A Videogame as a Tool for Clinical Screening of Possible Vulnerability to Impulsivity and Attention Disturbances in Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.2.1. Clinical Instruments
2.2.2. Design of the Pinky-Piggy Videogame Application
2.3. Procedure
2.3.1. CUMANIN and CUMANES Tests
2.3.2. Training Protocol of the Pinky-Piggy Application Game
2.3.3. Index Score for Behavioral Classification
2.3.4. Data Analysis
3. Results
3.1. Data Screening Process
3.2. Overall Attention Data
3.3. Neurodevelopmental Data
3.4. Teachers’ Reports
3.5. Assessment of Patients with ADHD Diagnosis
4. Discussion
Possibilities of the App
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dalley, J.W.; Robbins, T.W. Fractionating impulsivity: Neuropsychiatric implications. Nat. Rev. Neurosci. 2017, 18, 158–171. [Google Scholar] [CrossRef] [PubMed]
- Nigg, J.T. Annual Research Review: On the relations among self-regulation, self-control, executive functioning, effortful control, cognitive control, impulsivity, risk-taking, and inhibition for developmental psychopathology. J. Child Psychol. Psychiatry Allied Discip. 2017, 58, 361–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofmann, W.; Friese, M.; Strack, F. Impulse and Self-Control from a Dual-Systems Perspective. Perspect. Psychol. Sci. 2009, 4, 162–176. [Google Scholar] [CrossRef] [PubMed]
- Tamm, L.; Loren, R.; Peugh, J.; Ciesielski, H.A. The association of executive functioning with academic, behavior, and social performance ratings in children with ADHD. J. Learn Dis. 2021, 54, 124–138. [Google Scholar] [CrossRef] [PubMed]
- Barkley, R.A. Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychol Bull. 1997, 121, 65–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colomer, C.; Berenguer, C.; Roselló, B.; Baixauli, I.; Miranda, A. The Impact of Inattention, Hyperactivity/Impulsivity Symptoms, and Executive Functions on Learning Behaviors of Children with ADHD. Front. Psychol. 2017, 8, 540. [Google Scholar] [CrossRef] [Green Version]
- Eysenck, H.J. The nature of impulsivity. In The Impulsive Client: Theory, Research, and Treatment; McCown, W.G., Johnson, J.L., Shure, M.B., Eds.; American Psychological Association: Washington, DC, USA, 1993; pp. 57–69. [Google Scholar]
- Roselló, B.; Berenguer, C.; Baixauli, I.; Mira, A.; Martinez-Raga, J.; Miranda, A. Empirical examination of executive functioning, ADHD associated behaviors, and functional impairments in adults with persistent ADHD, remittent ADHD, and without ADHD. BMC Psychiatry 2020, 20, 134. [Google Scholar] [CrossRef] [Green Version]
- Baddeley, A. Working memory. Curr. Biol. 2010, 20, R136–R140. [Google Scholar] [CrossRef] [Green Version]
- Berger, A.; Posner, M.I. Pathologies of brain attentional networks. Neurosci. Biobehav. Rev. 2000, 24, 3–5. [Google Scholar] [CrossRef]
- Castellanos, F.X.; Tannock, R. Neuroscience of attention-deficit/hyperactivity disorder: The search for endophenotypes. Nat. Rev. Neurosci. 2002, 3, 617–628. [Google Scholar] [CrossRef]
- Allan, D.M.; Lonigan, C.J. Examination of the structure and measurement of inattentive, hyperactive, and impulsive behaviors from Preschool to Grade 4. J. Abnorm. Child Psychol. 2019, 47, 975–987. [Google Scholar] [CrossRef] [PubMed]
- Arias, V.B.; Ponce, F.P.; Martínez-Molina, A.; Arias, B.; Núñez, D. General and specific attention-deficit/hyperactivity disorder factors of children 4 to 6 years of age: An exploratory structural equation modeling approach to assessing symptom multidimensionality. J. Abnorm. Psychol. 2016, 125, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Lockwood, J.; Townsend, E.; Allen, H.; Daley, D.; Sayal, K. What young people say about impulsivity in the short-term build up to self-harm: A qualitative study using card-sort tasks. PLoS ONE 2020, 15, e0244319. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Soto, A.; Vargas, J.P.; Díaz, E.; López, J.C. Traditional Scales Diagnosis and Endophenotypes in Attentional Deficits Disorders: Are We on the Right Track? In ADHD. New Directions in Diagnosis and Treatment; Norvilitis, J.M., Ed.; InTech: Rijeka, Croatia, 2020. [Google Scholar]
- Jiménez-Soto, A.; Lorente-Loza, J.; Vargas, J.P.; Díaz, E.; López, J.C. Beach balls: Assessing frustration tolerance in young children using a computerized task. Acta Psychol. 2022, 224, 103528. [Google Scholar] [CrossRef]
- Kolodny, T.; Mevorach, C.; Stern, P.; Biderman, N.; Ankaoua, M.; Tsafrir, S.; Shalev, L. Fronto-parietal engagement in response inhibition is inversely scaled with attention-deficit/hyperactivity disorder symptom severity. NeuroImage Clin. 2020, 25, 102119. [Google Scholar] [CrossRef]
- Kozak, K.; Lucatch, A.M.; Lowe, D.J.; Balodis, I.M.; MacKillop, J.; George, T.P. The neurobiology of impulsivity and substance use disorders: Implications for treatment. Ann. N. Y. Acad. Sci. 2019, 1451, 71–91. [Google Scholar] [CrossRef]
- Caballero, A.; Tseng, K.Y. GABAergic Function as a Limiting Factor for Prefrontal Maturation during Adolescence. TINS 2016, 39, 441–448. [Google Scholar] [CrossRef] [Green Version]
- Larsen, B.; Luna, B. Adolescence as a neurobiological critical period for the development of higher-order cognition. Neurosci. Biobehav. Rev. 2018, 94, 179–195. [Google Scholar] [CrossRef]
- Tang, L.; Shafer, A.T.; Ofen, N. Prefrontal Cortex Contributions to the Development of Memory Formation. Cereb. Cortex 2018, 28, 3295–3308. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, P. Adolescent Onset of Cortical Disinhibition in Schizophrenia: Insights from Animal Models. Schizophr. Bull. 2011, 37, 484–492. [Google Scholar] [CrossRef]
- Van Moorselaar, D.; Slagter, H.A. Inhibition in selective attention. Ann. N. Y. Acad. Sci. 2020, 1464, 204–221. [Google Scholar] [CrossRef] [PubMed]
- Vargas, J.P.; Díaz, E.; Portavella, M.; López, J.C. Animal Models of Maladaptive Traits: Disorders in Sensorimotor Gating and Attentional Quantifiable Responses as Possible Endophenotypes. Front. Psychol. 2016, 7, 206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wegmann, E.; Müller, S.M.; Turel, O.; Brand, M. Interactions of impulsivity, general executive functions, and specific inhibitory control explain symptoms of social-networks-use disorder: An experimental study. Sci. Rep. 2020, 10, 3866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brand, M.; Wegmanna, E.; Stark, R.; Müller, A.; Wölfling, K.; Robbin, T.W.; Potenzahij, M. The Interaction of Person-Affect-Cognition-Execution (I-PACE) model for addictive behaviors: Update, generalization to addictive behaviors beyond Internet-use disorders, and specification of the process character of addictive behaviors. Neurosci. Biobehav. Rev. 2019, 104, 1–10. [Google Scholar] [CrossRef]
- Bari, A.; Robbins, T.W. Inhibition and impulsivity: Behavioral and neural basis of response control. Prog. Neurobiol. 2013, 108, 44–79. [Google Scholar] [CrossRef]
- Feja, M.; Koch, M. Frontostriatal systems comprising connections between ventral medial prefrontal cortex and nucleus accumbens subregions differentially regulate motor impulse control in rats. Psychopharmacology 2015, 232, 1291–1302. [Google Scholar] [CrossRef]
- Serrano-Barroso, A.; Siugzdaite, R.; Guerrero-Cubero, J.; Molina-Cantero, A.J.; Gomez-Gonzalez, I.M.; Lopez, J.C.; Vargas, J.P. Detecting Attention Levels in ADHD Children with a Video Game and the Measurement of Brain Activity with a Single-Channel BCI Headset. Sensors 2021, 21, 3221. [Google Scholar] [CrossRef]
- Fallon, T.L.; Ayletta, R.; Minnis, H.; Rajendran, G. Investigating social vulnerability in children using computer mediated role-play. Comput. Education. 2018, 125, 458–464. [Google Scholar] [CrossRef] [Green Version]
- Minnis, H.; Read, W.; Connolly, B.; Burston, A.; Schumm, T.; Putter-Lareman, S.; Green, J. The computerized manchester child attachment story task: A novel medium for assessing attachment patterns. Int. J. Methods Psychiatr. Res. 2010, 19, 233–242. [Google Scholar] [CrossRef]
- Wells, E.L.; Kofler, M.J.; Soto, E.F.; Schaefer, H.S.; Sarver, D.E. Assessing working memory in children with ADHD: Minor administration and scoring changes may improve digit span backward’s construct validity. Res. Dev. Disabil. 2018, 72, 166–178. [Google Scholar] [CrossRef]
- Lin, H.Y.; Chang, W.D.; Hsieh, H.C.; Yu, W.H.; Lee, P. Relationship between intraindividual auditory and visual attention in children with ADHD. Res. Dev. Disabil. 2021, 108, 103808. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.; Sanders, S.; Doust, J.; Beller, E.; Glasziou, P. Prevalence of attention-deficit/hyperactivity disorder: A systematic review and meta-analysis. Pediatrics 2015, 135, e994–e1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumontheil, I.; Burgess, P.W.; Blakemore, S.J. Development of rostral prefrontal cortex and cognitive and behavioural disorders. Dev. Med. Child Neurol. 2008, 50, 168–181. [Google Scholar] [CrossRef] [Green Version]
- Preston, A.S.; Heaton, S.C.; McCann, S.J.; Watson, W.D.; Selke, G. The role of multidimensional attentional abilities in academic skills of children with ADHD. J. Learn. Disabil. 2009, 42, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Colaizzia, J.M.; Flagel, S.B.; Joynerc, M.A.; Gearhardt, A.N.; Stewarta, J.L.; Paulusa, M.P. Mapping sign-tracking and goal-tracking onto human behaviors. Neurosci. Biobehavl. Rev. 2020, 111, 84–94. [Google Scholar] [CrossRef]
- Joyner, M.A.; Gearhardt, A.N.; Flagel, S.B. A translational model to assess sign-tracking and goal-tracking behavior in children. Neuropsychopharmacology 2018, 43, 228–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez, J.C.; Karlsson, R.-M.; O’Donnell, P. Dopamine D2 Modulation of Sign and Goal Tracking in Rats. Neuropsychopharmacology 2015, 40, 2096–2102. [Google Scholar] [CrossRef] [Green Version]
- Quintero, E.; Díaz, E.; Vargas, J.P.; de la Casa, L.G.; López, J.C. Ventral Subiculum Involvement in Latent Inhibition Context Specificity. Physiol. Behav. 2011, 102, 414–420. [Google Scholar] [CrossRef]
- Serrano-Barroso, A.; Vargas, J.P.; Diaz, E.; O’Donnell, P.; López, J.C. Sign and goal tracker rats process differently the incentive salience of a conditioned stimulus. PLoS ONE 2019, 14, e0223109. [Google Scholar] [CrossRef]
- Robbins, T.W.; James, M.; Owen, A.M.; Sahakian, B.J.; McInnes, L.; Rabbitt, P.M. The Cambridge Neuropsychological Test Automated Battery CANTAB, a factor analytical study in a large number of normal elderly volunteers. Dementia 1994, 5, 266–281. [Google Scholar]
- Brault, M.C.; Degroote, E.; Jean, M.; Van Houtte, M. Relative Age Effect in Attention Deficit/Hyperactivity Disorder at Various Stages of the Medicalization Process. Children 2022, 9, 889. [Google Scholar] [CrossRef] [PubMed]
- Berridge, K.C. The debate over dopamine’s role in reward: The case for incentive salience. Psychopharmacology 2007, 191, 391–431. [Google Scholar] [CrossRef] [PubMed]
- Berridge, K.C.; Robinson, T.E. What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience? Brain Res. Rev. 1998, 28, 309–369. [Google Scholar] [CrossRef]
- Meyer, P.J.; Lovic, V.; Saunders, B.T.; Yager, L.M.; Flagel, S.B.; Morrow, J.D.; Robinson, T.E. Quantifying Individual Variation in the Propensity to Attribute Incentive Salience to Reward Cues. PLoS ONE 2012, 7, e38987. [Google Scholar] [CrossRef] [Green Version]
- Fitzpatrick, C.J.; Morrow, J.D. Pavlovian conditioned approach training in rats. J. Vis. Exp. 2016, 108, e53580. [Google Scholar] [CrossRef] [PubMed]
- Flagel, S.B.; Robinson, T.E. Neurobiological basis of individual variation in stimulus-reward learning. Curr. Opin. Behav. Sci. 2017, 13, 178–185. [Google Scholar] [CrossRef] [Green Version]
- Arnold, L.E.; Hodgkins, P.; Kahle, J.; Madhoo, M.; Kewley, G. Long-term outcomes of ADHD: Academic achievement and performance. J. Atten. Disord. 2020, 24, 73–85. [Google Scholar] [CrossRef] [Green Version]
- Condo, J.S.; Chan, E.S.; Kofler, M.J. Examining the effects of ADHD symptoms and parental involvement on children’s academic achievement. Res. Dev. Disabil. 2022, 122, 104156. [Google Scholar] [CrossRef]
- Peñuelas-Calvo, I.; Jiang-Lin, L.K.; Girela-Serrano, B.; Delgado-Gomez, D.; Navarro-Jimenez, R.; Baca-Garcia, E.; Porras-Segovia, A. Video games for the assessment and treatment of attention-deficit/hyperactivity disorder: A systematic review. Eur. Child Adolesc. Psychiatry 2022, 31, 5–20. [Google Scholar] [CrossRef]
- Haight, J.L.; Fuller, Z.L.; Fraser, K.M.; Flagel, S.B. A food-predictive cue attributed with incentive salience engages subcortical afferents and efferents of the paraventricular nucleus of the thalamus. Neuroscience 2017, 340, 135–152. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Díaz, F.; Díaz, E.; Sánchez, N.; Vargas, J.P.; Pearce, J.M.; López, J.C. Different involvement of medial prefrontal cortex and dorso-lateral striatum in automatic and controlled processing of a future conditioned stimulus. PLoS ONE 2017, 12, e0189630. [Google Scholar] [CrossRef] [PubMed]
Profile | Mean | Std Error | t-Value | p | |
---|---|---|---|---|---|
Psychomotor development | HR | 49.2 | 5.1 | 0.944 | 0.34 |
LR | 55.01 | 3.2 | |||
Articulatory language | HR | 70.8 | 4.1 | 1.035 | 0.30 |
LR | 75.73 | 2.5 | |||
Expressive language | HR | 57.1 | 5.1 | 1.558 | 0.12 |
LR | 66.2 | 3.1 | |||
Comprehensive language | HR | 59.2 | 5.9 | 0.489 | 0.62 |
LR | 55.9 | 3.4 | |||
Spatial structuring | HR * | 59.1 | 6.4 | 2.391 | 0.01 |
LR | 74.2 | 3.0 | |||
Visual perception | HR * | 51.6 | 5.4 | 2.430 | 0.01 |
LR | 65.3 | 2.8 | |||
Memory | HR | 70.7 | 4.9 | 1.186 | 0.23 |
LR | 63.6 | 3.1 | |||
Rhythm | HR | 48.9 | 5.6 | 1.493 | 0.13 |
LR | 58.3 | 3.2 | |||
Verbal development | HR | 57.5 | 4.2 | 1.172 | 0.24 |
LR | 64.05 | 3.0 | |||
Non-verbal development | HR * | 56.1 | 5.5 | 2.308 | 0.02 |
LR | 69.7 | 2.9 |
Teachers’ Responses | Mean of Attention Scores | ||
---|---|---|---|
Low Responders | High Responders | Total | |
Present | 44.83 ± 4.22 | 29.05 ± 4.62 | 39.25 ± 3.34 |
Absent | 49.55 ± 3.08 | 33.63 ± 4.26 | 46.36 ± 2.73 |
47.60 ± 2.51 | 30.85 ± 3.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serrano-Barroso, A.; Vargas, J.P.; Diaz, E.; Gómez-González, I.M.; Ruiz, G.; López, J.C. A Videogame as a Tool for Clinical Screening of Possible Vulnerability to Impulsivity and Attention Disturbances in Children. Children 2022, 9, 1652. https://doi.org/10.3390/children9111652
Serrano-Barroso A, Vargas JP, Diaz E, Gómez-González IM, Ruiz G, López JC. A Videogame as a Tool for Clinical Screening of Possible Vulnerability to Impulsivity and Attention Disturbances in Children. Children. 2022; 9(11):1652. https://doi.org/10.3390/children9111652
Chicago/Turabian StyleSerrano-Barroso, Almudena, Juan Pedro Vargas, Estrella Diaz, Isabel M. Gómez-González, Gabriel Ruiz, and Juan Carlos López. 2022. "A Videogame as a Tool for Clinical Screening of Possible Vulnerability to Impulsivity and Attention Disturbances in Children" Children 9, no. 11: 1652. https://doi.org/10.3390/children9111652
APA StyleSerrano-Barroso, A., Vargas, J. P., Diaz, E., Gómez-González, I. M., Ruiz, G., & López, J. C. (2022). A Videogame as a Tool for Clinical Screening of Possible Vulnerability to Impulsivity and Attention Disturbances in Children. Children, 9(11), 1652. https://doi.org/10.3390/children9111652