotti, P. Mild phenotype in Molybdenum cofactor deficiency: A new patient and review of the literature. Mol. Genet. Genom. Med. 2019, 7, 657. [Google Scholar] [CrossRef] [Green Version]
- Reiss, J.; Hahnewald, R. Molybdenum cofactor deficiency: Mutations in GPHN, MOCS1 and MOCS2. Hum. Mutat. 2011, 32, 10–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gropman, A. Molybdenum cofactor deficiency (MoCD): A Rare Genetic Disorder in Newborns. Neurology Reviews, 7 April 2021. [Google Scholar]
- Durmaz, M.S.; Ozbakir, B. Molybdenum cofactor deficiency: Neuroimaging findings. Radiol. Case Rep. 2018, 13, 592–595. [Google Scholar] [CrossRef]
- Schwahn, B.C.; van Spronsen, F.J.; Belaidi, A.A.; Bowhay, S.; Christodoulou, J.; Derks, T.G.; Hennermann, J.B.; Jameson, E.; Konig, K.; McGregor, T.L.; et al. Efficacy and safety of cyclic pyranopterin monophosphate substitution in severe molybdenum cofactor deficiency type A: A prospective cohort study. Lancet 2015, 386, 1955–1963. [Google Scholar] [CrossRef]
- Lee, H.F.; Chi, C.S.; Tsai, C.R.; Chen, H.C.; Lee, I.C. Prenatal Brain disruption in isolated sulfite oxidase deficiency. Orphanet J. Rare Dis. 2017, 12, 115. [Google Scholar] [CrossRef] [Green Version]
- Claerhout, H.; Witters, P.; Regal, L.; Jansen, K.; Van Hoestenberghe, M.R.; Breckpot, J.; Vermeersch, P. Isolated sulfite oxidase deficiency. J. Inherit. Metab. Dis. 2018, 41, 101–108. [Google Scholar] [CrossRef]
- Osório, M.J.; Goldman, S.A. Neurogenetics of Pelizaeus-Merzbacher disease. Handb. Clin. Neurol. 2018, 148, 701–722. [Google Scholar] [CrossRef] [PubMed]
- Najafi, K.; Kariminejad, R.; Hosseini, K.; Moshtagh, A.; Abbassi, G.M.; Sadatian, N.; Bazrgar, M.; Kariminejad, A.; Kariminejad, M.H. Familial Case of Pelizaeus-Merzbacher Disorder Detected by Oligoarray Comparative Genomic Hybridization: Genotype-to-Phenotype Diagnosis. Case Rep. Genet. 2017, 2017, 2706098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baron, W.; Ozgen, H.; Klunder, B.; de Jonge, J.C.; Nomden, A.; Plat, A.; Trifilieff, E.; de Vries, H.; Hoekstra, D. The major myelin-resident protein PLP is transported to myelin membranes via a transcytotic mechanism: Involvement of sulfatide. Mol. Cell Biol. 2015, 35, 288–302. [Google Scholar] [CrossRef] [Green Version]
- Prukop, T.; Epplen, D.B.; Nientiedt, T.; Wichert, S.P.; Fledrich, R.; Stassart, R.M.; Rossner, M.J.; Edgar, J.M.; Werner, H.B.; Nave, K.A.; et al. Progesterone antagonist therapy in a Pelizaeus-Merzbachermouse model. Am. J. Hum. Genet. 2014, 94, 533–546. [Google Scholar] [CrossRef] [Green Version]
- Massadeh, S.; Umair, M.; Alaamery, M.; Alfadhel, M. A Novel Homozygous Non-sense Mutation in the Catalytic Domain of MTHFR Causes Severe 5,10-Methylenetetrahydrofolate Reductase Deficiency. Front. Neurol. 2019, 10, 411. [Google Scholar] [CrossRef] [PubMed]
- Balasubramaniama, S.; Salomons, G.S.; Blom, H.J. A case of severe methylenetetrahydrofolate reductase deficiency presenting as neonatal encephalopathy, seizures, microcephaly and central hypoventilation. J. Pediatr. Neurol. 2013, 11, 135–140. [Google Scholar] [CrossRef]
- Aljassim, N.; Alfadhel, M.; Nashabat, M.; Eyaid, W. Clinical presentation of seven patients with Methylenetetrahydrofolate reductase deficiency. Mol. Genet. Metab. Rep. 2020, 25, 100644. [Google Scholar] [CrossRef]
- Huemer, M.; Diodato, D.; Schwahn, B.; Schiff, M.; Bandeira, A.; Benoist, J.F.; Burlina, A.; Cerone, R.; Couce, M.L.; Garcia-Cazorla, A.; et al. Guidelines for diagnosis and management of the cobalamin-related remethylation disorders cblC, cblD, cblE, cblF, cblG, cblJ and MTHFR deficiency. J. Inherit. Metab. Dis. 2017, 40, 21–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, S.; Mei, S.; Liu, N.; Kong, X. Molecular genetic characterization of cblC defects in 126 pedigrees and prenatal genetic diagnosis of pedigrees with combined methylmalonic aciduria and homocystinuria. BMC Med. Genet. 2018, 19, 154. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Cui, Y.; Han, J. Methylmalonic acidemia: Current status and research priorities. Intractable Rare Dis. Res. 2018, 7, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Carrillo-Carrasco, N.; Chandler, R.J.; Venditti, C.P. Combined methylmalonic acidemia and homocystinuria, cblC type. I. Clinical presentations, diagnosis and management. J. Inherit. Metab. Dis. 2012, 35, 91–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grandone, E.; Martinelli, P.; Villani, M.; Vecchione, G.; Fischetti, L.; Leccese, A.; Santacroce, R.; Corso, G.; Margaglione, M. Prospective evaluation of pregnancy outcome in an Italian woman with late-onset combined homocystinuria and methylmalonic aciduria. BMC Pregnancy Childbirth 2019, 19, 318. [Google Scholar] [CrossRef] [Green Version]
- Carrillo-Carrasco, N.; Venditti, C.P. Combined methylmalonic acidemia and homocystinuria, cblC type II. Complications, pathophysiology, and outcomes. J. Inherit. Metab. Dis. 2012, 35, 103–114. [Google Scholar] [CrossRef] [Green Version]
- Martins, M.M.; Medronho, R.A.; Ledo Alves Da Cunha, A.J. Zika virus in Brazil and worldwide: A narrative review. Paediatr. Int. Child. Health. 2021, 41, 28–35. [Google Scholar] [CrossRef]
- Oliveira Melo, A.S.; Aguiar, R.S.; Amorim, M.M.; Arruda, M.B.; Oliveira Melo, F.; Ribeiro, S.T.C. Congenital Zika Virus Infection: Beyond Neonatal Microcephaly. JAMA Neurol. 2016, 73, 1407–1416. [Google Scholar] [CrossRef] [PubMed]
- Freitas, D.A.; Souza-Santos, R.; Carvalho, L.M.A.; Barrod, W.B.; Neves, L.M.; Brasil, P.; Wakimoto, M.D. Congenital Zika syndrome: A systematic review. PLoS ONE 2020, 15, e0242367. [Google Scholar] [CrossRef]
- Pattnaik, A.; Sahoo, B.R.; Pattnaik, A.K. Current Status of Zika Virus Vaccines: Successes and Challenges. Vaccines 2020, 8, 266. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, A.; Verma, S.; Kumar, P. Congenital rubella syndrome: A briefre view of public health perspectives. Indian J. Public Health 2018, 62, 52–54. [Google Scholar] [CrossRef]
- Begum, N.N.F. Novel facial characteristics in congenital rubella syndrome: A study of 115 cases in a cardiac hospital of Bangladesh. BMJ Paediatr. Open 2020, 4, e000860. [Google Scholar] [CrossRef]
- Zuccolo, L.; DeRoo, L.A.; Wills, A.K.; Davey Smith, G.; Suren, P.; Roth, C.; Stoltenberg, C.; Magnus, P. Pre-conception and prenatal alcohol exposure from mothers and fathers drinking and head circumference: Results from the Norwegian Mother-Child Study (MoBa). Sci. Rep. 2016, 7, 39535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hetea, A.; Cosconel, C.; Stanescu, A.A.M.; Simionescu, A.A. Alcohol and Psychoactive Drugs in Pregnancy. Maedica 2019, 14, 397–401. [Google Scholar] [CrossRef]
- Fröschl, B.; Brunner-Ziegler, S.; Wirl, C. Prevention of fetal alcohol syndrome. GMS Health Technol. Assess. 2013, 9, Doc10. [Google Scholar] [CrossRef]
- Ferrazzi, E.; Tiso, G.; Di Martino, D. Folic acid versus 5- methyl tetrahydrofolate supplementation in pregnancy. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 253, 312–319. [Google Scholar] [CrossRef]
- van Gool, J.D.; Hirche, H.; Lax, H.; De Schaepdrijver, L. Folic acid and primary prevention of neural tube defects: A review. Reprod. Toxicol. 2018, 80, 73–84. [Google Scholar] [CrossRef]
- Szczałuba, K.; Obersztyn, E.; Mazurczak, T. Małogłowie jako częsty objaw w praktyce klinicznej—Diagnostyka różnicowa z uwzględnieniem etiopatogenezy. Neurol. Dziec. 2006, 15, 41–50. [Google Scholar]
- Willemsen, M.A.; Harting, I.; Wevers, R.A. Neurometabolicdisorders: Five new things. Neurol. Clin. Pract. 2016, 6, 348–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Congenital Microcephaly | Acquired Microcephaly |
---|---|
Smith–Lemli–Opitz syndrome | |
Methylmalonic acidemia with homocystinuria | |
CK syndrome—X-linked syndromic intellectual disability disorder characterized by thin body habitus and cortical malformations | GLUT1 deficiency syndrome 1 |
Asparagine synthetase deficiency (ASD) | Krabbe disease |
Neu–Laxova syndrome—Laxova syndrome type 1 and type 2 | Pelizaeus–Merzbacher disease (PMD) |
Maternal phenylketonuria | Menkes disease |
Microcephaly, Amish type (MCPHA) | Cerebral folate deficiency (CFD) |
Methylmalonic acidemia with homocystinuria | Rhizomelic chondrodysplasia punctata type 1 (RCDP1) |
Dihydropteridine reductase deficiency (phenylketonuria type 2) | Congenital glycosylation disorder type I |
Hyperphenylalaninemia with BH4 deficiency due to GTPCH deficiency | Isolated sulfite oxidase deficiency (ISOD) |
Methylenetetrahydrofolate reductase deficiency | Molybdenum cofactor deficiency (MoCoD) |
Methylenetetrahydrofolate reductase deficiency | |
Neurodevelopmental disorder with or without hyperkinetic movements and seizures due to NMDA receptor dysfunction- NDHMSA | |
Neurodevelopmental disorder with progressive microcephaly, spasticity, and brain imaging abnormalities (NEDMISBA) due to mutations in the MFSD2A gene |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kempińska, W.; Korta, K.; Marchaj, M.; Paprocka, J. Microcephaly in Neurometabolic Diseases. Children 2022, 9, 97. https://doi.org/10.3390/children9010097
Kempińska W, Korta K, Marchaj M, Paprocka J. Microcephaly in Neurometabolic Diseases. Children. 2022; 9(1):97. https://doi.org/10.3390/children9010097
Chicago/Turabian StyleKempińska, Wiktoria, Karolina Korta, Magdalena Marchaj, and Justyna Paprocka. 2022. "Microcephaly in Neurometabolic Diseases" Children 9, no. 1: 97. https://doi.org/10.3390/children9010097
APA StyleKempińska, W., Korta, K., Marchaj, M., & Paprocka, J. (2022). Microcephaly in Neurometabolic Diseases. Children, 9(1), 97. https://doi.org/10.3390/children9010097