Improvement of Adolescent Idiopathic Scoliosis Primary Correction by Brace Design Optimization
Abstract
:1. Introduction
2. Patients and Methods
2.1. Inclusion and Exclusion Criteria
2.2. Brace Design and Modifications
- Depending on the curve localization, a high thoracic (shoulder) pad was added posteriorly (no anterior shoulder pads were placed in newer braces), in earlier braces it was often placed anteriorly or anteriorly and contralaterally posteriorly;
- The thoracic pressure point at the posterior rib hump was pronounced but was shifted from a lateral to a more posterolateral position;
- Thoracic space was increased anterolaterally at the convex side to allow more active correction here;
- The lumbar pressure point was shifted from a posterolateral to a more posterior position;
- All pressure pads were designed to be flatter;
- Closure was changed from posterior to anterior.
2.3. Brace Model Measurements
- The following parameters were measured in the 3D-software model of each brace (Figure 3a,b):
- Presence of an anterior shoulder pressure pad contralateral to the thoracic pad (ASP yes/no);
- Presence of a posterior high thoracic (shoulder) pressure pad contralateral to the thoracic pad (PHTP yes/no);
- Built-in thoracic space (TS—yes/no);
- Angle of the thoracic pressure point (TPA) in relation to the transversal body/brace axis (°);
- Angle of the lumbar pressure point (LPA) in relation to the transversal body/brace axis (°).
2.4. Radiographic Measurements
2.5. Clinical Data
2.6. Statistical Data Analysis
3. Results
3.1. Clinical and Radiographic Results
3.2. Brace Parameter Changes over Time
3.3. Results of Multivariate Analysis
3.3.1. Patient Parameters
3.3.2. Brace Parameters
3.3.3. Interaction of Patient and Brace Parameters
3.3.4. Interaction of Brace Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weinstein, S.L.; Dolan, L.A.; Wright, J.G.; Dobbs, M.B. Effects of bracing in adolescents with idiopathic scoliosis. N. Engl. J. Med. 2013, 369, 1512–1521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karol, L.A.; Virostek, D.; Felton, K.; Wheeler, L. Effect of Compliance Counseling on Brace Use and Success in Patients with Adolescent Idiopathic Scoliosis. J. Bone Jt. Surg. Am. 2016, 98, 9–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolan, L.A.; Donzelli, S.; Zaina, F.; Weinstein, S.L.; Negrini, S. Adolescent Idiopathic Scoliosis Bracing Success Is Influenced by Time in Brace Comparative Effectiveness Analysis of BrAIST and ISICO Cohorts. Spine 2020, 45, 1193–1199. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.M.; Hubbard, E.W.; Jo, C.H.; Virostek, D.; Karol, L.A. Brace Success Is Related to Curve Type in Patients with Adolescent Idiopathic Scoliosis. J. Bone Jt. Surg. Am. 2017, 99, 923–928. [Google Scholar] [CrossRef]
- Li, Z.; Li, G.; Chen, C.; Li, Y.; Yang, C.; Li, M.; Xu, W.; Zhu, X. The radiographic parameter risk factors of rapid curve progression in Lenke 5 and 6 adolescent idiopathic scoliosis: A retrospective study. Medicine 2017, 96, e9425. [Google Scholar] [CrossRef]
- Yamane, K.; Takigawa, T.; Tanaka, M.; Sugimoto, Y.; Arataki, S.; Ozaki, T. Impact of Rotation Correction after Brace Treatment on Prognosis in Adolescent Idiopathic Scoliosis. Asian Spine J. 2016, 10, 893–900. [Google Scholar] [CrossRef] [Green Version]
- Strube, P.; Gunold, M.; Muller, T.; Leimert, M.; Sachse, A.; Pumberger, M.; Putzier, M.; Zippelius, T. Influence of curve morphology and location on the efficacy of rigid conservative treatment in patients with adolescent idiopathic scoliosis. Bone Jt. J. 2021, 103-B, 373–381. [Google Scholar] [CrossRef]
- Aulisa, A.G.; Galli, M.; Giordano, M.; Falciglia, F.; Careri, S.; Toniolo, R.M. Initial In-Brace Correction: Can the Evaluation of Cobb Angle Be the Only Parameter Predictive of the Outcome of Brace Treatment in Patients with Adolescent Idiopathic Scoliosis? Children 2022, 9, 338. [Google Scholar] [CrossRef]
- Negrini, S.; Aulisa, A.G.; Cerny, P.; de Mauroy, J.C.; McAviney, J.; Mills, A.; Donzelli, S.; Grivas, T.B.; Hresko, M.T.; Kotwicki, T.; et al. The classification of scoliosis braces developed by SOSORT with SRS, ISPO, and POSNA and approved by ESPRM. Eur. Spine J. 2022, 31, 980–989. [Google Scholar] [CrossRef]
- Zaina, F.; De Mauroy, J.C.; Grivas, T.; Hresko, M.T.; Kotwizki, T.; Maruyama, T.; Price, N.; Rigo, M.; Stikeleather, L.; Wynne, J.; et al. Bracing for scoliosis in 2014: State of the art. Eur. J. Phys. Rehabil. Med. 2014, 50, 93–110. [Google Scholar]
- Negrini, S.; Hresko, T.M.; O’Brien, J.P.; Price, N.; SOSORT Boards; SRS Non-Operative Committee. Recommendations for research studies on treatment of idiopathic scoliosis: Consensus 2014 between SOSORT and SRS non-operative management committee. Scoliosis 2015, 10, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hacquebord, J.H.; Leopold, S.S. In brief: The Risser classification: A classic tool for the clinician treating adolescent idiopathic scoliosis. Clin. Orthop. Relat. Res. 2012, 470, 2335–2338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nash, C.L., Jr.; Moe, J.H. A study of vertebral rotation. Bone Jt. J. 1969, 51, 223–229. [Google Scholar] [CrossRef] [Green Version]
- Gepstein, R.; Leitner, Y.; Zohar, E.; Angel, I.; Shabat, S.; Pekarsky, I.; Friesem, T.; Folman, Y.; Katz, A.; Fredman, B. Effectiveness of the Charleston bending brace in the treatment of single-curve idiopathic scoliosis. J. Pediatr. Orthop. 2002, 22, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Landauer, F.; Wimmer, C.; Behensky, H. Estimating the final outcome of brace treatment for idiopathic thoracic scoliosis at 6-month follow-up. Pediatr. Rehabil. 2003, 6, 201–207. [Google Scholar] [CrossRef]
- Xu, L.; Qin, X.; Qiu, Y.; Zhu, Z. Initial Correction Rate Can be Predictive of the Outcome of Brace Treatment in Patients with Adolescent Idiopathic Scoliosis. Clin. Spine Surg. 2017, 30, E475–E479. [Google Scholar] [CrossRef]
- Weiss, H.R. “Brace technology” thematic series—The Gensingen brace in the treatment of scoliosis. Scoliosis 2010, 5, 22. [Google Scholar] [CrossRef] [Green Version]
- Lang, C.; Huang, Z.; Sui, W.; Di, M.; He, S.; Fan, H.; Deng, Y.; Yang, J. Factors That Influence In-Brace Correction in Patients with Adolescent Idiopathic Scoliosis. World Neurosurg. 2019, 123, e597–e603. [Google Scholar] [CrossRef]
- Karam, J.A.; Eid, R.; Kreichati, G.; Abiad, R.; Kharrat, K.; Ghanem, I.B. Optimizing the vertical position of the brace thoracic pad: Apical rib or apical vertebra? Orthop. Traumatol. Surg. Res. 2019, 105, 727–731. [Google Scholar] [CrossRef]
- Guy, A.; Coulombe, M.; Labelle, H.; Rigo, M.; Wong, M.S.; Beygi, B.H.; Wynne, J.; Timothy Hresko, M.; Ebermeyer, E.; Vedreine, P.; et al. Biomechanical Effects of Thoracolumbosacral Orthosis Design Features on 3D Correction in Adolescent Idiopathic Scoliosis: A Comprehensive Multicenter Study. Spine 2022. (online ahead of print). [Google Scholar] [CrossRef]
- Boyer, L.; Shen, J.; Parent, S.; Kadoury, S.; Aubin, C.E. Accuracy and Precision of Seven Radiography-Based Measurement Methods of Vertebral Axial Rotation in Adolescent Idiopathic Scoliosis. Spine Deform. 2018, 6, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Horne, J.P.; Flannery, R.; Usman, S. Adolescent idiopathic scoliosis: Diagnosis and Management. Am. Fam. Physician 2014, 89, 193–198. [Google Scholar] [PubMed]
- Karol, L.A.; Virostek, D.; Felton, K.; Jo, C.H.; Butler, L. The Effect of the Risser Stage on Bracing Outcome in Adolescent Idiopathic Scoliosis. J. Bone Jt. Surg. Am. 2016, 98, 1253–1259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | All Patients n = 74 | Early Group n = 33 | Recent Group n = 41 | p-Value | |
---|---|---|---|---|---|
mean age (min-max) | 14.2 (10–17) | 14.1 (10–16) | 14.3 (10–17) | 0.708 * | |
sex (f/m) | 63/11 | 28/5 | 35/6 | 1.000 # | |
single/double curves | 54/20 | 24/9 | 30/11 | 1.000 # | |
conservative treatment failure rate | 20.3% | 27.3% | 14.6% | 0.246 # | |
apex of the curve (T/L/TL) | 26/39/9 | 11/19/3 | 15/20/6 | 0.680 # | |
Mean Cobb1 (95% CI) (°) | before treatment | 30.4 (27.7–32.1) | 30.5 (27.9–30) | 30.3 (28.1–32.6) | 0.939 * |
in-brace | 19.9 (17.9–21.9) | 21.2 (17.8–24.5) | 18.8 (16.3–21.4) | 0.246 * | |
Mean DeltaCobb1 (95% CI) (°) | 10.5 (8.9–12.1) | 9.3 (6.6–12) | 11.5 (9.6–13.5) | 0.162 * | |
Mean CrCobb1 (%) | 35.3 (30–40.6) | 31.1 (22.5–39.6) | 38.7 (32–45.4) | 0.152 * | |
Mean Cobb2 (95% CI) (°) † | before treatment | 30.3 (27.2–33.3) | 29.2 (23.4–35.1) | 31.1 (27.2–35) | 0.273 * |
in-brace | 23.4 (20.1–26.8) | 25.8 (19.6–32) | 21.5 (17.5–25.5) | 0.093 * | |
Mean DeltaCobb2 (95% CI) (°) † | 6.8 (3.8–9.8) | 3.5 (−1.1–8) | 9.6 (5.8–13.3) | 0.028 * | |
Mean CrCobb2 (%) † | 21.6 (12–31.1) | 10.7 (−5.7–27.1) | 30.5 (20.2–40.8) | 0.026 * | |
Mean NaM1 (95% CI) | before treatment | 0.28 (0.26–0.29) | 0.28 (0.25–0.3) | 0.29 (0.26–0.29) | 0.798 * |
in-brace | 0.26 (0.24–0.27) | 0.25 (0.23–0.28) | 0.26 (0.24–0.28) | 0.633 * | |
Mean DeltaNaM1 (95% CI) | 0.02 (0.01–0.03) | 0.02 (0.01–0.04) | 0.02 (0.01–0.03) | 0.774 * | |
Mean CrNaM1 (%) | 6.6 (3.2–10.1) | 7.2 (2–12.3) | 6.2 (1.3–11.1) | 0.787 * | |
Mean NaM2 (95% CI) † | before treatment | 0.26 (0.24–0.28) | 0.26 (0.22–0.29) | 0.27 (0.23–0.3) | 0.654 * |
in-brace | 0.25 (0.21–0.28) | 0.25 (0.21–0.29) | 0.24 (0.19–0.3) | 0.803 * | |
Mean DeltaNaM2 (95% CI) † | 0.02 (0.01–0.04) | 0.01 (−0.01–0.02) | 0.03 (−0.02–0.07) | 0.399 * | |
Mean CrNaM2 (%) † | 6.9 (−1.7–15.4) | 3.1 (−4.5–10.7) | 9.9 (−5.6–25.4) | 0.392 * |
Parameter | Early Group (n = 33) | Recent Group (n = 41) | p-Value * | |
---|---|---|---|---|
ASP | no | 13 | 40 | |
yes | 20 | 1 | <0.001 | |
PHTP | no | 9 | 0 | |
yes | 24 | 41 | <0.001 | |
TS | no | 21 | 6 | |
yes | 12 | 35 | <0.001 |
Parameter | DeltaCobb1 | CrCobb1 | Effect on (Major) Curve Angle | DeltaNaM1 | CrNaM1 | Effect on (Major) Curve Rotation |
---|---|---|---|---|---|---|
Age | 0.008 | 0.012 | yes | 0.582 | 0.309 | no |
Apex localization (APL) | 0.133 | 0.010 | yes | 0.003 | 0.005 | yes |
Anterior shoulder pad (ASP) | 0.456 | 0.187 | no | 0.007 | 0.005 | yes |
Posterior high-thoracic pad (PHTP) | 0.094 | 0.160 | no | 0.904 | 0.983 | no |
Thoracic Space (TS) | 0.868 | 0.321 | no | 0.169 | 0.214 | no |
Angle of the thoracic pressure point (TPA) | 0.020 | 0.102 | yes | 0.037 | 0.016 | yes |
Angle of the lumbar pressure point (LPA) | 0.032 | 0.006 | yes | 0.627 | 0.367 | no |
APL*ASP | 0.220 | 0.160 | no | 0.019 | 0.017 | yes |
APL*PHTP | 0.005 | <0.001 | yes | 0.077 | 0.045 | yes |
APL*TS | 0.004 | 0.002 | yes | 0.034 | 0.010 | yes |
ASP*TS | 0.004 | 0.001 | yes | 0.064 | 0.024 | yes |
ASP*PHTP | 0.003 | <0.001 | yes | 0.005 | 0.001 | yes |
TS*PHTP | 0.991 | 0.850 | no | 0.537 | 0.527 | no |
Apex Location | ASP(+) | ASP(−) | PHTP(+) | PHTP(−) | TS(+) | TS(−) | |
---|---|---|---|---|---|---|---|
T | Mean DeltaCobb1 (SD) | n.s. | n.s. | 10.6 (7.4) ° | 0.1 (4.9) ° | 10 (6.9) ° | 10.3 (10) ° |
Mean CrCobb1 (SD) | n.s. | n.s. | 31.8 (21.1) % | 0.7 (21.7) % | 29.3 (17.6) % | 33 (32.6) % | |
Mean DeltaNaM1 (SD) | 0.026 (0.042) | 0.007 (0.041) | n.s. | n.s. | 0.017 (0.039) | 0.011 (0.050) | |
Mean CrNaM1 (SD) | 8.9 (13.8) % | 1.6 (15.2) % | 5.1 (14.4) % | −5.7 (27.3) % | 4.9 (14.3) % | 3.7 (17.3) % | |
L | Mean DeltaCobb1 (SD) | n.s. | n.s. | 9.9 (6.5) ° | 11 (3.3) ° | 9.4 (6.3) ° | 11 (5.5) ° |
Mean CrCobb1 (SD) | n.s. | n.s. | 35 (23.6) % | 43.4 (20) % | 32.1 (21.1) % | 42.6 (24.2) % | |
Mean DeltaNaM1 (SD) | 0.010 (0.050) | 0.021 (0.041) | n.s. | n.s. | 0.019 (0.048) | 0.020 (0.036) | |
Mean CrNaM1 (SD) | 2.3 (16.9) % | 7.6 (15.2) % | 6.3 (16.7) % | 8.7 (10) % | 5.9 (16.7) % | 7.8 (14) % | |
TL | Mean DeltaCobb1 (SD) | n.s. | n.s. | 14.3 (6.1) ° | 9.2 (n.a.) ° | 17.4 (4.8) ° | 10.8 (5.3) ° |
Mean CrCobb1 (SD) | n.s. | n.s. | 54.1 (18.3) % | 40.7 (n.a.) % | 63.4 (8) % | 44 (19.3) % | |
Mean DeltaNaM1 (SD) | 0.110 (n.a.) | 0.043 (0.042) | n.s. | n.s. | 0.067 (0.038) | 0.036 (0.049) | |
Mean CrNaM1 (SD) | 28.2 (n.a.) % | 13.2 (12) % | 15.8 (12.7) % | 7.1 (n.a.) % | 21.8 (7.8) % | 9.4 (13) % |
ASP | TS(+) | TS(−) | PHTP(+) | PHTP(−) | |
---|---|---|---|---|---|
yes | Mean DeltaCobb1 (SD) | 9.9 (8.3) ° | 9 (8.7) ° | 9.6 (8.6) ° | 8.2 (6.6) ° |
Mean CrCobb1 (SD) | 29.7 (19.3) % | 31.7 (27.8) % | 29.7 (23.1) % | 40.9 (35.1) % | |
Mean DeltaNaM1 (SD) | n.s. | n.s. | 0.024 (0.046) | 0.055 (0.035) | |
Mean CrNaM1 (SD) | 10.1 (12) % | 7.2 (17) % | 7.4 (14.8) % | 19.3 (8) % | |
no | Mean DeltaCobb1 (SD) | 10.6 (6.4) ° | 11.8 (5.9) ° | 11.4 (6.3) ° | 8.4 (6) ° |
Mean CrCobb1 (SD) | 33.9 (20.6) % | 44.5 (25) % | 38 (22) % | 31.5 (25.4) % | |
Mean DeltaNaM1 (SD) | n.s. | n.s. | 0.020 (0.043) | 0.004 (0.032) | |
Mean CrNaM1 (SD) | 5.7 (15.9) % | 6.2 (13.5) % | 6.5 (15.4) % | 1.3 (12.9) % |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strube, P.; Lindemann, C.; Bahrke, M.; Brodt, S.; Sachse, A.; Reich, L.I.; Hoelzl, A.; Zippelius, T.K. Improvement of Adolescent Idiopathic Scoliosis Primary Correction by Brace Design Optimization. Children 2022, 9, 656. https://doi.org/10.3390/children9050656
Strube P, Lindemann C, Bahrke M, Brodt S, Sachse A, Reich LI, Hoelzl A, Zippelius TK. Improvement of Adolescent Idiopathic Scoliosis Primary Correction by Brace Design Optimization. Children. 2022; 9(5):656. https://doi.org/10.3390/children9050656
Chicago/Turabian StyleStrube, Patrick, Chris Lindemann, Max Bahrke, Steffen Brodt, André Sachse, Lya I. Reich, Alexander Hoelzl, and Timo K. Zippelius. 2022. "Improvement of Adolescent Idiopathic Scoliosis Primary Correction by Brace Design Optimization" Children 9, no. 5: 656. https://doi.org/10.3390/children9050656
APA StyleStrube, P., Lindemann, C., Bahrke, M., Brodt, S., Sachse, A., Reich, L. I., Hoelzl, A., & Zippelius, T. K. (2022). Improvement of Adolescent Idiopathic Scoliosis Primary Correction by Brace Design Optimization. Children, 9(5), 656. https://doi.org/10.3390/children9050656