Difference in Hair Cortisol Concentrations between Obese and Non-Obese Children and Adolescents: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Search Strategy
3. Results
3.1. Study Selection
3.2. Basic Characteristics of the Included Studies
3.3. Hair Cortisol Concentrations
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Obesity and Overweight. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 22 February 2022).
- Rankin, J.; Matthews, L.; Cobley, S.; Han, A.; Sanders, R.; Wiltshire, H.D.; Baker, J.S. Psychological Consequences of Childhood Obesity: Psychiatric Comorbidity and Prevention. Adolesc. Health Med. Ther. 2016, 7, 125–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, V.; Coleman, S.; Nixon, J.; Sharples, L.; Hamilton-Shield, J.; Rutter, H.; Bryant, M. A Systematic Review and Meta-analysis Estimating the Population Prevalence of Comorbidities in Children and Adolescents Aged 5 to 18 Years. Obes. Rev. 2019, 20, 1341–1349. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.S.; Mulder, C.; Twisk, J.W.R.; Van Mechelen, W.; Chinapaw, M.J.M. Tracking of Childhood Overweight into Adulthood: A Systematic Review of the Literature: Tracking of Childhood Overweight into Adulthood. Obes. Rev. 2008, 9, 474–488. [Google Scholar] [CrossRef] [PubMed]
- Sommer, A.; Twig, G. The Impact of Childhood and Adolescent Obesity on Cardiovascular Risk in Adulthood: A Systematic Review. Curr. Diab. Rep. 2018, 18, 91. [Google Scholar] [CrossRef]
- Llewellyn, A.; Simmonds, M.; Owen, C.G.; Woolacott, N. Childhood Obesity as a Predictor of Morbidity in Adulthood: A Systematic Review and Meta-Analysis: Childhood Obesity and Adult Morbidity. Obes. Rev. 2016, 17, 56–67. [Google Scholar] [CrossRef]
- Hewagalamulage, S.D.; Lee, T.K.; Clarke, I.J.; Henry, B.A. Stress, Cortisol, and Obesity: A Role for Cortisol Responsiveness in Identifying Individuals Prone to Obesity. Domest. Anim. Endocrinol. 2016, 56, S112–S120. [Google Scholar] [CrossRef]
- Charmandari, E.; Tsigos, C.; Chrousos, G. Endocrinology of the Stress Response. Annu. Rev. Physiol. 2005, 67, 259–284. [Google Scholar] [CrossRef]
- Stavrou, S.; Nicolaides, N.C.; Critselis, E.; Darviri, C.; Charmandari, E.; Chrousos, G.P. Paediatric Stress: From Neuroendocrinology to Contemporary Disorders. Eur. J. Clin. Investig. 2017, 47, 262–269. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.-J.; Pramyothin, P.; Karastergiou, K.; Fried, S.K. Deconstructing the Roles of Glucocorticoids in Adipose Tissue Biology and the Development of Central Obesity. Biochim. Biophys. Acta BBA Mol. Basis Dis. 2014, 1842, 473–481. [Google Scholar] [CrossRef] [Green Version]
- Peckett, A.J.; Wright, D.C.; Riddell, M.C. The Effects of Glucocorticoids on Adipose Tissue Lipid Metabolism. Metabolism 2011, 60, 1500–1510. [Google Scholar] [CrossRef]
- Reinehr, T.; Kulle, A.; Wolters, B.; Lass, N.; Welzel, M.; Riepe, F.; Holterhus, P.-M. Steroid Hormone Profiles in Prepubertal Obese Children Before and After Weight Loss. J. Clin. Endocrinol. Metab. 2013, 98, E1022–E1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, L.; Shen, K.; Liu, P.; Ye, K.; Wang, Y.; Li, C.; Kang, X.; Song, Y. Increased Cortisol and Cortisone Levels in Overweight Children. Med. Sci. Monit. Basic Res. 2017, 23, 25–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillman, J.B.; Dorn, L.D.; Loucks, T.L.; Berga, S.L. Obesity and the Hypothalamic-Pituitary-Adrenal Axis in Adolescent Girls. Metabolism 2012, 61, 341–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doom, J.R.; Lumeng, J.C.; Sturza, J.; Kaciroti, N.; Vazquez, D.M.; Miller, A.L. Longitudinal Associations between Overweight/Obesity and Stress Biology in Low-Income Children. Int. J. Obes. 2020, 44, 646–655. [Google Scholar] [CrossRef]
- Kokka, I.; Chrousos, G.P.; Darviri, C.; Bacopoulou, F. Measuring Adolescent Chronic Stress: A Review of Established Biomarkers and Psychometric Instruments. Horm. Res. Paediatr. 2022. [Google Scholar] [CrossRef]
- Wosu, A.C.; Valdimarsdóttir, U.; Shields, A.E.; Williams, D.R.; Williams, M.A. Correlates of Cortisol in Human Hair: Implications for Epidemiologic Studies on Health Effects of Chronic Stress. Ann. Epidemiol. 2013, 23, 797–811.e2. [Google Scholar] [CrossRef] [Green Version]
- Russell, E.; Koren, G.; Rieder, M.; Van Uum, S. Hair Cortisol as a Biological Marker of Chronic Stress: Current Status, Future Directions and Unanswered Questions. Psychoneuroendocrinology 2012, 37, 589–601. [Google Scholar] [CrossRef]
- World Health Organization. Adolescent Health. 2019. Available online: https://www.who.int/health-topics/adolescent-health#tab=tab_1 (accessed on 24 February 2022).
- Cole, T.J. Establishing a Standard Definition for Child Overweight and Obesity Worldwide: International Survey. BMJ 2000, 320, 1240. [Google Scholar] [CrossRef] [Green Version]
- Van der Voorn, B.; Hollanders, J.J.; Ket, J.C.F.; Rotteveel, J.; Finken, M.J.J. Gender-Specific Differences in Hypothalamus–Pituitary–Adrenal Axis Activity during Childhood: A Systematic Review and Meta-Analysis. Biol. Sex Differ. 2017, 8, 3. [Google Scholar] [CrossRef] [Green Version]
- Veldhorst, M.A.B.; Noppe, G.; Jongejan, M.H.T.M.; Kok, C.B.M.; Mekic, S.; Koper, J.W.; van Rossum, E.F.C.; van den Akker, E.L.T. Increased Scalp Hair Cortisol Concentrations in Obese Children. J. Clin. Endocrinol. Metab. 2014, 99, 285–290. [Google Scholar] [CrossRef] [Green Version]
- Papafotiou, C.; Christaki, E.; van den Akker, E.L.T.; Wester, V.L.; Apostolakou, F.; Papassotiriou, I.; Chrousos, G.P.; Pervanidou, P. Hair Cortisol Concentrations Exhibit a Positive Association with Salivary Cortisol Profiles and Are Increased in Obese Prepubertal Girls. Stress 2017, 20, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Noppe, G.; van den Akker, E.L.T.; de Rijke, Y.B.; Koper, J.W.; Jaddoe, V.W.; van Rossum, E.F.C. Long-Term Glucocorticoid Concentrations as a Risk Factor for Childhood Obesity and Adverse Body-Fat Distribution. Int. J. Obes. 2016, 40, 1503–1509. [Google Scholar] [CrossRef] [PubMed]
- Vehmeijer, F.O.L.; Santos, S.; Gaillard, R.; de Rijke, Y.B.; Voortman, T.; van den Akker, E.L.T.; Felix, J.F.; van Rossum, E.F.C.; Jaddoe, V.W.V. Associations of Hair Cortisol Concentrations with General and Organ Fat Measures in Childhood. J. Clin. Endocrinol. Metab. 2021, 106, e551–e561. [Google Scholar] [CrossRef]
- Distel, L.M.L.; Egbert, A.H.; Bohnert, A.M.; Santiago, C.D. Chronic Stress and Food Insecurity: Examining Key Environmental Family Factors Related to Body Mass Index Among Low-Income Mexican-Origin Youth. Fam. Community Health 2019, 42, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Genitsaridi, S.-M.; Karampatsou, S.; Papageorgiou, I.; Mantzou, A.; Papathanasiou, C.; Kassari, P.; Paltoglou, G.; Kourkouti, C.; Charmandari, E. Hair Cortisol Concentrations in Overweight and Obese Children and Adolescents. Horm. Res. Paediatr. 2019, 92, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Olstad, D.L.; Ball, K.; Wright, C.; Abbott, G.; Brown, E.; Turner, A.I. Hair Cortisol Levels, Perceived Stress and Body Mass Index in Women and Children Living in Socioeconomically Disadvantaged Neighborhoods: The READI Study. Stress 2016, 19, 158–167. [Google Scholar] [CrossRef]
- Bryson, H.E.; Mensah, F.; Goldfeld, S.; Price, A.M.H. Using Hair Cortisol to Examine the Role of Stress in Children’s Health Inequalities at 3 Years. Acad. Pediatrics 2020, 20, 193–202. [Google Scholar] [CrossRef]
- Ling, J.; Xu, D.; Robbins, L.B.; Kao, T.-S.A. Obesity and Hair Cortisol: Relationships Varied Between Low-Income Preschoolers and Mothers. Matern. Child Health J. 2020, 24, 1495–1504. [Google Scholar] [CrossRef]
- Kokka, I.; Mourikis, I.; Nicolaides, N.C.; Darviri, C.; Chrousos, G.P.; Kanaka-Gantenbein, C.; Bacopoulou, F. Exploring the Effects of Problematic Internet Use on Adolescent Sleep: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 760. [Google Scholar] [CrossRef]
- Oyola, M.G.; Handa, R.J. Hypothalamic–Pituitary–Adrenal and Hypothalamic–Pituitary–Gonadal Axes: Sex Differences in Regulation of Stress Responsivity. Stress 2017, 20, 476–494. [Google Scholar] [CrossRef]
- Hollanders, J.J.; van der Voorn, B.; Rotteveel, J.; Finken, M.J.J. Is HPA Axis Reactivity in Childhood Gender-Specific? A Systematic Review. Biol. Sex Differ. 2017, 8, 23. [Google Scholar] [CrossRef]
- Palmer, F.B.; Anand, K.J.S.; Graff, J.C.; Murphy, L.E.; Qu, Y.; Völgyi, E.; Rovnaghi, C.R.; Moore, A.; Tran, Q.T.; Tylavsky, F.A. Early Adversity, Socioemotional Development, and Stress in Urban 1-Year-Old Children. J. Pediatrics 2013, 163, 1733–1739.e1. [Google Scholar] [CrossRef] [PubMed]
- Dondi, A.; Piccinno, V.; Morigi, F.; Sureshkumar, S.; Gori, D.; Lanari, M. Food Insecurity and Major Diet-Related Morbidities in Migrating Children: A Systematic Review. Nutrients 2020, 12, 379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryson, H.E.; Price, A.M.; Goldfeld, S.; Mensah, F. Associations between Social Adversity and Young Children’s Hair Cortisol: A Systematic Review. Psychoneuroendocrinology 2021, 127, 105176. [Google Scholar] [CrossRef] [PubMed]
- Loussouarn, G. African Hair Growth Parameters. Br. J. Dermatol. 2001, 145, 294–297. [Google Scholar] [CrossRef]
- Greff, M.J.E.; Levine, J.M.; Abuzgaia, A.M.; Elzagallaai, A.A.; Rieder, M.J.; van Uum, S.H.M. Hair Cortisol Analysis: An Update on Methodological Considerations and Clinical Applications. Clin. Biochem. 2019, 63, 1–9. [Google Scholar] [CrossRef]
- Ling, J.; Kao, T.A.; Robbins, L.B. Body Mass Index, Waist Circumference and Body Fat Are Positively Correlated with Hair Cortisol in Children: A Systematic Review and Meta-analysis. Obes. Rev. 2020, 21, e1305. [Google Scholar] [CrossRef]
- Incollingo Rodriguez, A.C.; Epel, E.S.; White, M.L.; Standen, E.C.; Seckl, J.R.; Tomiyama, A.J. Hypothalamic-Pituitary-Adrenal Axis Dysregulation and Cortisol Activity in Obesity: A Systematic Review. Psychoneuroendocrinology 2015, 62, 301–318. [Google Scholar] [CrossRef] [Green Version]
- Tyson, N.; Frank, M. Childhood and Adolescent Obesity Definitions as Related to BMI, Evaluation and Management Options. Best Pract. Res. Clin. Obstet. Gynaecol. 2018, 48, 158–164. [Google Scholar] [CrossRef]
- Nicolaides, N.C.; Charmandari, E.; Kino, T.; Chrousos, G.P. Stress-Related and Circadian Secretion and Target Tissue Actions of Glucocorticoids: Impact on Health. Front. Endocrinol. 2017, 8, 70. [Google Scholar] [CrossRef]
- Yu, T.; Zhou, W.; Wu, S.; Liu, Q.; Li, X. Evidence for Disruption of Diurnal Salivary Cortisol Rhythm in Childhood Obesity: Relationships with Anthropometry, Puberty and Physical Activity. BMC Pediatrics 2020, 20, 381. [Google Scholar] [CrossRef] [PubMed]
- Kjölhede, E.A.; Gustafsson, P.; Gustafsson, P.; Nelson, N. Overweight and Obese Children Have Lower Cortisol Levels than Normal Weight Children. Acta Paediatr. 2014, 103, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Staufenbiel, S.M.; Penninx, B.W.J.H.; Spijker, A.T.; Elzinga, B.M.; van Rossum, E.F.C. Hair Cortisol, Stress Exposure, and Mental Health in Humans: A Systematic Review. Psychoneuroendocrinology 2013, 38, 1220–1235. [Google Scholar] [CrossRef] [PubMed]
- Russell, E.; Kirschbaum, C.; Laudenslager, M.L.; Stalder, T.; de Rijke, Y.; van Rossum, E.F.C.; Van Uum, S.; Koren, G. Toward Standardization of Hair Cortisol Measurement: Results of the First International Interlaboratory Round Robin. Ther. Drug Monit. 2015, 37, 71–75. [Google Scholar] [CrossRef]
- Slominski, R.; Rovnaghi, C.R.; Anand, K.J.S. Methodological Considerations for Hair Cortisol Measurements in Children. Ther. Drug Monit. 2015, 37, 812–820. [Google Scholar] [CrossRef] [Green Version]
- Handelsman, D.J.; Wartofsky, L. Requirement for Mass Spectrometry Sex Steroid Assays in the Journal of Clinical Endocrinology and Metabolism. J. Clin. Endocrinol. Metab. 2013, 98, 3971–3973. [Google Scholar] [CrossRef] [Green Version]
First Author, Publication Year, Country | Study Design | Sample Size (n) | Mean Age (SD), Sex Distribution | Sample Distribution Based on BMI, Mean BMI & SD (Where Applicable) | Obisity Criteria | Method of Assay | Main Results |
---|---|---|---|---|---|---|---|
Genitsaridi et al., 2019, Greece | cross-sectional | 300 | 10.49 (±0.15) Female n = 224 Male n = 76 | Normal weight n = 66, 20.40 ± 0.32 Overweight n = 94, 23.49 ± 0.20 Obese n = 140, 29.60 ± 0.42 | IOTF | ECLIA | HCC obese = 8.74 ± 0.43 pg/mg hair. HCC overweight = 8.88 ± 0.52 pg/mg hair. HCC normal weight = 9.33 ± 0.72 pg/mg hair (p = 0.733). HCC did not exhibit significant differences among children with different BMI status. |
Veldhorst et al., 2013, The Netherlands | cross-sectional | 40 | Obese: (10.8 ± 1.3) Normal weight: 10.8 (±1.2) Female n = 30 Male n = 10 | Normal weight n = 20, 16.4 ± 1.6 Obese n = 20, 29.6 ± 4.9 | IOTF | ELISA | HCC obese = 25 [17,21] pg/mg. HCC normal weight = 17 [13,22] pg/mg hair (p < 0.05). (Median [interquartile rage]). Children with obesity had higher HCC than normal weight children (p < 0.05). |
Olstad et al., 2016, Australia | cross-sectional | 30 | 14.3 (±3.9) Female n = 13 Male n = 17 | Normal weight n = 21, N/A Overweight n = 6, N/A Obese n = 3, N/A | IOTF | ELISA | HCC averaged = 96.6 ng/g (SD 49.6 ng/g). Association between HCC and zBMI: β = 0.15 95% CI (−0.76, 1.06) (p = 0.739). No significant association was found between zBMI and HCC (p = 0.739). |
Papafotiou et al., 2017, Greece | cross-sectional | 50 | 7.6 (±1.3) Female n = 50 n = 25 non-obese n = 25 obese | Normal weight n = 25, 17.2 ± 1.8 Obese n = 25, 24.6 ± 3.4 | IOTF | LC-MS/MS | HCC obese = 4.1 ± 5 pg/mg hair. HCC normal weight = 1.2 ± 0.6 pg/mg hair (p < 0.0001). Prepubertal girls with obesity had increased HCC in comparison to normal weight prepubertal girls. |
Noppe et al., 2016, The Netherlands | cross-sectional | 2953 | 6.2 (±0.6) Female n = 1532 Male n = 1421 | Non-obese n = 2825 Obese n = 128 16.2 ± 1.9 (mean, sd BMI for the entire sample) | IOTF | LC-MS/MS | HCC obese = (OR’s): 9.4 (3.3–26.9) for highest cortisol quintile. HCC overweight = (OR’s: 1.39 (1.0–2.0) for highest cortisol quintile. The association between BMI and HCC was statistically significant (p < 0.0001). |
Bryson et al., 2019, Australia | cross-sectional | 297 | 3.1 (±0.1) Female n = 180 Male n = 117 | Underweight n = 14, N/A Normal weight = 198, N/A Overweight n = 49, N/A Obese n = 14, N/A | IOTF | ELISA | HCC mean = 8.5 (7.8) pg/mg. (SD) [range] = [1.1–45.5]. HCC obese/overweight = (β = 0.76, 95% CI, 0.51–1.12). The association among BMI z score of overweight/obese group was not statistically significant p = 0.16. |
Vehmeijer et al., 2021, The Netherlands | prospective cohort | 2037 | 5.9 (5.7, 8.0) Female n = 1072 Male n = 970 | Underweight Normal weight Overweight Obese | IOTF | LC-MS/MS | HCC median (95% range) = 7.30 (2.64, 29.03) pg/mg. HCC and association with BMI at age 10 = (β = 0.10, 95% CI, 0.04, 0.16) SDS. The association between HCC and BMI was statistically significant p < 0.017. |
Distel et al., 2019, USA | longitudinal | 52 | 8.36 (SD: n/a) Female n = 61% Male n = 39% | Νormal weight = 44.6%, N/A Overweight = 25%, N/A Obese = 29.3% N/A | NA | ELISA | HCC = 0.53–369.60 pg/mg (SD= 63.44). HCC levels were higher among groups with higher BMI (r = 0.33, p = 0.02). |
Ling et al., 2020, USA | cross-sectional | 35 | 4.69 (±0.78) Female n = 17 Male n = 18 | Underweight n = 1 Normal weight n = 22 Overweight n = 5 Obese n = 7, (mean, sd BMI for the entire sample) 16.62 ± 1.65 | CDC | ELISA | HCC range = 0.5–157.2. HCC was positively associated with BMI z score of preschoolers (β = 0.01, CI 95% −0.002, 0.02), but not statistically significant p = 0.112. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kitani, R.A.; Letsou, K.; Kokka, I.; Kanaka-Gantenbein, C.; Bacopoulou, F. Difference in Hair Cortisol Concentrations between Obese and Non-Obese Children and Adolescents: A Systematic Review. Children 2022, 9, 715. https://doi.org/10.3390/children9050715
Kitani RA, Letsou K, Kokka I, Kanaka-Gantenbein C, Bacopoulou F. Difference in Hair Cortisol Concentrations between Obese and Non-Obese Children and Adolescents: A Systematic Review. Children. 2022; 9(5):715. https://doi.org/10.3390/children9050715
Chicago/Turabian StyleKitani, Rosa Anna, Konstantina Letsou, Ioulia Kokka, Christina Kanaka-Gantenbein, and Flora Bacopoulou. 2022. "Difference in Hair Cortisol Concentrations between Obese and Non-Obese Children and Adolescents: A Systematic Review" Children 9, no. 5: 715. https://doi.org/10.3390/children9050715
APA StyleKitani, R. A., Letsou, K., Kokka, I., Kanaka-Gantenbein, C., & Bacopoulou, F. (2022). Difference in Hair Cortisol Concentrations between Obese and Non-Obese Children and Adolescents: A Systematic Review. Children, 9(5), 715. https://doi.org/10.3390/children9050715