Mid-Term Results of Distal Femoral Extension and Shortening Osteotomy in Treating Flexed Knee Gait in Children with Cerebral Palsy
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Patient Selection
2.2. Operative Procedure
2.3. Postoperative Treatment
2.4. Gait Analysis
2.5. Data Acquisition and Evaluation
3. Results
3.1. Kinematic Results
3.2. Clinical Examination
3.3. Changes in the Postoperative Course (E1 to E2)
3.4. Patella Tendon Advancement
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data availability statement
Conflicts of Interest
References
- Sutherland, D.H.; Davids, J.R. Common gait abnormalities of the knee in cerebral palsy. Clin. Orthop. Relat. Res. 1993, 288, 139–147. [Google Scholar]
- Rodda, J.M.; Graham, H.K.; Nattrass, G.R.; Galea, M.P.; Baker, R.; Wolfe, R. Correction of severe crouch gait in patients with spastic diplegia with use of multilevel orthopaedic surgery. J. Bone Jt. Surg. 2006, 88, 2653–2664. [Google Scholar] [CrossRef]
- Kay, R.M.; Rethlefsen, S.A.; Skaggs, D.; Leet, A. Outcome of medial versus combined medial and lateral hamstring lengthening surgery in cerebral palsy. J. Pediatric Orthop. 2002, 22, 169–172. [Google Scholar] [CrossRef]
- Gordon, A.B.; Baird, G.O.; McMulkin, M.L.; Caskey, P.M.; Ferguson, R.L. Gait analysis outcomes of percutaneous medial hamstring tenotomies in children with cerebral palsy. J. Pediatric Orthop. 2008, 28, 324–329. [Google Scholar] [CrossRef]
- Park, M.S.; Chung, C.Y.; Lee, S.H.; Choi, I.H.; Cho, T.J.; Yoo, W.J.; Park, B.S.; Lee, K.M. Effects of distal hamstring lengthening on sagittal motion in patients with diplegia: Hamstring length and its clinical use. Gait Posture 2009, 30, 487–491. [Google Scholar] [CrossRef]
- Sung, K.H.; Lee, J.; Chung, C.Y.; Lee, K.M.; Cho, B.C.; Moon, S.J.; Kim, J.; Park, M.S. Factors influencing outcomes after medial hamstring lengthening with semitendinosus transfer in patients with cerebral palsy. J. Neuroeng. Rehabil. 2017, 14, 83. [Google Scholar] [CrossRef]
- Ounpuu, S.; Solomito, M.; Bell, K.; DeLuca, P.; Pierz, K. Long-term outcomes after multilevel surgery including rectus femoris, hamstring and gastrocnemius procedures in children with cerebral palsy. Gait Posture 2015, 42, 365–372. [Google Scholar] [CrossRef]
- Dreher, T.; Vegvari, D.; Wolf, S.I.; Geisbusch, A.; Gantz, S.; Wenz, W.; Braatz, F. Development of knee function after hamstring lengthening as a part of multilevel surgery in children with spastic diplegia: A long-term outcome study. J. Bone Jt. Surg. 2012, 94, 121–130. [Google Scholar] [CrossRef]
- DeLuca, P.A.; Ounpuu, S.; Davis, R.B.; Walsh, J.H. Effect of hamstring and psoas lengthening on pelvic tilt in patients with spastic diplegic cerebral palsy. J. Pediatric Orthop. 1998, 18, 712–718. [Google Scholar] [CrossRef]
- Morais Filho, M.C.; Blumetti, F.C.; Kawamura, C.M.; Fujino, M.H.; Matias, M.S.; Lopes, J.A.F. Comparison of the Results of Primary Versus Repeat Hamstring Surgical Lengthening in Cerebral Palsy. J. Pediatric Orthop. 2020, 40, e380–e384. [Google Scholar] [CrossRef]
- de Morais Filho, M.C.; Fujino, M.H.; Kawamura, C.M.; Dos Santos, C.A.; Lopes, J.A.F.; Blumetti, F.C.; Mattar Junior, R. The increase of anterior pelvic tilt after semitendinosus transfer to distal femur in patients with spastic diplegic cerebral palsy. J. Pediatric Orthop. Part B 2019, 28, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Dreher, T.; Vegvari, D.; Wolf, S.L.; Klotz, M.; Muller, S.; Metaxiotis, D.; Wenz, W.; Doderlein, L.; Braatz, F. Long-term effects after conversion of biarticular to monoarticular muscles compared with musculotendinous lengthening in children with spastic diplegia. Gait Posture 2013, 37, 430–435. [Google Scholar] [CrossRef] [PubMed]
- Stout, J.L.; Gage, J.R.; Schwartz, M.H.; Novacheck, T.F. Distal femoral extension osteotomy and patellar tendon advancement to treat persistent crouch gait in cerebral palsy. J. Bone Jt. Surg. 2008, 90, 2470–2484. [Google Scholar] [CrossRef] [PubMed]
- Novacheck, T.F.; Stout, J.L.; Gage, J.R.; Schwartz, M.H. Distal femoral extension osteotomy and patellar tendon advancement to treat persistent crouch gait in cerebral palsy. Surgical technique. J. Bone Jt. Surg. 2009, 91 (Suppl. S2), 271–286. [Google Scholar] [CrossRef] [PubMed]
- de Morais Filho, M.C.; Neves, D.L.; Abreu, F.P.; Juliano, Y.; Guimaraes, L. Treatment of fixed knee flexion deformity and crouch gait using distal femur extension osteotomy in cerebral palsy. J. Child. Orthop. 2008, 2, 37–43. [Google Scholar] [CrossRef] [PubMed]
- de Morais Filho, M.C.; Blumetti, F.C.; Kawamura, C.M.; Leite, J.B.R.; Lopes, J.A.F.; Fujino, M.H.; Neves, D.L. The increase of anterior pelvic tilt after crouch gait treatment in patients with cerebral palsy. Gait Posture 2018, 63, 165–170. [Google Scholar] [CrossRef]
- Sossai, R.; Vavken, P.; Brunner, R.; Camathias, C.; Graham, H.K.; Rutz, E. Patellar tendon shortening for flexed knee gait in spastic diplegia. Gait Posture 2015, 41, 658–665. [Google Scholar] [CrossRef]
- Rutz, E.; Gaston, M.S.; Camathias, C.; Brunner, R. Distal femoral osteotomy using the LCP pediatric condylar 90-degree plate in patients with neuromuscular disorders. J. Pediatric Orthop. 2012, 32, 295–300. [Google Scholar] [CrossRef]
- Klotz, M.C.M.; Hirsch, K.; Heitzmann, D.; Maier, M.W.; Hagmann, S.; Dreher, T. Distal femoral extension and shortening osteotomy as a part of multilevel surgery in children with cerebral palsy. World J. Pediatrics 2017, 13, 353–359. [Google Scholar] [CrossRef]
- Healy, M.T.; Schwartz, M.H.; Stout, J.L.; Gage, J.R.; Novacheck, T.F. Is simultaneous hamstring lengthening necessary when performing distal femoral extension osteotomy and patellar tendon advancement? Gait Posture 2011, 33, 1–5. [Google Scholar] [CrossRef]
- Boyer, E.R.; Stout, J.L.; Laine, J.C.; Gutknecht, S.M.; Araujo de Oliveira, L.H.; Munger, M.E.; Schwartz, M.H.; Novacheck, T.F. Long-Term Outcomes of Distal Femoral Extension Osteotomy and Patellar Tendon Advancement in Individuals with Cerebral Palsy. J. Bone Jt. Surg. 2018, 100, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Kuchen, D.B.; Eichelberger, P.; Baur, H.; Rutz, E. Long-term follow-up after patellar tendon shortening for flexed knee gait in bilateral spastic cerebral palsy. Gait Posture 2020, 81, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Brunner, R.; Camathias, C.; Gaston, M.; Rutz, E. Supracondylar osteotomy of the paediatric femur using the locking compression plate: A refined surgical technique. J. Child. Orthop. 2013, 7, 571–574. [Google Scholar] [CrossRef] [PubMed]
- Kadaba, M.P.; Ramakrishnan, H.K.; Wootten, M.E. Measurement of lower extremity kinematics during level walking. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 1990, 8, 383–392. [Google Scholar] [CrossRef]
- Lundh, S.; Nasic, S.; Riad, J. Fatigue, quality of life and walking ability in adults with cerebral palsy. Gait Posture 2018, 61, 1–6. [Google Scholar] [CrossRef]
- Chang, W.N.; Tsirikos, A.I.; Miller, F.; Lennon, N.; Schuyler, J.; Kerstetter, L.; Glutting, J. Distal hamstring lengthening in ambulatory children with cerebral palsy: Primary versus revision procedures. Gait Posture 2004, 19, 298–304. [Google Scholar] [CrossRef]
- Dreher, T.; Buccoliero, T.; Wolf, S.I.; Heitzmann, D.; Gantz, S.; Braatz, F.; Wenz, W. Long-term results after gastrocnemius-soleus intramuscular aponeurotic recession as a part of multilevel surgery in spastic diplegic cerebral palsy. J. Bone Jt. Surg. 2012, 94, 627–637. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Park, B.K.; Park, K.B.; Abdel-Baki, S.W.; Rhee, I.; Kim, C.W.; Kim, H.W. Distal Femoral Shortening Osteotomy for Severe Knee Flexion Contracture and Crouch Gait in Cerebral Palsy. J. Clin. Med. 2019, 8, 1354. [Google Scholar] [CrossRef]
- Bohm, H.; Hosl, M.; Doderlein, L. Predictors for anterior pelvic tilt following surgical correction of flexed knee gait including patellar tendon shortening in children with cerebral palsy. Gait Posture 2017, 54, 8–14. [Google Scholar] [CrossRef]
- Wolf, S.I.; Mikut, R.; Kranzl, A.; Dreher, T. Which functional impairments are the main contributors to pelvic anterior tilt during gait in individuals with cerebral palsy? Gait Posture 2014, 39, 359–364. [Google Scholar] [CrossRef]
Age | FU | GMFCS | Side | DFESO | PTA | Bony Reconstruction Hip | Soft Tissue Surgery of the Hip | Recession or Transposition of Rectus Femoris | Hamstring Lengthening | Additional Derotational Osteotomy | Equinus Correction | Hindfoot Reconstruction |
---|---|---|---|---|---|---|---|---|---|---|---|---|
6.7 | 55.2 | I | L | + | + | + | ||||||
R | + | + | + | |||||||||
11.6 | 33.6 | II | L | + | + | + | + | + | + | |||
R | + | + | + | + | + | + | ||||||
11.6 | 33.5 | II | L | + | + | + | + | + | + | |||
R | + | + | + | + | + | + | ||||||
13.8 | 31.8 | II | L | + | + | |||||||
R | + | + | ||||||||||
13.4 | 48 | II | L | + | + | + | ||||||
R | + | |||||||||||
12.2 | 26.4 | II | L | + | + | + | + | + | ||||
R | + | + | ||||||||||
15.4 | 33.9 | II | L | + | + | + | + | |||||
R | + | + | + | + | ||||||||
13.5 | 47.3 | II | L | + | + | + | + | + | + | |||
R | + | + | + | + | ||||||||
11.1 | 24.4 | II | L | + | + | + | + | |||||
R | + | + | + | + | ||||||||
7.2 | 26.4 | III | L | + | + | + | + | + | + | |||
R | + | + | + | + | + | |||||||
8.9 | 25.1 | III | L | + | + | + | + | |||||
R | + | + | + | |||||||||
15.8 | 26.8 | III | L | + | + | + | + | |||||
R | + | + | + | |||||||||
10 | 54.8 | II | L | + | + | + | ||||||
R | + | + | + | + | ||||||||
9.2 | 42.3 | II | L | + | + | + | ||||||
R | + | + | + | + | ||||||||
9.3 | 55 | III | L | + | + | |||||||
R | + | + | + | + | ||||||||
16.1 | 27.8 | III | L | + | + | + | + | |||||
R | + | + | + | |||||||||
12.3 | 36.1 | III | L | + | + | + | ||||||
R | + | + | + | + | ||||||||
12.7 | 54.6 | III | L | + | + | + | + | |||||
R | + | + | + | + | ||||||||
14.1 | 31.3 | III | L | + | + | + | ||||||
R | + | + | + | + |
Parameter | Context | E0 | E2 | Significance |
---|---|---|---|---|
GDI | Overall | 56.3 ± 7.6 (44–76) | 70.6 ± 9.8 (49–92) | p = 0.001 |
Walking speed (M/s) | Overall | 0.73 ± 0.18 | 0.84 ± 0.19 | p = 0.04 |
Min. knee flexion at initial contact | Overall | 46.8° ± 11.6° | 31.3° ± 9.5° | p < 0.001 |
DFESO + PTA | 52.1° ± 6.1° | 35.2° ± 9.8° | p = 0.01 | |
DFESO | 44.4° ± 12.8° | 29.5° ± 9.0° | p = 0.001 | |
Min. knee flexion in stance | Overall | 34.7° ± 18.3° | 20.9° ± 10.1° | p < 0.001 |
DFESO + PTA | 41.4° ± 15.5° | 25.9° ± 14.2° | p = 0.021 | |
DFESO | 35.9° ± 20.1° | 22.7° ± 12.2° | p = 0.003 | |
Peak knee flexion in swing | Overall | 65.2° ± 12.1° | 58.5° ± 7.9° | p = 0.008 |
DFESO + PTA | 69.6° ± 9.6° | 58.6° ± 8.5° | p = 0.021 | |
DFESO | 63.2° ± 12.8° | 58.4° ± 7.8° | p = 0.12 | |
Mean knee flexion over 100% GC | Overall | 49.6° ± 14.2° | 37.9° ± 9.4° | p < 0.001 |
DFESO + PTA | 56.3° ± 10.8° | 39.2° ± 10.9° | p = 0.015 | |
DFESO | 46.5° ± 14.7° | 33.2° ± 10.8° | p = 0.005 | |
Mean hip flexion in stance | Overall | 26.3° ± 10.4° | 18.9° ± 8.0° | p = 0.001 |
DFESO + PTA | 30.1° ± 4.6° | 23.5° ± 5.5° | p = 0.86 | |
DFESO | 24.5° ± 11.9° | 16.8° ± 8.2° | p = 0,007 | |
Mean pelvic tilt | Overall | 13.5° ± 8.4° | 12.9° ± 5.6° | p = 0.72 |
DFESO + PTA | 12.6° ± 4.4° | 13.7° ± 8.4° | p = 0.59 | |
DFESO | 13.9° ± 9.8° | 12.6° ± 4.1° | p = 0.53 |
Parameter | Context | E0 | E1 | E2 | Significance |
---|---|---|---|---|---|
Min. knee flexion in stance | Overall | 40.0° ± 17.9° | 20.8° ± 13.1° | 23.3° ± 12.8° | ¶, ⎕ |
Mean knee flexion in stance | Overall | 46.2° ± 21.1° | 27.5° ± 11.3° | 34.9° ± 11.8° | ¶, §, ⎕ |
Knee flexion at initial contact | Overall | 48.2° ± 11.4° | 29.6° ± 10.5° | 32.8° ± 8.5° | ¶, ⎕ |
Peak knee flexion in swing | Overall | 66.4° ± 12.3° | 53.0° ± 11.1° | 58.6° ± 8.6° | ¶, §, ⎕ |
Mean knee flexion over 100% GC | Overall | 51.0° ± 14.9° | 32.8° ± 10.5° | 38.0° ± 9.8° | ¶, ⎕ |
Mean hip flexion in stance | Overall | 27.3° ± 2.4° | 21.3° ± 1.9° | 21.2° ± 1.5° | ¶, ⎕ |
Mean pelvic tilt | Overall | 13.9° ± 9.5° | 15.3° ± 9.2° | 13.3° ± 6.4° |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geisbüsch, A.; Klotz, M.C.M.; Putz, C.; Renkawitz, T.; Horsch, A. Mid-Term Results of Distal Femoral Extension and Shortening Osteotomy in Treating Flexed Knee Gait in Children with Cerebral Palsy. Children 2022, 9, 1427. https://doi.org/10.3390/children9101427
Geisbüsch A, Klotz MCM, Putz C, Renkawitz T, Horsch A. Mid-Term Results of Distal Femoral Extension and Shortening Osteotomy in Treating Flexed Knee Gait in Children with Cerebral Palsy. Children. 2022; 9(10):1427. https://doi.org/10.3390/children9101427
Chicago/Turabian StyleGeisbüsch, Andreas, Matthias C. M. Klotz, Cornelia Putz, Tobias Renkawitz, and Axel Horsch. 2022. "Mid-Term Results of Distal Femoral Extension and Shortening Osteotomy in Treating Flexed Knee Gait in Children with Cerebral Palsy" Children 9, no. 10: 1427. https://doi.org/10.3390/children9101427
APA StyleGeisbüsch, A., Klotz, M. C. M., Putz, C., Renkawitz, T., & Horsch, A. (2022). Mid-Term Results of Distal Femoral Extension and Shortening Osteotomy in Treating Flexed Knee Gait in Children with Cerebral Palsy. Children, 9(10), 1427. https://doi.org/10.3390/children9101427