Nasal Septum Changes in Adolescents Treated with Tooth-Borne and Bone-Borne Rapid Maxillary Expansion: A CBCT Retrospective Study Using Skeletal Tortuosity Ratio and Deviation Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. CBCT Examinations
2.3. Assessment of Nasal Septum Deviation (NSD)
2.4. Statistical Analysis
3. Results
4. Discussion
Limitations
- The lack of a control group is the main drawback of the study. Changes in the NSD may have been induced also by normal growth in both groups. However, this limitation could be considered negligible since data were obtained after short-term evaluation (6 months). Moreover, the administration of CBCT scans to control subjects would have introduced ethical concerns due to additional radiation exposure to the patients [38,39].
- It must be underlined that the CBCT protocol included isotropic voxel size of 0.3 mm and we cannot exclude a slight underestimation of the nasal septum. Since patients in both groups were scanned with the same CBCT machine, this limitation did not affect the reliability of comparative data.
5. Conclusions
- RME would determine a small reduction of the nasal septum tortuosity ratio (TR).
- The anchorage system, i.e., the usage of tooth-borne (TB) or bone-borne (BB) expanders, did not influence the effect of RME on nasal septum deviation (NSD).
- RME may have some effects in reducing the degree of NSD; however, no differences were found between RME performed with TB and BB anchorage systems.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aziz, T.; Wheatley, F.C.; Ansari, K.; Lagravere, M.; Major, M.; Flores-Mir, C. Nasal septum changes in adolescent patients treated with rapid maxillary expansion. Dent. Press J. Orthod. 2016, 21, 47–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ketcham, A.S.; Han, J.K. Complications and management of septoplasty. Otolaryngol. Clin. N. Am. 2010, 43, 897–904. [Google Scholar] [CrossRef]
- Aziz, T.; Biron, V.L.; Ansari, K.; Flores-Mir, C. Measurement tools for the diagnosis of nasal septal deviation: A systematic review. J. Otolaryngol. Head Neck Surg. 2014, 43, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giuca, M.R.; Carli, E.; Lardani, L.; Pasini, M.; Miceli, M.; Fambrini, E. Pediatric obstructive sleep apnea syndrome: Emerging evidence and treatment approach. Science 2021, 2021, 5591251. [Google Scholar] [CrossRef] [PubMed]
- Moss, M.L.; Bromberg, B.E.; Song, I.G.; Eisenman, G. The passive role of nasal septal cartilage in mid-facial growth. Plast. Reconstr. Surg. 1968, 41, 536–542. [Google Scholar] [CrossRef]
- Bláhová, O. Late results of nasal septum injury in children. Int. J. Pediatr. Otorhinolaryngol. 1985, 10, 137–141. [Google Scholar] [CrossRef]
- Proffit, W.R.; Fields, H.; Sarver, D.M. Contemporary Orthodontics, 4th ed.; Elsevier Health Sciences: Amsterdam, The Netherlands, 2007. [Google Scholar]
- da Silva Filho, O.G.; Montes, L.A.; Torelly, L.F. Rapid maxillary expansion in the deciduous and mixed dentition evaluated through posteroanterior cephalometric analysis. Am. J. Orthod. Dentofac. Orthop. Off. Publ. Am. Assoc. Orthod. Its Const. Soc. Am. Board Orthod. 1995, 107, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Lo Giudice, A.; Quinzi, V.; Ronsivalle, V.; Martina, S.; Bennici, O.; Isola, G. Description of a digital work-flow for cbct-guided construction of micro-implant supported maxillary skeletal expander. Materials 2020, 13, 1815. [Google Scholar] [CrossRef] [Green Version]
- Grassia, V.; Nucci, L.; Marra, P.M.; Isola, G.; Itro, A.; Perillo, L. Long-term outcomes of nonextraction treatment in a patient with severe mandibular crowding. Case Rep. Dent. 2020, 2020, 1376472. [Google Scholar] [CrossRef]
- Montinaro, F.; Nucci, L.; d’Apuzzo, F.; Perillo, L.; Chiarenza, M.C.; Grassia, V. Oral nonsteroidal anti-inflammatory drugs as treatment of joint and muscle pain in temporomandibular disorders: A systematic review. Cranio 2022, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Garib, D.G.; Henriques, J.F.; Janson, G.; Freitas, M.R.; Coelho, R.A. Rapid maxillary expansion--tooth tissue-borne versus tooth-borne expanders: A computed tomography evaluation of dentoskeletal effects. Angle Orthod 2005, 75, 548–557. [Google Scholar] [PubMed]
- Lanteri, V.; Farronato, M.; Ugolini, A.; Cossellu, G.; Gaffuri, F.; Parisi, F.M.R.; Cavagnetto, D.; Abate, A.; Maspero, C. Volumetric changes in the upper airways after rapid and slow maxillary expansion in growing patients: A case-control study. Materials 2020, 13, 2239. [Google Scholar] [CrossRef] [PubMed]
- Monini, S.; Malagola, C.; Villa, M.P.; Tripodi, C.; Tarentini, S.; Malagnino, I.; Marrone, V.; Lazzarino, A.I.; Barbara, M. Rapid maxillary expansion for the treatment of nasal obstruction in children younger than 12 years. Arch. Otolaryngol. Head Neck Surg. 2009, 135, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Fastuca, R.; Meneghel, M.; Zecca, P.A.; Mangano, F.; Antonello, M.; Nucera, R.; Caprioglio, A. Multimodal airway evaluation in growing patients after rapid maxillary expansion. Eur. J. Paediatr. Dent. 2015, 16, 129–134. [Google Scholar] [PubMed]
- Eichenberger, M.; Baumgartner, S. The impact of rapid palatal expansion on children’s general health: A literature review. Eur. J. Paediatr. Dent. 2014, 15, 67–71. [Google Scholar] [PubMed]
- Farronato, G.; Giannini, L.; Galbiati, G.; Maspero, C. Rme: Influences on the nasal septum. Minerva Stomatol. 2012, 61, 125–134. [Google Scholar] [PubMed]
- Altug-Atac, A.T.; Atac, M.S.; Kurt, G.; Karasud, H.A. Changes in nasal structures following orthopaedic and surgically assisted rapid maxillary expansion. Int. J. Oral Maxillofac. Surg. 2010, 39, 129–135. [Google Scholar] [CrossRef]
- Bruno, G.; Stefani, A.; Benetazzo, C.; Cavallin, F.; Gracco, A. Changes in nasal septum morphology after rapid maxillary expansion: A cone-beam computed tomography study in pre-pubertal patient. Dent. Press J. Orthod. 2020, 25, 51–56. [Google Scholar] [CrossRef]
- Solano Mendoza, P.; Aceytuno Poch, P.; Solano Reina, E.; Solano Mendoza, B. Skeletal, dentoalveolar and dental changes after “mini-screw assisted rapid palatal expansion” evaluated with cone beam computed tomography. J. Clin. Med. 2022, 11, 4652. [Google Scholar] [CrossRef]
- Kavand, G.; Lagravere, M.; Kula, K.; Stewart, K.; Ghoneima, A. Retrospective cbct analysis of airway volume changes after bone-borne vs tooth-borne rapid maxillary expansion. Angle Orthod. 2019, 89, 566–574. [Google Scholar] [CrossRef]
- Lo Giudice, A.; Ronsivalle, V.; Lagravere, M.; Leonardi, R.; Martina, S.; Isola, G. Transverse dentoalveolar response of mandibular arch after rapid maxillary expansion (rme) with tooth-borne and bone-borne appliances. Angle Orthod. 2020, 90, 680–687. [Google Scholar] [CrossRef] [PubMed]
- Baccetti, T.; Franchi, L.; McNamara, J.A., Jr. An improved version of the cervical vertebral maturation (cvm) method for the assessment of mandibular growth. Angle Orthod. 2002, 72, 316–323. [Google Scholar] [PubMed]
- Lo Giudice, A.; Ronsivalle, V.; Gastaldi, G.; Leonardi, R. Assessment of the accuracy of imaging software for 3d rendering of the upper airway, usable in orthodontic and craniofacial clinical settings. Prog. Orthod. 2022, 23, 22. [Google Scholar] [CrossRef] [PubMed]
- Lucchese, A.; Manuelli, M. Prognosis of third molar eruption: A comparison of three predictive methods. Prog. Orthod. 2003, 4, 4–19. [Google Scholar]
- Reitzen, S.D.; Chung, W.; Shah, A.R. Nasal septal deviation in the pediatric and adult populations. Ear Nose Throat J. 2011, 90, 112–115. [Google Scholar] [CrossRef] [Green Version]
- Sayar, G.; Kılınç, D.D. Rapid maxillary expansion outcomes according to midpalatal suture maturation levels. Prog. Orthod. 2019, 20, 27. [Google Scholar] [CrossRef] [Green Version]
- Carli, E.; Pasini, M.; Lardani, L.; Giuca, G.; Miceli, M. Impact of self-ligating orthodontic brackets on dental biofilm and periodontal pathogens in adolescents. J. Biol. Regul. Homeost Agents 2021, 35, 107–115. [Google Scholar]
- Melsen, B. Palatal growth studied on human autopsy material. A histologic microradiographic study. Am. J. Orthod. 1975, 68, 42–54. [Google Scholar] [CrossRef]
- Gray, L.P. Results of 310 cases of rapid maxillary expansion selected for medical reasons. J. Laryngol. Otol. 1975, 89, 601–614. [Google Scholar] [CrossRef] [Green Version]
- Haas, A.J. Palatal expansion: Just the beginning of dentofacial orthopedics. Am. J. Orthod. 1970, 57, 219–255. [Google Scholar] [CrossRef]
- Bazargani, F.; Feldmann, I.; Bondemark, L. Three-dimensional analysis of effects of rapid maxillary expansion on facial sutures and bones. Angle Orthod. 2013, 83, 1074–1082. [Google Scholar] [CrossRef] [PubMed]
- Kabalan, O.; Gordon, J.; Heo, G.; Lagravere, M.O. Nasal airway changes in bone-borne and tooth-borne rapid maxillary expansion treatments. Int. Orthod. 2015, 13, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Bucci, R.; Montanaro, D.; Rongo, R.; Valletta, R.; Michelotti, A.; D’Anto, V. Effects of maxillary expansion on the upper airways: Evidence from systematic reviews and meta-analyses. J. Oral Rehabil 2019, 46, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wang, J.; Xi, X.; Zhao, Y.; Liu, H.; Liu, D. Rapid maxillary expansion has a beneficial effect on the ventilation in children with nasal septal deviation: A computational fluid dynamics study. Front. Pediatr. 2021, 9, 718735. [Google Scholar] [CrossRef] [PubMed]
- Lindemann, J.; Keck, T.; Wiesmiller, K.; Sander, B.; Brambs, H.J.; Rettinger, G.; Pless, D. Nasal air temperature and airflow during respiration in numerical simulation based on multislice computed tomography scan. Am. J. Rhinol. 2006, 20, 219–223. [Google Scholar] [CrossRef]
- Krüsi, M.; Eliades, T.; Papageorgiou, S.N. Are there benefits from using bone-borne maxillary expansion instead of tooth-borne maxillary expansion? A systematic review with meta-analysis. Prog. Orthod. 2019, 20, 9. [Google Scholar] [CrossRef]
- Jaju, P.P.; Jaju, S.P. Cone-beam computed tomography: Time to move from alara to alada. Imaging Sci. Dent. 2015, 45, 263–265. [Google Scholar] [CrossRef] [Green Version]
- Yeung, A.W.K.; Jacobs, R.; Bornstein, M.M. Novel low-dose protocols using cone beam computed tomography in dental medicine: A review focusing on indications, limitations, and future possibilities. Clin. Oral Investig. 2019, 23, 2573–2581. [Google Scholar] [CrossRef]
Timing | Mean TR (mm) | 95% CI | |||||
---|---|---|---|---|---|---|---|
N | SD | Upper Limit | Lower Limit | Significance * | |||
TB | T0 | 20 | 1.052 | 0.032 | 1.067 | 1.037 | p < 0.05 |
T1 | 20 | 1.014 | 0.011 | 1.019 | 1.009 | ||
BB | T0 | 20 | 1.054 | 0.030 | 1.068 | 1.040 | p < 0.05 |
T1 | 20 | 1.021 | 0.012 | 1.026 | 1.015 |
Groups | N | Mean Differences (mm) | SD | Median Differences (mm) | Minimum | Maximum | Significance * |
---|---|---|---|---|---|---|---|
TB | 20 | 0.038 | 0.034 | 0.028 | 0.001 | 0.133 | NS |
BB | 20 | 0.033 | 0.021 | 0.037 | 0.001 | 0.069 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ronsivalle, V.; Carli, E.; Lo Giudice, A.; Lagravère, M.; Leonardi, R.; Venezia, P. Nasal Septum Changes in Adolescents Treated with Tooth-Borne and Bone-Borne Rapid Maxillary Expansion: A CBCT Retrospective Study Using Skeletal Tortuosity Ratio and Deviation Analysis. Children 2022, 9, 1853. https://doi.org/10.3390/children9121853
Ronsivalle V, Carli E, Lo Giudice A, Lagravère M, Leonardi R, Venezia P. Nasal Septum Changes in Adolescents Treated with Tooth-Borne and Bone-Borne Rapid Maxillary Expansion: A CBCT Retrospective Study Using Skeletal Tortuosity Ratio and Deviation Analysis. Children. 2022; 9(12):1853. https://doi.org/10.3390/children9121853
Chicago/Turabian StyleRonsivalle, Vincenzo, Elisabetta Carli, Antonino Lo Giudice, Manuel Lagravère, Rosalia Leonardi, and Pietro Venezia. 2022. "Nasal Septum Changes in Adolescents Treated with Tooth-Borne and Bone-Borne Rapid Maxillary Expansion: A CBCT Retrospective Study Using Skeletal Tortuosity Ratio and Deviation Analysis" Children 9, no. 12: 1853. https://doi.org/10.3390/children9121853
APA StyleRonsivalle, V., Carli, E., Lo Giudice, A., Lagravère, M., Leonardi, R., & Venezia, P. (2022). Nasal Septum Changes in Adolescents Treated with Tooth-Borne and Bone-Borne Rapid Maxillary Expansion: A CBCT Retrospective Study Using Skeletal Tortuosity Ratio and Deviation Analysis. Children, 9(12), 1853. https://doi.org/10.3390/children9121853