Incidence of Intrapartum-Related Events at the Largest Obstetric Hospital in Hanoi, Vietnam: A Retrospective Study
Abstract
:1. Background
2. Methods
2.1. Study Setting
2.2. Study Design
2.3. Ethical Approval
2.4. Statistical Analysis
3. Results
3.1. Demography, Mode of Delivery, and Resuscitation of Neonates Admitted to the Neonatal Unit
3.2. Diagnoses in Neonates Admitted to Neonatal Unit
3.3. Clinical Management of Neonates Admitted to the Neonatal Unit
3.4. Outcome of Neonates Admitted to the Neonatal Unit
3.5. Quality Control
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CRF | case report form |
ETI | endotracheal tube intubation |
PPV | positive pressure ventilation |
HIE | hypoxic ischemic encephalopathy |
HIC | high income countries |
LIC | low income countries |
LMIC | low-middle income countries |
UN | United Nations |
WHO | World Health Organization |
VNCH | Vietnam National Children’s Hospital |
NBW | normal birth weight |
LBW | low birth weight |
VLBW | very low birth weight |
ELBW | extremely low birth weight |
RDS | respiratory distress syndrome |
PROM | prolonged (≥18 h) rupture of membranes |
References
- United Nation’s Inter-Agency Group for Child Mortality. Levels & Trends in Child Mortality. 2019. Available online: https://www.unicef.org/media/60561/file/UN-IGME-child-mortality-report-2019.pdf (accessed on 4 May 2021).
- World Health Organization; UNICEF. Ending Preventable Newborn Deaths and Stillbirths by 2030. 2020. Available online: https://www.unicef.org/reports/ending-preventable-newborn-deaths-stillbirths-quality-health-coverage-2020-2025 (accessed on 16 February 2022).
- Liu, L.; Oza, S.; Hogan, D.; Chu, Y.; Perin, J.; Zhu, J.; Lawn, J.E.; Cousens, S.; Mathers, C.; Black, R.E. Global, regional, and national causes of under-5 mortality in 2000–15: An updated systematic analysis with implications for the Sustainable Development Goals. Lancet 2016, 388, 3027–3035. [Google Scholar] [CrossRef] [Green Version]
- Rainaldi, M.A.; Perlman, J.M. Pathophysiology of Birth Asphyxia. Clin. Perinatol. 2016, 43, 409–422. [Google Scholar] [CrossRef] [PubMed]
- Gopagondanahalli, K.R.; Li, J.; Fahey, M.; Hunt, R.W.; Jenkin, G.; Miller, S.; Malhotra, A. Preterm Hypoxic–Ischemic Encephalopathy. Front. Pediatr. 2016, 4, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azzopardi, D.V.; Strohm, B.; Edwards, A.D.; Dyet, L.; Halliday, H.; Juszczak, E.; Kapellou, O.; Levene, M.; Marlow, N.; Porter, E.; et al. Moderate Hypothermia to Treat Perinatal Asphyxial Encephalopathy. N. Engl. J. Med. 2009, 361, 1349–1358. [Google Scholar] [CrossRef] [Green Version]
- Tran, H.T.T.; Le, H.T.T.; Tran, H.T.P.; Khu, D.T.K.; Lagercrantz, H.; Tran, D.M.; Winbladh, B.; Hellström-Westas, L.; Alfvén, T.; Olson, L. Hypothermic treatment for neonatal asphyxia in low-resource settings using phase-changing material-An easy to use and low-cost method. Acta Paediatr. 2021, 110, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Bayih, W.A.; Yitbarek, G.Y.; Aynalem, Y.A.; Abate, B.B.; Tesfaw, A.; Ayalew, M.Y.; Belay, D.M.; Hailemeskel, H.S.; Alemu, A.Y. Prevalence and associated factors of birth asphyxia among live births at Debre Tabor General Hospital, North Central Ethiopia. BMC Pregnancy Childbirth 2020, 20, 653. [Google Scholar] [CrossRef] [PubMed]
- Peebles, P.J.; Duello, T.M.; Eickhoff, J.C.; McAdams, R.M. Antenatal and intrapartum risk factors for neonatal hypoxic ischemic encephalopathy. J. Perinatol. 2019, 40, 63–69. [Google Scholar] [CrossRef]
- Wyckoff, M.H.; Wyllie, J.; Aziz, K.; de Almeida, M.F.; Fabres, J.W.; Fawke, J.; Guinsburg, R.; Hosono, S.; Isayama, T.; Kapadia, V.S.; et al. Neonatal Life Support 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation 2020, 142, S185–S221. [Google Scholar] [CrossRef]
- Ersdal, H.L.; Eilevstjønn, J.; Linde, J.E.; Yeconia, A.; Mduma, E.R.; Kidanto, H.; Perlman, J. Fresh stillborn and severely asphyxiated neonates share a common hypoxic-ischemic pathway. Int. J. Gynecol. Obstet. 2018, 141, 171–180. [Google Scholar] [CrossRef]
- Arya, S.; Naburi, H.; Kawaza, K.; Newton, S.; Anyabolu, C.H.; Bergman, N.; Rao, S.P.N.; Mittal, P.; Assenga, E.; Gadama, L.; et al. Immediate “Kangaroo Mother Care” and Survival of Infants with Low Birth Weight. N. Engl. J. Med. 2021, 384, 2028–2038. [Google Scholar] [CrossRef]
- Asadi, S.; Bloomfield, F.H.; Harding, J.E. Nutrition in late preterm infants. Semin. Perinatol. 2019, 43, 151160. [Google Scholar] [CrossRef] [PubMed]
- Glass, H.C.; Costarino, A.T.; Stayer, S.A.; Brett, C.M.; Cladis, F.; Davis, P.J. Outcomes for Extremely Premature Infants. Anesthesia Analg. 2015, 120, 1337–1351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aminu, M.; Bar-Zeev, S.; White, S.; Mathai, M.; Broek, N.V.D. Understanding cause of stillbirth: A prospective observational multi-country study from sub-Saharan Africa. BMC Pregnancy Childbirth 2019, 19, 470. [Google Scholar] [CrossRef] [Green Version]
- Goldenberg, R.L.; Harrison, M.S.; McClure, E.M. Stillbirths: The Hidden Birth Asphyxia-US and Global Perspectives. Clin. Perinatol. 2016, 43, 439–453. [Google Scholar] [CrossRef]
- Simonsen, K.A.; Anderson-Berry, A.L.; Delair, S.F.; Davies, H.D. Early-onset neonatal sepsis. Clin. Microbiol. Rev. 2014, 27, 21–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Congenital Anomalies. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/congenital-anomalies (accessed on 11 May 2021).
- Ajao, A.E.; Adeoye, I.A. Prevalence, risk factors and outcome of congenital anomalies among neonatal admissions in OGBOMOSO, Nigeria. BMC Pediatr. 2019, 19, 88. [Google Scholar] [CrossRef] [PubMed]
- Boyle, B.; Addor, M.-C.; Arriola, L.; Barisic, I.; Bianchi, F.; Csáky-Szunyogh, M.; Walle, H.E.K.D.; Dias, C.M.; Draper, E.; Gatt, M.; et al. Estimating Global Burden of Disease due to congenital anomaly: An analysis of European data. Arch. Dis. Child.-Fetal Neonatal Ed. 2017, 103, F22–F28. [Google Scholar] [CrossRef] [Green Version]
- The World Bank. Neonatal Mortality Rate Updated. 2021. Available online: https://data.worldbank.org/indicator/SH.DYN.NMRT?locations=XD-XM (accessed on 17 May 2021).
- Målqvist, M. Neonatal mortality: An invisible and marginalised trauma. Glob. Health Action 2011, 4, 5724. [Google Scholar] [CrossRef] [Green Version]
- Unicef; WHO. Reaching Every Newborn National 2020 Milestones. 2018. Available online: https://www.unicef.org/reports/committing-child-survival-promise-renewed (accessed on 14 November 2021).
- Sweet, D.G.; Carnielli, V.; Greisen, G.; Hallman, M.; Ozek, E.; Pas, A.T.; Plavka, R.; Roehr, C.C.; Saugstad, O.D.; Simeoni, U.; et al. European Consensus Guidelines on the Management of Respiratory Distress Syndrome–2019 Update. Neonatology 2019, 115, 432–450. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.C.; Cousens, S.; Wall, S.N.; Niermeyer, S.; Darmstadt, G.L.; Carlo, A.W.; Keenan, W.J.; Bhutta, A.Z.; Gill, C.; Lawn, E.J. Neonatal resuscitation and immediate newborn assessment and stimulation for the prevention of neonatal deaths: A systematic review, meta-analysis and Delphi estimation of mortality effect. BMC Public Health 2011, 11, S12. [Google Scholar] [CrossRef] [Green Version]
- Niles, D.E.; Cines, C.; Insley, E.; Foglia, E.E.; Elci, O.U.; Skåre, C.; Olasveengen, T.; Ades, A.; Posencheg, M.; Nadkarni, V.M.; et al. Incidence and characteristics of positive pressure ventilation delivered to newborns in a US tertiary academic hospital. Resuscitation 2017, 115, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Skåre, C.; Boldingh, A.-M.; Nakstad, B.; Calisch, T.E.; Niles, D.E.; Nadkarni, V.M.; Kramer-Johansen, J.; Olasveengen, T.M. Ventilation fraction during the first 30 s of neonatal resuscitation. Resuscitation 2016, 107, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Skåre, C.; Kramer-Johansen, J.; Steen, T.; Ødegaard, S.; Niles, D.E.; Nakstad, B.; Solevåg, A.L.; Nadkarni, V.M.; Olasveengen, T.M. Incidence of Newborn Stabilization and Resuscitation Measures and Guideline Compliance during the First Minutes of Life in Norway. Neonatology 2015, 108, 100–107. [Google Scholar] [CrossRef]
- Souza, J.; Leite, J.M.; Sanudo, A.; Guinsburg, R.; De Sousa, J.R.P. Factors associated with the need for ventilation at birth of neonates weighing ≥2500 g. Clinics 2016, 71, 381–386. [Google Scholar] [CrossRef]
- Ersdal, H.L.; Mduma, E.; Svensen, E.; Perlman, J. Birth Asphyxia: A Major Cause of Early Neonatal Mortality in a Tanzanian Rural Hospital. Pediatrics 2012, 129, e1238–e1243. [Google Scholar] [CrossRef]
- Pejovic, N.J.; Höök, S.M.; Byamugisha, J.; Alfvén, T.; Lubulwa, C.; Cavallin, F.; Nankunda, J.; Ersdal, H.; Blennow, M.; Trevisanuto, D.; et al. A Randomized Trial of Laryngeal Mask Airway in Neonatal Resuscitation. N. Engl. J. Med. 2020, 383, 2138–2147. [Google Scholar] [CrossRef]
- Kurinczuk, J.J.; White-Koning, M.; Badawi, N. Epidemiology of neonatal encephalopathy and hypoxic–ischaemic encephalopathy. Early Hum. Dev. 2010, 86, 329–338. [Google Scholar] [CrossRef]
- Namusoke, H.; Nannyonga, M.M.; Ssebunya, R.; Nakibuuka, V.K.; Mworozi, E. Incidence and short term outcomes of neonates with hypoxic ischemic encephalopathy in a Peri Urban teaching hospital, Uganda: A prospective cohort study. Matern. Health Neonatol. Perinatol. 2018, 4, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Simiyu, I.N.; Mchaile, D.N.; Katsongeri, K.; Philemon, R.N.; Msuya, S.E. Prevalence, severity and early outcomes of hypoxic ischemic encephalopathy among newborns at a tertiary hospital, in northern Tanzania. BMC Pediatr. 2017, 17, 131. [Google Scholar] [CrossRef] [Green Version]
- Betran, A.P.; Torloni, M.R.; Zhang, J.J.; Gulmezoglu, A.M.; Aleem, H.; Althabe, F.; Bergholt, T.; De Bernis, L.; Carroli, G.; Deneux-Tharaux, C.; et al. WHO Statement on Caesarean Section Rates. BJOG Int. J. Obstet. Gynaecol. 2015, 123, 667–670. [Google Scholar] [CrossRef]
- Ye, J.; Zhang, J.; Mikolajczyk, R.; Torloni, M.R.; Gülmezoglu, A.M.; Betran, A.P. Association between rates of caesarean section and maternal and neonatal mortality in the 21st century: A worldwide population-based ecological study with longitudinal data. BJOG Int. J. Obstet. Gynaecol. 2015, 123, 745–753. [Google Scholar] [CrossRef] [PubMed]
- Cavallaro, F.L.; Cresswell, J.; França, G.V.; Victora, C.; Barros, A.; Ronsmans, C. Trends in caesarean delivery by country and wealth quintile: Cross-sectional surveys in southern Asia and sub-Saharan Africa. Bull. World Health Organ. 2013, 91, 914D–922D. [Google Scholar] [CrossRef] [PubMed]
- de Loenzien, M.; Schantz, C.; Luu, B.N.; Dumont, A. Magnitude and correlates of caesarean section in urban and rural areas: A multivariate study in Vietnam. PLoS ONE 2019, 14, e0213129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giang, H.T.N.; Ulrich, S.; Tran, H.T.; Pozza, S.B.-D. Monitoring and interventions are needed to reduce the very high Caesarean section rates in Vietnam. Acta Paediatr. 2018, 107, 2109–2114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takegata, M.; Ronsmans, C.; Nguyen, H.A.T.; Kitamura, N.; Iwasaki, C.; Toizumi, M.; Moriuchi, H.; Dang, D.A.; Yoshida, L.-M. Socio-demographic factors of cesarean births in Nha Trang city, Vietnam: A community-based survey. Trop. Med. Health 2020, 48, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Aiken, C.E.; Aiken, A.R.; Brockelsby, J.C.; Scott, J.G. Factors Influencing the Likelihood of Instrumental Delivery Success. Obstet. Gynecol. 2014, 123, 796–803. [Google Scholar] [CrossRef] [Green Version]
- Tran, T.K.; Nguyen, C.T.; Nguyen, H.D.; Eriksson, B.; Bondjers, G.; Gottvall, K.; Ascher, H.; Petzold, M. Urban-rural disparities in antenatal care utilization: A study of two cohorts of pregnant women in Vietnam. BMC Health Serv. Res. 2011, 11, 120. [Google Scholar] [CrossRef] [Green Version]
- Ekholuenetale, M. Prevalence of Eight or More Antenatal Care Contacts: Findings From Multi-Country Nationally Representative Data. Glob. Pediatr. Health 2021, 8, 2333794X211045822. [Google Scholar] [CrossRef]
- World Health Organization. Preterm Birth 2018. Available online: https://www.who.int/news-room/fact-sheets/detail/preterm-birth (accessed on 19 May 2021).
- Darmaun, D.; Lapillonne, A.; Simeoni, U.; Picaud, J.-C.; Rozé, J.-C.; Saliba, E.; Bocquet, A.; Chouraqui, J.-P.; Dupont, C.; Feillet, F.; et al. Parenteral nutrition for preterm infants: Issues and strategy. Arch. Pédiatrie 2018, 25, 286–294. [Google Scholar] [CrossRef]
- Manuck, T.A.; Rice, M.M.; Bailit, J.L.; Grobman, W.A.; Reddy, U.M.; Wapner, R.; Thorp, J.M.; Caritis, S.N.; Prasad, M.; Tita, A.; et al. Preterm neonatal morbidity and mortality by gestational age: A contemporary cohort. Am. J. Obstet. Gynecol. 2016, 215, 103. [Google Scholar] [CrossRef] [Green Version]
- Hon, K.; Liu, S.; Chow, J.C.; Tsang, K.Y.; Lam, H.; So, K.; Cheng, Y.K.; Leung, A.K.; Wong, W. Mortality and morbidity of extremely low birth weight infants in Hong Kong, 2010-2017: A single-centre review. Hong Kong Med. J. 2018, 24, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Itabashi, K.; Horiuchi, T.; Kusuda, S.; Kabe, K.; Itani, Y.; Nakamura, T.; Fujimura, M.; Matsuo, M. Mortality Rates for Extremely Low Birth Weight Infants Born in Japan in 2005. Pediatrics 2009, 123, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, K.; Louis, D.; Mahajan, R.; Kumar, P. Predictors of mortality and major morbidities in extremely low birth weight neonates. Indian Pediatr. 2013, 50, 1119–1123. [Google Scholar] [CrossRef] [PubMed]
- Giang, H.T.N.; Pozza, S.B.-D.; Ulrich, S.; Linh, L.K.; Tran, H.T. Prevalence and Pattern of Congenital Anomalies in a Tertiary Hospital in Central Vietnam. J. Trop. Pediatr. 2019, 66, 187–193. [Google Scholar] [CrossRef]
- Cherian, A.G.; Jamkhandi, D.; George, K.; Bose, A.; Prasad, J.; Minz, S. Prevalence of Congenital Anomalies in a Secondary Care Hospital in South India: A Cross-Sectional Study. J. Trop. Pediatr. 2016, 62, 361–367. [Google Scholar] [CrossRef] [Green Version]
- Sohn, A.H.; Garrett, D.O.; Sinkowitz-Cochran, R.L.; Grohskopf, L.A.; Levine, G.L.; Stover, B.H.; Siegel, J.D.; Jarvis, W.R. Prevalence of nosocomial infections in neonatal intensive care unit patients: Results from the first national point-prevalence survey. J. Pediatr. 2001, 139, 821–827. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Lin, C.-F.; Rehn, Y.-J.F.; Chen, J.-C.; Chen, P.-Y.; Chen, C.-H.; Wang, T.-M.; Huang, F.-L. Reduced nosocomial infection rate in a neonatal intensive care unit during a 4-year surveillance period. J. Chin. Med. Assoc. 2017, 80, 427–431. [Google Scholar] [CrossRef]
- Madrid, L.; Varo, R.; Sitoe, A.; Bassat, Q. Congenital and perinatally-acquired infections in resource-constrained settings. Expert Rev. Anti-Infect. Ther. 2016, 14, 845–861. [Google Scholar] [CrossRef] [Green Version]
All Neonates N = 581 | Birth Weight a <1500 g N = 57 | Birth Weight a 1500–2500 g N = 167 | Birth Weight a >2500 g N = 353 | |||||
---|---|---|---|---|---|---|---|---|
n/Median | %/IQR | n/Median | %/IQR | n/Median | %/IQR | n/Median | %/IQR | |
General | ||||||||
Female | 256 | 44.1 | 24 | 42.1 | 83 | 49.7 | 148 | 41.9 |
Multiple births | 101 | 17.4 | 23 | 40.4 | 55 | 32.9 | 22 | 6.2 |
Maternal factors | 0.0 | |||||||
Age (years) | 29 | 26–33 | 28 | 26–31 | 29 | 26–33 | 29 | 26–33 |
Primipara | 270 | 46.5 | 35 | 61.4 | 83 | 49.7 | 151 | 42.8 |
Previous preterm births | 14 | 2.4 | 0 | 0.0 | 3 | 1.8 | 11 | 3.1 |
Previous miscarriage/stillbirth | 78 | 13.4 | 6 | 10.5 | 21 | 12.6 | 51 | 14.4 |
Perinatal factors | ||||||||
Stained/foul-smelling meconium | 22 | 3.8 | 1 | 1.8 | 7 | 4.2 | 14 | 4.0 |
PROM b | 95 | 16.4 | 14 | 24.6 | 41 | 24.6 | 41 | 11.6 |
Maternal infection during labour | 6 | 1.0 | 2 | 3.5 | 2 | 1.2 | 2 | 0.6 |
Maternal temp. <36°C or >38 °C | 2 | 0.3 | 0 | 0.0 | 0 | 0.0 | 2 | 0.6 |
Preeclampsia | 26 | 4.5 | 4 | 7.0 | 16 | 9.6 | 6 | 1.7 |
Eclampsia | 1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 1 | 0.0 |
Placenta praevia | 16 | 2.8 | 3 | 5.3 | 3 | 1.8 | 10 | 2.8 |
Placenta abruption | 4 | 0.7 | 1 | 1.8 | 0 | 0.0 | 3 | 0.8 |
Mode of delivery | ||||||||
Spontaneous vaginal delivery | 233 | 40.1 | 37 | 64.9 | 62 | 37.1 | 133 | 37.7 |
Assisted (forceps or vacuum) | 1 | 0.2 | 0 | 0.0 | 0 | 0.0 | 1 | 0.3 |
Elective c-section | 225 | 38.7 | 9 | 15.8 | 57 | 34.1 | 159 | 45.0 |
Emergency c-section | 119 | 20.5 | 11 | 19.3 | 48 | 28.7 | 60 | 17.0 |
Gestational age (weeks’) c | ||||||||
<28 | 17 | 2.9 | 17 | 29.8 | 0 | 0.0 | 0 | 0.0 |
28–32 | 32 | 5.5 | 23 | 40.4 | 9 | 5.4 | 0 | 0.0 |
32–37 | 168 | 28.9 | 16 | 28.1 | 111 | 66.5 | 41 | 11.6 |
>37 | 359 | 61.8 | 1 | 1.8 | 46 | 27.5 | 311 | 88.1 |
Resuscitation | ||||||||
Apgar score at 1 min | 8 | 7–8 | 6 | 5–6.5 | 7 | 7–8 | 8 | 8–8 |
Apgar score at 5 min | 9 | 8–9 | 7 | 6–7.5 | 8 | 8–9 | 9 | 9–9 |
Apgar score <7 at 5 min | 30 | 5.2 | 22 | 38.6 | 3 | 1.8 | 4 | 1.1 |
Face mask ventilation d | 26 | 4.5 | 15 | 26.3 | 9 | 5.4 | 2 | 0.6 |
Endotracheal intubation | 10 | 1.7 | 3 | 5.3 | 4 | 2.4 | 3 | 0.8 |
All Neonates N = 581 | Birth Weight a <1500 g N = 57 | Birth Weight a 1500–2500 g N = 167 | Birth Weight a >2500 g N = 353 | |||||
---|---|---|---|---|---|---|---|---|
n | % b | n | % b | n | % b | n | % b | |
Birth weight and gestational age | ||||||||
Prematurity | 217 | 37.3 | 56 | 98.2 | 120 | 71.9 | 41 | 11.6 |
Small for gestational age | 44 | 7.6 | 12 | 21.1 | 30 | 18.0 | 2 | 0.6 |
Large for gestational age | 4 | 0.7 | 0 | 0.0 | 1 | 0.6 | 3 | 0.8 |
Cardiopulmonary | ||||||||
Respiratory distress syndrome | 96 | 16.5 | 47 | 82.5 | 33 | 19.8 | 15 | 4.2 |
Respiratory distress resolved within 6 h | 60 | 10.3 | 6 | 10.5 | 33 | 19.8 | 21 | 5.9 |
Transient tachypnoea of the newborn | 23 | 4.0 | 0 | 0.0 | 6 | 3.6 | 17 | 4.8 |
Cyanotic attack | 23 | 4.0 | 0 | 0.0 | 2 | 1.2 | 21 | 5.9 |
Patent ductus arteriosus | 11 | 1.9 | 8 | 14.0 | 3 | 1.8 | 0 | 0.0 |
Apnea requiring treatment | 8 | 1.4 | 6 | 10.5 | 2 | 1.2 | 0 | 0.0 |
Bronchopulmonary dysplasia | 4 | 0.7 | 4 | 7.0 | 0 | 0.0 | 0 | 0.0 |
Arrhythmia c | 4 | 0.7 | 0 | 0.0 | 0 | 0.0 | 4 | 1.1 |
Persistent pulmonary hypertension | 3 | 0.5 | 0 | 0.0 | 0 | 0.0 | 3 | 0.8 |
Pleural effusion | 3 | 0.5 | 0 | 0.0 | 2 | 1.2 | 1 | 0.3 |
Hospital acquired infection | ||||||||
All combined | 47 | 8.1 | 39 | 68.4 | 5 | 3.0 | 3 | 0.8 |
Diagnosis: | ||||||||
Suspected based on other parameters | 23 | 4.0 | 16 | 28.1 | 4 | 2.4 | 3 | 0.8 |
Culture confirmed | 16 | 2.8 | 16 | 28.1 | 0 | 0.0 | 0 | 0.0 |
Chest X-ray confirmed pneumonia | 8 | 1.4 | 7 | 12.3 | 1 | 0.6 | 0 | 0.0 |
Congenital infection | ||||||||
All combined | 42 | 7.2 | 5 | 8.8 | 12 | 7.2 | 25 | 7.1 |
High risk based on other parameters | 19 | 3.3 | 2 | 3.5 | 3 | 1.8 | 14 | 4.0 |
TORCH infection | 6 | 1.0 | 1 | 1.8 | 3 | 1.8 | 2 | 0.6 |
Maternal syphilis or HIV | 5 | 0.9 | 0 | 0.0 | 1 | 0.6 | 4 | 1.1 |
Prolonged ROM | 5 | 0.9 | 0 | 0.0 | 4 | 2.4 | 1 | 0.3 |
Culture confirmed or chest X-ray verified | 7 | 1.2 | 2 | 3.5 | 1 | 0.6 | 4 | 1.1 |
Intrapartum-related event | ||||||||
PPV requirement | 28 | 4.8 | 15 | 26.3 | 9 | 5.4 | 4 | 1.1 |
Hypoxic ischaemic encephalopathy | 7 | 1.2 | 4 | 7.0 | 2 | 1.2 | 1 | 0.3 |
Birth related trauma d | 4 | 0.7 | 0 | 0.0 | 1 | 0.6 | 3 | 0.8 |
Gastrointestinal | ||||||||
Discolored vomiting | 26 | 4.5 | 1 | 1.8 | 0 | 0.0 | 25 | 7.1 |
Other minor disturbance | 6 | 1.0 | 0 | 0.0 | 0 | 0.0 | 6 | 1.7 |
Necrotizing enterocolitis or obstruction | 5 | 0.9 | 1 | 1.8 | 1 | 0.6 | 3 | 0.8 |
Other | ||||||||
Jaundice | 184 | 31.7 | 36 | 63.2 | 64 | 38.3 | 83 | 23.5 |
Maternal diabetes mellitus | 78 | 13.4 | 0 | 0.0 | 13 | 7.8 | 65 | 18.4 |
Congenital anomaly e | 67 | 11.5 | 3 | 5.3 | 13 | 7.8 | 51 | 14.4 |
Other f | 30 | 5.2 | 2 | 3.5 | 8 | 4.8 | 20 | 5.7 |
Intraventricular hemorrhage | 3 | 0.5 | 3 | 5.3 | 0 | 0.0 | 0 | 0.0 |
All Neonates N = 581 | Birth Weight a <1500 g N = 57 | Birth Weight a 1500–2500 g N = 167 | Birth Weight a >2500 g N = 353 | |||||
---|---|---|---|---|---|---|---|---|
n/Median | %/IQR | n/Median | %/IQR | n/Median | %/IQR | n/Median | %/IQR | |
Antibiotics | ||||||||
All causes combined | 140 | 24.1 | 50 | 87.7 | 43 | 25.7 | 46 | 13.0 |
Indication: | ||||||||
Based on clinical risk factors | 91 | 15.7 | 22 | 38.6 | 37 | 22.2 | 31 | 8.8 |
Based on blood tests b and radiology | 31 | 5.3 | 11 | 19.3 | 6 | 3.6 | 14 | 4.0 |
Culture-confirmed | 17 | 2.9 | 16 | 28.1 | 0 | 0.0 | 1 | 0.3 |
Unknown | 1 | 0.2 | 1 | 1.8 | 0 | 0.0 | 0 | 0.0 |
Respiratory | ||||||||
Oxygen therapy | 134 | 23.1 | 41 | 71.9 | 55 | 32.9 | 37 | 10.5 |
CPAP | 58 | 10.0 | 33 | 57.9 | 18 | 10.8 | 6 | 1.7 |
Mechanical ventilation | 46 | 7.9 | 18 | 31.6 | 10 | 6.0 | 17 | 4.8 |
Oscillatory ventilation c | 9 | 1.5 | 6 | 10.5 | 1 | 0.6 | 2 | 0.6 |
Duration of ventilation (days) | 4 | 2–9 | 9 | 7–14 | 4 | 2–4 | 2 | 1-2 |
Caffeine administration | 68 | 11.7 | 44 | 77.2 | 22 | 13.2 | 0 | 0.0 |
Surfactant administration | 31 | 5.3 | 17 | 29.8 | 11 | 6.6 | 2 | 0.6 |
Fluids, electrolytes, and nutrition | ||||||||
Feeding tube | 313 | 53.9 | 48 | 84.2 | 52 | 31.1 | 30 | 8.5 |
Glucose infusion | 82 | 14.1 | 8 | 14.0 | 34 | 20.4 | 40 | 11.3 |
Total parenteral nutrition | 58 | 10.0 | 44 | 77.2 | 11 | 6.6 | 2 | 0.6 |
Weight documented at discharge | 168 | 28.9 | 40 | 70.2 | 57 | 34.1 | 69 | 19.5 |
General | ||||||||
Analgesia administration | 16 | 2.8 | 3 | 5.3 | 6 | 3.6 | 7 | 2.0 |
Phototherapy | 180 | 31.0 | 40 | 70.2 | 59 | 35.3 | 81 | 22.9 |
Inotropic drugs administration | 12 | 2.1 | 7 | 12.3 | 1 | 0.6 | 4 | 1.1 |
Gastric lavage | 3 | 0.5 | 0 | 0.0 | 0 | 0.0 | 3 | 0.8 |
Otrivin administration | 1 | 0.2 | 0 | 0.0 | 0 | 0.0 | 1 | 0.3 |
All Neonates N = 581 | Birth Weight a <1500 g N = 57 | Birth Weight a 1500–2500 g N = 167 | Birth Weight a >2500 g N = 353 | |||||
---|---|---|---|---|---|---|---|---|
n/Median | %/IQR | n/Median | %/IQR | n/Median | %/IQR | n/Median | %/IQR | |
First admission | ||||||||
Number of neonates | 581 | 100.0 | 57 | 100.0 | 167 | 100.0 | 353 | 100.0 |
Duration <1 day | 310 | 53.4 | 4 | 7.0 | 76 | 45.8 | 230 | 65.0 |
If >1 day, total duration (days) b | 6 | 3–13 | 35 | 21–45 | 7 | 5–11 | 3 | 2–5 |
Readmission | ||||||||
Number of neonates | 40 | 6.9 | 1 | 1.8 | 19 | 11.4 | 20 | 5.6 |
Number of readmissions | 42 c | - | 1 | - | 21 | - | 20 | - |
Duration <1 day | 7 | 17.5 | 0 | 0.0 | 4 | 15.8 | 4 | 20.0 |
If >1 day, total duration (days) | 4 | 3–4 | 3 | 3–3 | 3 | 3–4 | 3 | 2–4 |
Phototherapy | 36 | 90.0 | 1 | 100.0 | 18 | 94.7 | 17 | 85.0 |
Antibiotic therapy | 3 | 7.5 | 0 | 0.0 | 2 | 10.5 | 1 | 5.0 |
Feeding tube | 2 | 5.0 | 0 | 0.0 | 2 | 10.5 | 0 | 0.0 |
Glucose infusion | 1 | 2.5 | 0 | 0.0 | 0 | 0.0 | 1 | 5.0 |
Oxygen therapy | 1 | 2.5 | 0 | 0.0 | 1 | 5.3 | 0 | 0.0 |
Quality of care parameters | ||||||||
Number of admissions | 623 | 100.0 | 58 | 100.0 | 187 | 100.0 | 374 | 100.0 |
Documentation of vital parameters d | 603 | 96.8 | 56 | 96.6 | 186 | 99.5 | 361 | 96.5 |
Initial hypothermia | 14 | 2.3 | 9 | 16.1 | 1 | 0.5 | 4 | 1.1 |
Improved to >36 °C within 2 h | 8 | 57.1 | 7 | 77.8 | 0 | 0.0 | 1 | 25.0 |
Documentation of blood glucose d | 358 | 57.5 | 47 | 81.0 | 133 | 71.1 | 178 | 47.6 |
Initial hypoglycemia | 41 | 11.5 | 7 | 14.9 | 18 | 13.5 | 16 | 9.0 |
Improved to >2.6 mmol/L within 30 min | 37 | 90.2 | 7 | 100.0 | 15 | 83.3 | 15 | 93.8 |
Final discharge location e | ||||||||
Home | 221 | 38.0 | 30 | 52.6 | 80 | 48.2 | 110 | 31.1 |
Postnatal ward Phu San | 267 | 46.0 | 3 | 5.3 | 69 | 41.6 | 195 | 55.1 |
VNCH | 49 | 8.4 | 11 | 19.3 | 12 | 7.2 | 26 | 7.3 |
Other hospital | 24 | 4.1 | 4 | 7.0 | 3 | 1.8 | 17 | 4.8 |
If discharged to VNCH/other hospital, | ||||||||
discharged within 24 h f | 39 | 53.4 | 0 | 0.0 | 4 | 26.7 | 35 | 81.4 |
Mortality | ||||||||
Deaths | 7 | 1.2 | 5 | 8.8 | 0 | 0.0 | 2 | 0.6 |
Timing (days of life) | 7 | 1–20 | 10 | 7–20 | - | - | 3 | 1–5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dempsey, T.; Nguyen, H.L.; Nguyen, H.T.; Bui, X.A.; Pham, P.T.T.; Nguyen, T.K.; Cavallin, F.; Trevisanuto, D.; Myrnerts Höök, S.; Pejovic, N.; et al. Incidence of Intrapartum-Related Events at the Largest Obstetric Hospital in Hanoi, Vietnam: A Retrospective Study. Children 2022, 9, 321. https://doi.org/10.3390/children9030321
Dempsey T, Nguyen HL, Nguyen HT, Bui XA, Pham PTT, Nguyen TK, Cavallin F, Trevisanuto D, Myrnerts Höök S, Pejovic N, et al. Incidence of Intrapartum-Related Events at the Largest Obstetric Hospital in Hanoi, Vietnam: A Retrospective Study. Children. 2022; 9(3):321. https://doi.org/10.3390/children9030321
Chicago/Turabian StyleDempsey, Tina, Huong Lien Nguyen, Huong Thu Nguyen, Xuan Anh Bui, Phuong Thi Thu Pham, Toan K. Nguyen, Francesco Cavallin, Daniele Trevisanuto, Susanna Myrnerts Höök, Nicolas Pejovic, and et al. 2022. "Incidence of Intrapartum-Related Events at the Largest Obstetric Hospital in Hanoi, Vietnam: A Retrospective Study" Children 9, no. 3: 321. https://doi.org/10.3390/children9030321
APA StyleDempsey, T., Nguyen, H. L., Nguyen, H. T., Bui, X. A., Pham, P. T. T., Nguyen, T. K., Cavallin, F., Trevisanuto, D., Myrnerts Höök, S., Pejovic, N., Blennow, M., Olson, L., Vu, H., Nguyen, A. D., & Alfvén, T. (2022). Incidence of Intrapartum-Related Events at the Largest Obstetric Hospital in Hanoi, Vietnam: A Retrospective Study. Children, 9(3), 321. https://doi.org/10.3390/children9030321