Alberta Infant Motor Scale (AIMS) Performance of Early-Term Greek Infants: The Impact of Shorter Gestation on Gross Motor Development among “Term-Born” Infants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Assessment Tool
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- American College of Obstetricians and Gynecologists. ACOG Committee Opinion No 579: Definition of term pregnancy. Obstet. Gynecol. 2013, 122, 1139–1140. [Google Scholar] [CrossRef]
- American College of Obstetricians and Gynecologists. ACOG Committee Opinion No. 765: Avoidance of Nonmedically Indicated Early-Term Deliveries and Associated Neonatal Morbidities. Obstet. Gynecol. 2019, 133, e156–e163. [Google Scholar] [CrossRef] [Green Version]
- Stewart, D.L.; Barfield, W.D.; Cummings, J.J.; Adams-Chapman, I.S.; Aucott, S.W.; Goldsmith, J.P.; Hand, I.L.; Juul, S.E.; Poindexter, B.B.; Puopolo, K.M.; et al. Updates on an At-Risk Population: Late-Preterm and Early-Term Infants. Pediatrics 2019, 144, e20192760. [Google Scholar] [CrossRef] [Green Version]
- Lea, M.D.C.; Esteves-Pereira, A.P.; Nakamura-Pereira, M. Burden of early-term birth on adverse infant outcomes: A popula-tion-based cohort study in Brazil. BMJ Open 2017, 7, e017789. [Google Scholar]
- Kajantie, E.; Strang-Karlsson, S.; Evensen, K.A.I.; Haaramo, P. Adult outcomes of being born late preterm or early term—What do we know? Semin. Fetal Neonatal Med. 2019, 24, 66–83. [Google Scholar] [CrossRef] [Green Version]
- Brayette, M.; Saliba, E.; Malvy, J.; Blanc, R.; Ponson, L.; Tripi, G.; Roux, S.; Bonnet-Brilhault, F. Incomplete Gestation has an Impact on Cognitive Abilities in Autism Spectrum Disorder. J. Autism Dev. Disord. 2019, 49, 4339–4345. [Google Scholar] [CrossRef]
- Baumgartel, K.; Jensen, L.; White, S.W.; Wong, K.; Straker, L.; Leonard, H.; Finlay-Jones, A.; Downs, J. The contributions of fetal growth restriction and gestational age to developmental outcomes at 12 months of age: A cohort study. Early Hum. Dev. 2020, 142, 104951. [Google Scholar] [CrossRef]
- Dong, Y.; Chen, S.-J.; Yu, J.-L. A Systematic Review and Meta-Analysis of Long-Term Development of Early Term Infants. Neonatology 2012, 102, 212–221. [Google Scholar] [CrossRef]
- Wu, M.; Wang, L.; Liu, Y.; Bi, J.; Liu, Q.; Chen, K.; Li, Y.; Xia, W.; Xu, S.; Zhou, A.; et al. Association between early-term birth and delayed neurodevelopment at the age of 2 years: Results from a cohort study in China. Eur. J. Pediatr. 2021, 180, 1–9. [Google Scholar] [CrossRef]
- Sucksdorff, M.; Lehtonen, L.; Chudal, R. Preterm Birth and Poor Fetal Growth as Risk Factors of Attention-Deficit/Hyper-activity Disorder. Pediatrics 2015, 136, 599–608. [Google Scholar] [CrossRef] [Green Version]
- Crump, C.; Sundquist, J.; Sundquist, K. Preterm or Early Term Birth and Risk of Autism. Pediatrics 2021, 148, e2020032300. [Google Scholar] [CrossRef]
- Dueker, G.; Chen, J.; Cowling, C.; Haskin, B. Early developmental outcomes predicted by gestational age from 35 to 41weeks. Early Hum. Dev. 2016, 103, 85–90. [Google Scholar] [CrossRef]
- Noble, K.G.; Fifer, W.P.; Rauh, V.A.; Nomura, Y.; Andrews, H.F. Academic Achievement Varies with Gestational Age Among Children Born at Term. Pediatrics 2012, 130, e257–e264. [Google Scholar] [CrossRef] [Green Version]
- Berry, M.J.; Foster, T.; Rowe, K.; Robertson, O.; Robson, B.; Pierse, N. Gestational Age, Health, and Educational Outcomes in Ado-lescents. Pediatrics 2018, 142, e20181016. [Google Scholar] [CrossRef] [Green Version]
- Dhamrait, G.K.; Christian, H.; O’Donnell, M.; Pereira, G. Gestational age and child development at school entry. Sci. Rep. 2021, 11, 1–13. [Google Scholar] [CrossRef]
- Murray, S.R.; Shenkin, S.D.; Mclntosh, K. Long term cognitive outcomes of early term (37–38 weeks) and late preterm (34–36 weeks) births: A systematic review. Wellcome Open Res. 2017, 2, 101. [Google Scholar] [CrossRef]
- Delnord, M.; Zeitli, J. Epidemiology of late preterm and early term births–An international T perspective. Semin. Fetal Neonatal Med. 2019, 24, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Piper, M.C.; Darrah, J. Motor Assessment of the Developing Infant; WB Saunders Company: Philadelphia, PA, USA, 1994; p. 210. [Google Scholar]
- Darrah, J.; Barlett, D.; Maguire, T.O.; Avison, W.R.; Lacaze-Masmonteil, T. Have infant gross motor abilities changed in 20 years? A re-evaluation of the Alberta Infant Motor Scale normative values. Dev. Med. Child Neurol. 2014, 56, 877–881. [Google Scholar] [CrossRef] [Green Version]
- Syrengelas, D.; Kalampoki, V.; Kleisiouni, P.; Konstantinou, D.; Siahanidou, T. Gross motor development in full-term Greek infants assessed by the Alberta Infant Motor Scale: Reference values and socioeconomic impact. Early Hum. Dev. 2014, 90, 353–357. [Google Scholar] [CrossRef]
- Syrengelas, D.; Kalampoki, V.; Kleisiouni, P.; Manta, V.; Mellos, S.; Pons, R.; Chrousos, G.P.; Siahanidou, T. Alberta Infant Motor Scale (AIMS) Performance of Greek Preterm Infants: Comparisons with Full-Term Infants of the Same Nationality and Impact of Prematurity-Related Morbidity Factors. Phys. Ther. 2016, 96, 1102–1108. [Google Scholar] [CrossRef] [Green Version]
- Fuentefria, R.D.N.; Silveira, R.C.; Procianoy, R.S. Motor development of preterm infants assessed by the Alberta Infant Motor Scale: Systematic review article. J. Pediatr. (Rio J.) 2017, 93, 328–342. [Google Scholar] [CrossRef]
- Villar, J.; Ismail, L.C.; Victora, C.G.; Ohuma, E.O.; Bertino, E.; Altman, D.G.; Lambert, A.; Papageorghiou, A.T.; Carvalho, M.; Jaffer, Y.A.; et al. International standards for newborn weight, length, and head circumference by gestational age and sex: The Newborn Cross-Sectional Study of the INTERGROWTH-21st Project. Lancet 2014, 384, 857–868. [Google Scholar] [CrossRef]
- Seikku, L.; Gissler, M.; Andersson, S. Asphyxia, neurologic morbidity, and perinatal mortality in early term and post term birth. Pediatrics 2016, 137, e20153334. [Google Scholar] [CrossRef] [Green Version]
- Schonhaut, L.; Armijo, I.; Pérez, M. Gestational Age and Developmental Risk in Moderately and Late Preterm and Early Term Infants. Pediatrics 2015, 135, e835–e841. [Google Scholar] [CrossRef] [Green Version]
- Rose, O.; Blanco, E.; Martinez, S.M.; Sim, D.E.K.; Castillo, M.; Lozoff, B.; Vaucher, Y.E.; Gahagan, S. Developmental Scores at 1 Year With Increasing Gestational Age, 37–41 Weeks. Pediatrics 2013, 131, e1475–e1481. [Google Scholar] [CrossRef] [Green Version]
- Espel, E.V.; Glynn, L.M.; Sandman, C.A.; Davis, E.P. Longer Gestation among Children Born Full Term Influences Cognitive and Motor Development. PLoS ONE 2014, 9, e113758. [Google Scholar] [CrossRef]
- Pin, T.W.; Butler, P.B.; Cheung, H.-M.; Shum, S.L.-F. Longitudinal Development of Segmental Trunk Control in Full Term and Preterm Infants- a Pilot Study: Part II. Dev. Neurorehabilit. 2020, 23, 193–200. [Google Scholar] [CrossRef]
- Righetto, G.A.L.; Sato, N.T.D.S.; Cazotti, A.M.; Tudella, E. Is Segmental Trunk Control Related to Gross Motor Performance in Healthy Preterm and Full-Term Infants? J. Mot. Behav. 2020, 52, 666–675. [Google Scholar] [CrossRef]
- Kinney, H.C. The Near-Term (Late Preterm) Human Brain and Risk for Periventricular Leukomalacia: A Review. Semin. Perinatol. 2006, 30, 81–88. [Google Scholar] [CrossRef]
- Davis, E.P.; Buss, C.; Muftuler, L.T. Children’s Brain Development Benefits from Longer Gestation. Front. Psychol. 2011, 2, 1. [Google Scholar] [CrossRef] [Green Version]
Early-Term (N = 559) | Full-Term (N = 528) | ||||
---|---|---|---|---|---|
Monthly Age Level | N | AIMS Score | N | AIMS Score | Score Difference (95% CI) |
0 to <1 | 12 | 5.0 ± 1.2 | 14 | 5.0 ± 1.4 | 0 (−1.1, 1.1) |
1 to <2 | 18 | 7.2 ± 1.5 | 16 | 8.9 ± 2.2 | 1.7 (0.3, 2.8) |
2 to <3 | 22 | 9.2 ± 1.5 | 30 | 10.2 ± 2.2 | 0.9 (−0.1, 2.1) |
3 to <4 | 36 | 11.8 ± 2.2 | 39 | 12.3 ± 2.8 | 0.5 (−0.8, 1.7) |
4 to <5 | 22 | 17.3 ± 2.4 | 24 | 17.2 ± 2.7 | −0.2 (−1.7, 1.4) |
5 to <6 | 26 | 22.0 ± 3.0 | 31 | 24.6 ± 4.0 | 2.6 (0.7, 4.5) |
6 to <7 | 67 | 26.5 ± 3.8 | 65 | 28.8 ± 5.3 | 2.3 (0.8, 3.9) |
7 to <8 | 64 | 31.4 ± 4.7 | 54 | 34.1 ± 5.5 | 2.6 (0.7, 4.5) |
8 to <9 | 27 | 37.6 ± 5.9 | 29 | 39.8 ± 6.6 | 2.2 (−1.2, 5.6) |
9 to <10 | 44 | 44.3 ± 6.2 | 43 | 44.8 ± 6.8 | 0.5 (−2.3, 3.2) |
10 to <11 | 33 | 49.0 ± 4.9 | 29 | 47.7 ± 6.2 | −1.4 (−4.2, 1.5) |
11 to <12 | 27 | 49.3 ± 4.8 | 25 | 52.2 ± 2.3 | 2.9 (0.7, 4.9) |
12 to <13 | 20 | 53.9 ± 1.7 | 22 | 54.6 ± 1.8 | 0.6 (−0.5, 1.8) |
13 to <14 | 26 | 56.0 ± 2.3 | 14 | 55.9 ± 1.6 | −0.1 (−1.4, 1.4) |
14 to <15 | 18 | 56.5 ± 2.0 | 22 | 57.5 ± 0.8 | 0.9 (−0.0, 1.9) |
15 to <16 | 23 | 57.8 ± 0.3 | 13 | 57.8 ± 0.4 | −0.02 (−0.3, 0.2) |
16 to <17 | 22 | 57.6 ± 1.1 | 19 | 57.9 ± 0.3 | 0.3 (−0.2, 0.9) |
17 to <18 | 21 | 57.9 ± 0.3 | 17 | 57.9 ± 0.2 | 0.03 (−0.1, 0.2) |
18 to <19 | 31 | 56.8 ± 6.8 | 22 | 58.0 ± 0.0 | 1.2 (−1.7, 4.2) |
Prone Sub-Score | Supine Sub-Score | Sitting Sub-Score | Standing Sub-Score | |||||
---|---|---|---|---|---|---|---|---|
Monthly Age Level | Early- Term | Full- Term | Early- Term | Full- Term | Early- Term | Full- Term | Early- Term | Full- Term |
0 to <1 | 1.7 ± 0.6 | 1.7 ± 0.6 | 2.0 ± 0.5 | 1.7 ± 0.6 | 0.5 ± 0.5 | 0.8 ± 0.4 | 0.8 ± 0.4 | 0.9 ± 0.3 |
1 to <2 | 2.2 ± 0.6 | 2.5 ± 0.9 | 2.7 ± 0.5 | 2.6 ± 0.7 | 0.9 ± 0.3 | 1.0 ± 0.1 | 1.4 ± 0.5 | 1.7 ± 0.5 |
2 to <3 | 2.8 ± 0.7 | 3.4 ± 1.2 | 3.2 ± 0.6 | 3.4 ± 0.9 | 1.3 ± 0.6 | 1.4 ± 0.6 | 1.7 ± 0.4 | 1.9 ± 0.5 |
3 to <4 | 3.8 ± 1.1 | 4.7 ± 2.9 | 4.2 ± 0.8 | 4.3 ± 1.4 | 1.8 ± 0.7 | 2.1 ± 1.7 | 2.0 ± 0.4 | 2.2 ± 2.3 |
4 to <5 | 6.2 ± 1.3 | 6.0 ± 1.8 | 6.0 ± 1.3 | 6.1 ± 1.3 | 2.7 ± 0.6 | 2.8 ± 0.6 | 2.2 ± 0.4 | 2.2 ± 0.4 |
5 to <6 | 7.9 ± 1.5 * | 9.9 ± 2.6 | 7.0 ± 1.4 | 7.7 ± 1.0 | 4.3 ± 1.4 | 4.5 ± 1.1 | 2.6 ± 0.4 | 2.5 ± 0.5 |
6 to <7 | 10.3 ± 2.0 # | 11.5 ± 2.8 | 8.1 ± 0.7 | 8.3 ± 0.7 | 5.4 ± 1.8 & | 6.2 ± 2.0 | 2.5 ± 0.5 | 2.7 ± 0.7 |
7 to <8 | 11.9 ± 2.5 & | 13.2 ± 3.0 | 8.4 ± 0.7 | 8.5 ± 0.7 | 8.0 ± 1.8 | 8.7 ± 1.8 | 3.0 ± 0.8 & | 3.5 ± 1.1 |
8 to <9 | 14.1 ± 3.0 | 15.2 ± 3.3 | 8.9 ± 0.2 | 8.9 ± 0.3 | 10.0 ± 1.3 | 10.4 ± 1.3 | 4.5 ± 2.2 | 5.3 ± 2.8 |
9 to <10 | 17.3 ± 2.9 | 17.7 ± 3.2 | 8.9 ± 0.3 | 9.0 ± 0.0 | 11.3 ± 0.8 | 11.2 ± 0.9 | 6.7 ± 2.9 | 6.9 ± 3.0 |
10 to <11 | 19.2 ± 2.6 | 18.4 ± 3.7 | 9.0 ± 0.0 | 8.9 ± 0.2 | 11.7 ± 0.6 | 11.5 ± 0.8 | 9.0 ± 2.2 | 8.9 ± 2.3 |
11 to <12 | 19.6 ± 2.7 | 20.7 ± 0.9 | 9.0 ± 0.0 | 9.0 ± 0.0 | 11.7 ± 0.6 & | 12.0 ± 0.0 | 9.0 ± 2.3 # | 10.4 ± 1.9 |
12 to <13 | 20.9 ± 0.3 | 20.9 ± 0.2 | 9.0 ± 0.0 | 9.0 ± 0.0 | 12.0 ± 0.0 | 12.0 ± 0.0 | 12.1 ± 1.7 | 12.6 ± 1.8 |
13 to <14 | 21.0 ± 0.0 | 21.0 ± 0.0 | 9.0 ± 0.0 | 9.0 ± 0.0 | 12.0 ± 0.0 | 12.0 ± 0.0 | 14.0 ± 2.3 | 13.9 ± 1.5 |
14 to <15 | 21.0 ± 0.0 | 21.0 ± 0.0 | 9.0 ± 0.0 | 9.0 ± 0.0 | 12.0 ± 0.0 | 12.0 ± 0.0 | 14.5 ± 2.0 | 15.5 ± 0.8 |
15 to <16 | 21.0 ± 0.0 | 21.0 ± 0.0 | 9.0 ± 0.0 | 9.0 ± 0.0 | 12.0 ± 0.0 | 12.0 ± 0.0 | 15.8 ± 0.3 | 15.8 ± 0.4 |
16 to <17 | 21.0 ± 0.0 | 21.0 ± 0.0 | 9.0 ± 0.0 | 9.0 ± 0.0 | 12.0 ± 0.0 | 12.0 ± 0.0 | 15.5 ± 1.1 | 15.9 ± 0.3 |
17 to <18 | 21.0 ± 0.0 | 21.0 ± 0.0 | 9.0 ± 0.0 | 9.0 ± 0.0 | 12.0 ± 0.0 | 12.0 ± 0.0 | 15.9 ± 0.3 | 15.9 ± 0.2 |
18 to <19 | 20.5 ± 2.5 | 21.0 ± 0.0 | 8.9 ± 0.3 | 9.0 ± 0.0 | 11.7 ± 1.4 | 12.0 ± 0.0 | 15.5 ± 2.5 | 16.0 ± 0.0 |
Dependent Variable: Total AIMS Score | ||||
---|---|---|---|---|
≤12 Months | >12 Months | |||
Model | B Coefficient (95% CI) | p-Value | B Coefficient (95% CI) | p-Value |
Early-term birth | −1.56 (−2.32, −0.79) | <0.001 | −0.46 (−1.08, 0.15) | 0.140 |
Age (months) | 4.67 (4.54, 4.80) | <0.001 | 0.45 (0.30, 0.59) | <0.001 |
Gender (males) | −0.84 (−1.61, −0.07) | 0.033 | 0.52 (−0.11, 1.14) | 0.110 |
SGA | 0.32 (−2.54, 3.19) | 0.825 | −0.33 (−2.69, 2.03) | 0.784 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syrengelas, D.; Nikaina, E.; Kleisiouni, P.; Siahanidou, T. Alberta Infant Motor Scale (AIMS) Performance of Early-Term Greek Infants: The Impact of Shorter Gestation on Gross Motor Development among “Term-Born” Infants. Children 2022, 9, 270. https://doi.org/10.3390/children9020270
Syrengelas D, Nikaina E, Kleisiouni P, Siahanidou T. Alberta Infant Motor Scale (AIMS) Performance of Early-Term Greek Infants: The Impact of Shorter Gestation on Gross Motor Development among “Term-Born” Infants. Children. 2022; 9(2):270. https://doi.org/10.3390/children9020270
Chicago/Turabian StyleSyrengelas, Dimitris, Eirini Nikaina, Paraskevi Kleisiouni, and Tania Siahanidou. 2022. "Alberta Infant Motor Scale (AIMS) Performance of Early-Term Greek Infants: The Impact of Shorter Gestation on Gross Motor Development among “Term-Born” Infants" Children 9, no. 2: 270. https://doi.org/10.3390/children9020270
APA StyleSyrengelas, D., Nikaina, E., Kleisiouni, P., & Siahanidou, T. (2022). Alberta Infant Motor Scale (AIMS) Performance of Early-Term Greek Infants: The Impact of Shorter Gestation on Gross Motor Development among “Term-Born” Infants. Children, 9(2), 270. https://doi.org/10.3390/children9020270