Growth until Peak Height Velocity Occurs Rapidly in Early Maturing Adolescent Boys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Procedure and Data Collection
2.3. Maturity Status Classification
2.4. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malina, R.M.; Bouchard, C.; Bar-Or, O. Growth, Maturation, and Physical Activity, 2nd ed.; Human Kinetics: Champaign, IL, USA, 2004; ISBN 978-0-88011-882-8. [Google Scholar]
- Takei, S.; Taketomi, S.; Tanaka, S.; Torii, S. Growth pattern of lumbar bone mineral content and trunk muscles in adolescent male soccer players. J. Bone Miner. Metab. 2019, 38, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Tsutsui, T.; Maemichi, T.; Iizuka, S.; Torii, S. Longitudinal Change of Forearm-Hand Inertia Value and Shoulder Musculature Using Dual X-ray Absorptiometry in Youth Japanese Baseball Players: Implications for Elbow Injury. Sports 2020, 8, 152. [Google Scholar] [CrossRef] [PubMed]
- Yagüe, P.H.; De La Fuente, J.M. Changes in height and motor performance relative to peak height velocity: A mixed-longitudinal study of Spanish boys and girls. Am. J. Hum. Biol. 1998, 10, 647–660. [Google Scholar] [CrossRef]
- A Faulkner, R.; Davison, K.S.; A Bailey, D.; Mirwald, R.L.; Baxter-Jones, A.D.G. Size-Corrected BMD Decreases During Peak Linear Growth: Implications for Fracture Incidence During Adolescence. J. Bone Miner. Res. 2006, 21, 1864–1870. [Google Scholar] [CrossRef] [PubMed]
- Malina, R.M.; Cumming, S.P.; Rogol, A.D.; Coelho-E-Silva, M.J.; Figueiredo, A.J.; Konarski, J.M.; Kozieł, S.M. Bio-Banding in Youth Sports: Background, Concept, and Application. Sports Med. 2019, 49, 1671–1685. [Google Scholar] [CrossRef]
- Mirwald, R.L.; Baxter-Jones, A.D.G.; Bailey, D.A.; Beunen, G.P. An assessment of maturity from anthropometric measurements. Med. Sci. Sports Exerc. 2002, 34, 689–694. [Google Scholar] [CrossRef]
- Malina, R.M.; Coelho-E-Silva, M.J.; Figueiredo, A.J.; Philippaerts, R.M.; Hirose, N.; Reyes, M.E.P.; Gilli, G.; Benso, A.; Vaeyens, R.; Deprez, D.; et al. Tanner–Whitehouse Skeletal Ages in Male Youth Soccer Players: TW2 or TW3? Sports Med. 2017, 48, 991–1008. [Google Scholar] [CrossRef]
- Malina, R.M. Skeletal Age and Age Verification in YouthSport. Sports Med. 2011, 41, 925–947. [Google Scholar] [CrossRef]
- Malina, R.M.; Dompier, T.P.; Powell, J.W.; Barron, M.J.; Moore, M.T. Validation of a Noninvasive Maturity Estimate Relative to Skeletal Age in Youth Football Players. Clin. J. Sport Med. 2007, 17, 362–368. [Google Scholar] [CrossRef]
- Caine, D.; Maffulli, N.; Caine, C. Epidemiology of Injury in Child and Adolescent Sports: Injury Rates, Risk Factors, and Prevention. Clin. Sports Med. 2008, 27, 19–50. [Google Scholar] [CrossRef]
- Quatman-Yates, C.C.; Quatman, C.E.; Meszaros, A.J.; Paterno, M.V.; Hewett, T.E. A systematic review of sensorimotor function during adolescence: A developmental stage of increased motor awkwardness? Br. J. Sports Med. 2012, 46, 649–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueiredo, A.J.; Coelho-E-Silva, M.; Cumming, S.P.; Malina, R.M. Size and maturity mismatch in youth soccer players 11- to 14-years-old. Pediatr. Exerc. Sci. 2010, 22, 596–612. [Google Scholar] [CrossRef] [PubMed]
- Cumming, S.P.; Lloyd, R.S.; Oliver, J.L.; Eisenmann, J.C.; Malina, R.M. Bio-banding in Sport: Applications to Competition, Talent Identification, and Strength and Conditioning of Youth Athletes. Strength Cond. J. 2017, 39, 34–47. [Google Scholar] [CrossRef] [Green Version]
- Wik, E.H.; Silvan, D.M.; Farooq, A.; Cardinale, M.; Johnson, A.; Bahr, R. Skeletal maturation and growth rates are related to bone and growth plate injuries in adolescent athletics. Scand. J. Med. Sci. Sports 2020, 30, 894–903. [Google Scholar] [CrossRef] [PubMed]
- Steidl-Müller, L.; Hildebrandt, C.; Müller, E.; Raschner, C. Relationship of Changes in Physical Fitness and Anthropometric Characteristics over One Season, Biological Maturity Status and Injury Risk in Elite Youth Ski Racers: A Prospective Study. Int. J. Environ. Res. Public Health 2020, 17, 364. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Ohtsuki, F. Prediction of adult stature for Japanese population: A stepwise regression approach. Am. J. Hum. Biol. 2001, 13, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Bock, R.D.; Du Toit, S.H.C.; Thissen, D. (Eds.) AUXAL: Auxological Analysis of Longitudinal Measurements of Human Stature. Version 3; Scientific Software International: Lincolnwood, IL, USA, 2003; ISBN 978-0-89498-043-5. [Google Scholar]
- Iuliano-Burns, S.; Mirwald, R.L.; Bailey, D.A. Timing and Magnitude of Peak Height Velocity and Peak Tissue Velocities for Early, Average, and Late Maturing Boys and Girls. Am. J. Hum. Biol. Off. J. Hum. Biol. Counc. 2001, 13, 1–8. [Google Scholar] [CrossRef]
- Saeki, J.; Iizuka, S.; Sekino, H.; Suzuki, A.; Maemichi, T.; Torii, S. Optimum Angle of Force Production Temporarily Changes Due to Growth in Male Adolescence. Children 2021, 8, 20. [Google Scholar] [CrossRef]
- Nariyama, K.; Hauspie, R.; Mino, T. Longitudinal growth study of male Japanese junior high school athletes. Am. J. Hum. Biol. 2001, 13, 356–364. [Google Scholar] [CrossRef]
- Hauspie, R.; Das, S.; Preece, M.; Tanner, J. A longitudinal study of the growth in height of boys and girls of West Bengal (India) aged six months to 20 years. Ann. Hum. Biol. 1980, 7, 429–440. [Google Scholar] [CrossRef]
- Swain, M.; Kamper, S.J.; Maher, C.; Broderick, C.; McKay, D.; Henschke, N. Relationship between growth, maturation and musculoskeletal conditions in adolescents: A systematic review. Br. J. Sports Med. 2018, 52, 1246–1252. [Google Scholar] [CrossRef] [PubMed]
- Rommers, N.; Rössler, R.; Goossens, L.; Vaeyens, R.; Lenoir, M.; Witvrouw, E.; D’Hondt, E. Risk of acute and overuse injuries in youth elite soccer players: Body size and growth matter. J. Sci. Med. Sport 2020, 23, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Monasterio, X.; Gil, S.; Bidaurrazaga-Letona, I.; Lekue, J.; Santisteban, J.; Diaz-Beitia, G.; Martin-Garetxana, I.; Bikandi, E.; Larruskain, J. Injuries according to the percentage of adult height in an elite soccer academy. J. Sci. Med. Sport 2020, 24, 218–223. [Google Scholar] [CrossRef]
- Le Gall, F.; Carling, C.; Reilly, T. Biological maturity and injury in elite youth football. Scand. J. Med. Sci. Sports 2007, 17, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Lopes, V.P.; Rodrigues, L.P.; Maia, J.A.R.; Malina, R.M. Motor coordination as predictor of physical activity in childhood: Motor Coordination and Physical Activity. Scand. J. Med. Sci. Sports 2010, 21, 663–669. [Google Scholar] [CrossRef] [PubMed]
- van der Sluis, A.; Elferink-Gemser, M.T.; Brink, M.S.; Visscher, C. Importance of Peak Height Velocity Timing in Terms of Injuries in Talented Soccer Players. Endoscopy 2015, 36, 327–332. [Google Scholar] [CrossRef]
- Philippaerts, R.M.; Vaeyens, R.; Janssens, M.; Van Renterghem, B.; Matthys, D.; Craen, R.; Bourgois, J.; Vrijens, J.; Beunen, G.; Malina, R.M. The relationship between peak height velocity and physical performance in youth soccer players. J. Sports Sci. 2006, 24, 221–230. [Google Scholar] [CrossRef]
- Rauch, F.; Bailey, D.A.; Baxter-Jones, A.; Mirwald, R.; Faulkner, R. The ‘muscle-bone unit’ during the pubertal growth spurt. Bone 2004, 34, 771–775. [Google Scholar] [CrossRef]
- Kidokoro, T.; Kohmura, Y.; Fuku, N.; Someya, Y.; Suzuki, K. Secular trends in the grip strength and body mass index of sport university students between 1973 and 2016: J-Fit+ study. J. Exerc. Sci. Fit. 2019, 18, 21–30. [Google Scholar] [CrossRef]
Average | ± | Standard deviation | 95% CI 1 | ||||
---|---|---|---|---|---|---|---|
Early maturation (n = 13) | |||||||
TOA 2 (years old) | 8.87 | ± | 0.14 | 8.57 | - | 9.18 | |
Height at TOA (cm) | 132.32 | ± | 1.78 | 128.44 | - | 136.21 | |
PHVA 3 (years old) | 11.60 | ± | 0.12 | 11.33 | - | 11.87 | |
Height at PHVA (cm) | 152.16 | ± | 1.48 | 148.94 | - | 155.39 | |
FHA 4 (years old) | 15.32 | ± | 0.09 | 15.12 | - | 15.51 | |
Height at FHA (cm) | 169.75 | ± | 1.44 | 166.62 | - | 172.88 | |
Period from TOA to PHVA (years) | 2.73 | ± | 0.10 | 2.51 | - | 2.94 | |
Period from TOA to FHA (years) | 6.45 | ± | 0.17 | 6.08 | - | 6.81 | |
Height Increase from TOA to PHVA (cm) | 19.84 | ± | 1.06 | 17.52 | - | 22.16 | |
Height Increase from TOA to FHA (cm) | 37.42 | ± | 1.40 | 34.37 | - | 40.48 | |
Middle maturation (n = 55) | |||||||
TOA (years old) | 10.34 | ± | 0.07 | 10.20 | - | 10.47 | * |
Height at TOA (cm) | 138.25 | ± | 0.79 | 136.67 | - | 139.84 | * |
PHVA (years old) | 13.44 | ± | 0.07 | 13.29 | - | 13.58 | * |
Height at PHVA (cm) | 158.13 | ± | 0.67 | 156.79 | - | 159.46 | * |
FHA (years old) | 16.72 | ± | 0.06 | 16.59 | - | 16.85 | * |
Height at FHA (cm) | 173.50 | ± | 0.66 | 172.18 | - | 174.81 | * |
Period from TOA to PHVA (years) | 3.10 | ± | 0.03 | 3.04 | - | 3.16 | * |
Period from TOA to FHA (years) | 6.38 | ± | 0.03 | 6.32 | - | 6.45 | |
Height Increase from TOA to PHVA (cm) | 19.87 | ± | 0.28 | 19.31 | - | 20.44 | |
Height Increase from TOA to FHA (cm) | 35.24 | ± | 0.47 | 34.31 | - | 36.18 | |
Late maturation (n = 10) | |||||||
TOA (years old) | 11.34 | ± | 0.10 | 11.10 | - | 11.58 | *† |
Height at TOA (cm) | 139.86 | ± | 1.79 | 135.80 | - | 143.92 | * |
PHVA (years old) | 14.72 | ± | 0.11 | 14.48 | - | 14.97 | *† |
Height at PHVA (cm) | 158.45 | ± | 1.36 | 155.37 | - | 161.52 | * |
FHA (years old) | 17.83 | ± | 0.12 | 17.55 | - | 18.11 | *† |
Height at FHA (cm) | 172.36 | ± | 1.15 | 169.76 | - | 174.96 | † |
Period from TOA to PHVA (years) | 3.38 | ± | 0.06 | 3.26 | - | 3.51 | *† |
Period from TOA to FHA (years) | 6.49 | ± | 0.06 | 6.34 | - | 6.63 | |
Height Increase from TOA to PHVA (cm) | 18.58 | ± | 0.48 | 17.49 | - | 19.67 | |
Height Increase from TOA to FHA (cm) | 32.50 | ± | 0.76 | 30.78 | - | 34.22 | † |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsutsui, T.; Iizuka, S.; Sakamaki, W.; Maemichi, T.; Torii, S. Growth until Peak Height Velocity Occurs Rapidly in Early Maturing Adolescent Boys. Children 2022, 9, 1570. https://doi.org/10.3390/children9101570
Tsutsui T, Iizuka S, Sakamaki W, Maemichi T, Torii S. Growth until Peak Height Velocity Occurs Rapidly in Early Maturing Adolescent Boys. Children. 2022; 9(10):1570. https://doi.org/10.3390/children9101570
Chicago/Turabian StyleTsutsui, Toshiharu, Satoshi Iizuka, Wataru Sakamaki, Toshihiro Maemichi, and Suguru Torii. 2022. "Growth until Peak Height Velocity Occurs Rapidly in Early Maturing Adolescent Boys" Children 9, no. 10: 1570. https://doi.org/10.3390/children9101570
APA StyleTsutsui, T., Iizuka, S., Sakamaki, W., Maemichi, T., & Torii, S. (2022). Growth until Peak Height Velocity Occurs Rapidly in Early Maturing Adolescent Boys. Children, 9(10), 1570. https://doi.org/10.3390/children9101570