Is Vesicostomy Still a Contemporary Method of Managing Posterior Urethral Valves?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Outcomes and Variables
2.3. Management and Follow-Up
2.4. Statistical Analysis
2.5. Ethics Statement
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hodges, S.J.; Patel, B.; McLorie, G.; Atala, A. Posterior urethral valves. Sci. World J. 2009, 9, 1119–1126. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, M. Persistent ureteral dilatation following valve resection. Dial. Pediatr. Urol. 1982, 5, 8–11. [Google Scholar]
- PodestÁ, M.L.; Ruarte, A.; Gargiulo, C.; Medel, R.; Castera, R. Urodynamic findings in boys with posterior urethral valves after treatment with primary valve ablation or vesicostomy and delayed ablation. J. Urol. 2000, 164, 139–144. [Google Scholar] [CrossRef]
- Smith, G.H.; Canning, D.A.; Schulman, S.L.; Snyder, H.M.; Duckett, J.W. The long-term outcome of posterior urethral valves treated with primary valve ablation and observation. J. Urol. 1996, 155, 1730–1734. [Google Scholar] [CrossRef]
- Close, C.E.; Carr, M.C.; Burns, M.V.; Mitchell, M.E. Lower urinary tract changes after early valve ablation in neonates and infants: Is early diversion warranted? J. Urol. 1997, 157, 984–988. [Google Scholar] [CrossRef]
- Niyogi, A.; Lumpkins, K.; Robb, A.; McCarthy, L. Cystometrogram appearance in PUV is reliably quantified by the shape, wall, reflux and diverticuli (SWRD) score, and presages the need for intervention. J. Pediatr. Urol. 2017, 13, 265.e1–265.e6. [Google Scholar] [CrossRef] [PubMed]
- Duckett, J.W. Cutaneous vesicostomy in childhood. The Blocksom Technique. Urol. Clin. N. Am. 1974, 1, 485–495. [Google Scholar]
- Sarhan, O.M.; El-Ghoneimi, A.A.; Helmy, T.E.; Dawaba, M.S.; Ghali, A.M.; El Ibrahiem , H.I. Posterior urethral valves: Multivariate analysis of factors affecting the final renal outcome. J. Urol. 2011, 185, 2491–2495. [Google Scholar] [CrossRef]
- Hennus, P.M.; van der Heijden, G.J.; Bosch, J.L.; de Jong, T.P.; de Kort, L.M. A systematic review on renal and bladder dysfunction after endoscopic treatment of infravesical obstruction in boys. PLoS ONE 2012, 7, e44663. [Google Scholar] [CrossRef] [PubMed]
- Ezel Çelakil, M.; Ekinci, Z.; Bozkaya Yücel, B.; Mutlu, N.; Günlemez, A.; Bek, K. Outcome of posterior urethral valve in 64 children: A single center’s 22-year experience. Minerva Urol. Nefrol. 2019, 71, 651–656. [Google Scholar] [CrossRef] [PubMed]
- Godbole, P.; Wade, A.; Mushtaq, I.; Wilcox, D.T. Vesicostomy vs. primary ablation for posterior urethral valves: Always a difference in outcome? J. Pediatr. Urol. 2007, 3, 273–275. [Google Scholar] [CrossRef] [PubMed]
- Parkhouse, H.F.; Barratt, T.; Dillon, M.; Duffy, P.; Fay, J.; Ransley, P.; Woodhouse, C.; Williams, D. Long-term outcome of boys with posterior urethral valves. Br. J. Urol. 1988, 62, 59–62. [Google Scholar] [CrossRef]
- Warshaw, B.L.; Hymes, L.C.; Trulock, T.S.; Woodard, J.R. Prognostic features in infants with obstructive uropathy due to posterior urethral valves. J. Urol. 1985, 133, 240–243. [Google Scholar] [CrossRef]
- Denes, E.D.; Barthold, J.S.; González, R. Early prognostic value of serum creatinine levels in children with posterior urethral valves. J. Urol. 1997, 157, 1441–1443. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Zarenezhad, M.; Kamali, M.; Gholamzadeh, S.; Sabet, B.; Alipour, F. Comparison of early neonatal valve ablation with vesicostomy in patient with posterior urethral valve. Afr. J. Paediatr. Surg. 2015, 12, 270–272. [Google Scholar] [CrossRef]
- Prudente, A.; Oliveira Reis, L.; França, R.; Miranda, M.; D’Ancona, C. Vesicostomy as a Protector of Upper Urinary Tract in Long-Term Follow-Up. Urol. J. 2009, 6, 96–100. [Google Scholar]
- Kim, S.J.; Jung, J.; Lee, C.; Park, S.; Song, S.H.; Won, H.S.; Kim, K.S. Long-term outcomes of kidney and bladder function in patients with a posterior urethral valve. Medicine 2018, 97, e11033. [Google Scholar] [CrossRef] [PubMed]
- Chua, M.E.; Ming, J.M.; Carter, S.; El Hout, Y.; Koyle, M.A.; Noone, D.; Farhat, W.A.; Lorenzo, A.J.; Bägli, D.J. Impact of Adjuvant Urinary Diversion versus Valve Ablation Alone on Progression from Chronic to End Stage Renal Disease in Posterior Urethral Valves: A Single Institution 15-Year Time-to-Event Analysis. J. Urol. 2018, 199, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Cuckow, P.M.; Dinneen, M.D.; Risdon, R.A.; Ransley, P.G.; Duffy, P.G. Long-Term Renal Function in the Posterior Urethral Valves, Unilateral Reflux and Renal Dysplasia Syndrome. J. Urol. 1997, 158, 1004–1007. [Google Scholar] [CrossRef]
- Bilgutay, A.N.; Roth, D.R.; Gonzales, E.T.; Janzen, N.; Zhang, W.; Koh, C.J.; Gargollo, P.; Seth, A. Posterior urethral valves: Risk factors for progression to renal failure. J. Pediatr. Urol. 2016, 12, 179.e1–179.e7. [Google Scholar] [CrossRef] [Green Version]
- Snodgrass, W.T.; Shah, A.; Yang, M.; Kwon, J.; Villanueva, C.; Traylor, J.; Pritzker, K.; Nakonezny, P.A.; Haley, R.W.; Bush, N.C. Prevalence and risk factors for renal scars in children with febrile UTI and/or VUR: A cross-sectional observational study of 565 consecutive patients. J. Pediatr. Urol. 2013, 9, 856–863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duckett, J.W., Jr. Current management of posterior urethral valves. Urol. Clin. N. Am. 1974, 1, 471–483. [Google Scholar]
- Egami, K.S.D. Hintere Urethralklappen—Eine Studie über Behandlungsmethoden und Spätfolgen. Aktuelle Urol. 1982, 13, 37–42. [Google Scholar] [CrossRef]
- Puri, A.; Grover, V.P.; Agarwala, S.; Mitra, D.K.; Bhatnagar, V. Initial surgical treatment as a determinant of bladder dysfunction in posterior urethral valves. Pediatr. Surg. Int. 2002, 18, 438–443. [Google Scholar] [CrossRef] [PubMed]
- Liard, A.; Seguier-Lipszyc, E.; Mitrofanoff, P. Temporary High Diversion for Posterior Urethral valves. J. Urol. 2000, 164, 145–148. [Google Scholar] [CrossRef]
- Hutcheson, J.C.; Cooper, C.S.; Canning, D.A.; Zderic, S.A.; Snyder, H.M., 3rd. The use of vesicostomy as permanent urinary diversion in the child with myelomeningocele. J. Urol. 2001, 166, 2351–2353. [Google Scholar] [CrossRef]
Valve Ablation n = 6 (100.0%) | Secondary Vesicostomy n = 15 (100.0%) | |
---|---|---|
Age at valve ablation in months (no. pat.) | 6 (100.0%) | 15 (100.0%) |
Median (IQR) | 1 (0.8–3.3) | 1 (0–2) |
Range | 0–4 | 0–4 |
Age at urinary diversion in months (no. pat.) | n | 15 (100.0%) |
Median (IQR) | 2 (1–5) | |
Range | 0–16 | |
Time between VA and urinary diversion in days (no. pat.) | n | 15 (100.0%) |
Median (IQR) | 11 (0–64) | |
Range | 0–427 | |
Age at first follow-up in months (no. pat.) | 6 (100.0%) | 15 (100.0%) |
Median (IQR) | 11 (7.5–14.25) | 11 (9–13) |
Range | 3–15 | 3–15 |
Age at last follow-up in months (no. pat.) | 6 (100.0%) | 15 (100%) |
Median (IQR) | 63 (46–95) | 68.5 (34.75–105.25) |
Range | 37–173 | 3–118 |
Indication for urinary diversion (no. pat.) | 15 (100.0%) | |
• Functional single kidney and poor bladder function | n | 6 (40.0%) |
• Abnormal renal function | 4 (26.7%) | |
• Recurrent urinary tract infection | 5 (33.3%) |
Valve Ablation n = 6 (100.0%) | Secondary Vesicostomy n = 15 (100.0%) | p-Value | ||||
---|---|---|---|---|---|---|
pre-op | post-op | pre-op | post-op | pre-op | post-op | |
Serum Cr (mg/dl) (No. pat) | 6 (100%) | 6 (100%) | 15 (100%) | 15 (100%) | 0.814 | 0.254 |
mean (±SD) | 0.5 (±0.4) | 0.3 (±0.5) | 0.5 (±0.6) | 0.3 (±0.1) | ||
median (IQR) range | 0.3 (0.2–0.7) 0.2–1.2 | 0.3 (0.2–0.3) 0.2–0.3 | 0.3 (0.24–0.73) 0.2–2.4 | 0.3 (0.24–0.3) 0.2–0.6 | ||
p = 0.225 | p = 0.024 | |||||
Side of upper tract dilatation | ||||||
No. patients | 5 (83.0%) | 6 (100.0%) | 15 (100.0%) | 15 (100.0%) | ||
None | 0 (0%) | 1 (16.7%) | 0 (0%) | 8 (53.3%) | ||
Unilateral | 0 (0%) | 1 (16.7%) | 3 (20%) | 2 (13.3%) | ||
Bilateral | 5 (100%) | 4 (66.7%) | 12 (80%) | 5 (33.3%) | ||
p = 0.180 | p = 0.006 | |||||
Grade of upper tract dilatation | ||||||
No. kidneys | 11 (91.7%) | 12 (100.0%) | 29 (96.7%) | 30 (100.0%) | ||
None | 0 (0.0%) | 4 (33.3%) | 1 (3.4%) | 10 (33.3%) | 0.436 | 0.906 |
Mild (grade 1–2) | 6 (54.5%) | 5 (41.7%) | 11 (37.9%) | 13 (43.3%) | ||
Severe (grade 3–4) | 5 (45.5%) | 1 (8.3%) | 15 (51.7%) | 1 (3.3%) | ||
Hypoplastic kidney | 0 (0.0%) | 2 (16.7%) | 1 (3.4%) | 2 (6.7%) | ||
Dysplastic (non-visible) | 0 (0.0%) | 0 (0.0%) | 1 (3.4%) | 4 (13.3%) | ||
p = 0.313 | p = 0.108 | |||||
Side of Megaureter (>6 mm) | ||||||
No.pat. | 4 (66.7%) | 4 (66.7%) | 14 (93.3%) | 15 (100%) | ||
None | 1 (25%) | 2 (50%) | 2 (14.3%) | 4 (28.6%) | 0.777 | 0.012 |
Unilateral | 1 (25%) | 2 (50%) | 6 (42.9%) | 5 (35.7%) | ||
Bilateral | 2 (50%) | 0 (0%) | 6 (42.9%) | 5 (35.7%) | ||
Side of vesicoureteral reflux | p = 0.317 | p = 0.004 | ||||
No. patients | 5 (83.3%) | 6 (100%) | 14 (93.3%) | 14 (93.3%) | ||
None | 2 (40%) | 4 (66.7%) | 4 (28.6%) | 7 (50%) | ||
Unilateral | 2 (40%) | 1 (16.7%) | 5 (35.7%) | 4 (28.6%) | ||
Bilateral | 1 (20%) | 1 (16.7%) | 5 (35.7%) | 3 (21.4%) | ||
p = 0.317 | p = 0.187 | |||||
Grade of vesicoureteral reflux | ||||||
No. kidneys | 11 (91.7%) | 11 (91.7%) | 27 (90.0%) | 29 (96.7%) | ||
None | 7 (63.6%) | 6 (54.5%) | 12 (44.4%) | 22 (75.9%) | 0.465 | 0.231 |
Mild (grade 1–2) | 0 (0.0%) | 1 (9.1%) | 2 (7.4%) | 3 (10.3%) | ||
Intermediate (grade 3) | 0 (0.0%) | 3 (27.3%) | 2 (7.4%) | 0 (0.0%) | ||
High (grade 4–5) | 4 (36.4%) | 1 (9.1%) | 11 (40.7%) | 4 (13.8%) | ||
p = 0.750 | p = 0.003 | |||||
SWDR score (No. pat.) | 5 (83.3%) | 6 (100%) | 14 (93.3%) | 14 (93.3%) | ||
median (minimum–maximum) | 2 (1–5) | 2 (1–6) | 4 (3–6) | 1.5 (0–5) | 0.014 | 0.236 |
p = 0.317 | p = 0.002 |
Valve Ablation n = 6 (100.0%) | Secondary Vesicostomy n = 15 (100.0%) | p-Value | |
---|---|---|---|
Urodynamic filling parameters | |||
• Compliance (no. pat.) | 4 (66.6%) | 13 (86.6%) | |
∘ Normal compliance | 2 (50.0%) | 5 (33.3%) | 0.682 |
∘ Low compliance | 2 (50.0%) | 8 (53.3%) | |
• DO * (no. pat.) | 4 (66.6%) | 13 (86.6%) | |
∘ None DO | 3 (75.0%) | 11 (84.6%) | 0.659 |
∘ With DO | 1 (25.0%) | 2 (15.4%) | |
• Bladder Capacity (no. pat.) | 4 (66.6%) | 14 (93.3%) | |
∘ Reduced capacity | 0 (0.0%) | 5 (35.7%) | 0.289 |
∘ Normal capacity | 3 (75.0%) | 8 (57.1%) | |
∘ Hyper capacity | 1 (25.0%) | 1 (7.1%) |
Valve Ablation n = 6 | Secondary Vesicostomy n = 15 | |
---|---|---|
Stoma complications (no. pat.) | n | 3 (20.0%) |
• Stoma prolapse | 2 (13.3%) | |
• Stoma occlusion | 1 (6.6%) | |
• Stoma revision | 1 (6.6%) | |
Re-valve ablation (no. pat.) | 2 (33.3%) | 3 (20.0%) |
Recurrent urinary tract infection (no. pat.) | 0 (0%) | 6 (40.0%) |
Pat. No. | Group * | Further Surgery |
---|---|---|
1 | 1 | Re-valve ablation, bladderneck incision |
2 | 1 | Re-valve ablation, antireflux surgery |
3 | 2 | Conversion into ureterocutaneostomy, re-valve ablation |
4 | 2 | Revision of vesicostomy |
5 | 2 | Conversion into ureterocutaneostomy |
Valve Ablation n = 6 | Secondary Vesicostomy n = 15 | |
---|---|---|
Long-term solution (no. pat.) | ||
• Closure of vesicostomy | 6 (40.0%) | |
• Bladder augmentation without catheterizable stoma | 1 (6.7%) | |
• Bladder augmentation and catheterizable stoma | 1 (6.7%) | |
• Additional antireflux surgery | 1 (16.6%) | 7 (46.6%) |
Age at long-term solution in years (no. pat.) Mean (±SD) Median (IQR) | 1 (16.6%) 5 (±0) 5 (5–5) | 7 (46.6%) 4.7 (±1.8) 5 (3–6) |
Total number of operations Median (minimum–maximum) | 1.5 (1–3) | 3 (3–6) |
Median (minimum–maximum) |
Pat. No. | Age at Testing (Years) | Time After Undiversion (Months) | Procedure | Voided Volume | % Normal Max. Capacity | Max. Flow (mL/s) | Post-Void Residual Urine Vol. (mL) |
---|---|---|---|---|---|---|---|
1 | 11 | 47 | Bladder augmentation without Stoma | 260 | 0.72 | 7 | 100 |
2 | 6 | 15 | Closure of vesicostomy | 203 | 0.97 | 15.5 | 45 |
3 | 9 | 81 | Closure of vesicostomy | 350 | 1.16 | 10.8 | 30 |
4 | 8 | 28 | Closure of vesicostomy | 210 | 0.74 | nn | 0 |
5 | 4 | 15 | Closure of vesicostomy | nn | nn | 0 | |
6 | 6 | 26 | Closure of vesicostomy | 252 | 1.2 | 18.3 | 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hofmann, A.; Haider, M.; Cox, A.; Vauth, F.; Rösch, W.H. Is Vesicostomy Still a Contemporary Method of Managing Posterior Urethral Valves? Children 2022, 9, 138. https://doi.org/10.3390/children9020138
Hofmann A, Haider M, Cox A, Vauth F, Rösch WH. Is Vesicostomy Still a Contemporary Method of Managing Posterior Urethral Valves? Children. 2022; 9(2):138. https://doi.org/10.3390/children9020138
Chicago/Turabian StyleHofmann, Aybike, Maximilian Haider, Alexander Cox, Franziska Vauth, and Wolfgang H. Rösch. 2022. "Is Vesicostomy Still a Contemporary Method of Managing Posterior Urethral Valves?" Children 9, no. 2: 138. https://doi.org/10.3390/children9020138
APA StyleHofmann, A., Haider, M., Cox, A., Vauth, F., & Rösch, W. H. (2022). Is Vesicostomy Still a Contemporary Method of Managing Posterior Urethral Valves? Children, 9(2), 138. https://doi.org/10.3390/children9020138