Sleep and Executive Functioning in Pediatric Traumatic Brain Injury Survivors after Critical Care
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Procedures
2.2. Demographic and Clinical Variables
2.3. Sleep Disturbance
2.4. Cognitive Assessments
2.5. Data Analyses
3. Results
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Williams, C.N.; Kirby, A.; Piantino, J. If You Build It, They Will Come: Initial Experience with a Multi-Disciplinary Pediatric Neurocritical Care Follow-up Clinic. Children 2017, 4, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, C.N.; Piantino, J.; McEvoy, C.; Fino, N.; Eriksson, C.O. The Burden of Pediatric Neurocritical Care in the United States. Pediatr. Neurol. 2018, 89, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Faul, M.; Xu, L.; Wald, M.M.; Coronado, V.G. Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitalizations and Deaths 2002–2006. Atlanta (GA): Centers for Disease Control and Prevention, National Center for Injury Prevention and Control. Available online: https://www.cdc.gov/traumaticbraininjury (accessed on 5 October 2017).
- Williams, C.N.; Lim, M.M.; Shea, S.A. Sleep disturbance after pediatric traumatic brain injury: Critical knowledge gaps remain for the critically injured. Nat. Sci. Sleep 2018, 10, 225–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, C.N.; Hartman, M.E.; McEvoy, C.T.; Hall, T.A.; Lim, M.M.; Shea, S.A.; Luther, M.; Guilliams, K.P.; Guerriero, R.M.; Bosworth, C.C.; et al. Sleep-Wake Disturbances after Acquired Brain Injury in Children Surviving Critical Care. Pediatr. Neurol. 2020, 103, 43–51. [Google Scholar] [CrossRef]
- Volk, C.; Huber, R. Sleep to grow smart? Arch. Ital. Biol. 2015, 153, 99–109. [Google Scholar]
- Ringli, M.; Huber, R. Developmental aspects of sleep slow waves: Linking sleep, brain maturation and behavior. Prog. Brain Res. 2011, 193, 63–82. [Google Scholar]
- Jan, J.E.; Reiter, R.J.; Bax, M.C.; Ribary, U.; Freeman, R.D.; Wasdell, M.B. Long-term sleep disturbances in children: A cause of neuronal loss. Eur. J. Paediatr. Neurol. 2010, 14, 380–390. [Google Scholar] [CrossRef]
- Tononi, G.; Cirelli, C. Sleep and the price of plasticity: From synaptic and cellular homeostasis to memory consolidation and integration. Neuron 2014, 81, 12–34. [Google Scholar] [CrossRef] [Green Version]
- Kocevska, D.; Muetzel, R.L.; Luik, A.I.; Luijk, M.P.; Jaddoe, V.W.; Verhulst, F.C.; White, T.; Tiemeier, H. The Developmental Course of Sleep Disturbances Across Childhood Relates to Brain Morphology at Age 7: The Generation R Study. Sleep 2017, 40, zsw022. [Google Scholar]
- Kocevska, D.; Verhoeff, M.E.; Meinderts, S.; Jaddoe, V.W.V.; Verhulst, F.C.; Roza, S.J.; Luijk, M.P.; Tiemeier, H. Prenatal and early postnatal measures of brain development and childhood sleep patterns. Pediatr. Res. 2018, 83, 760–766. [Google Scholar] [CrossRef]
- Luther, M.; Poppert Cordts, K.M.; Williams, C.N. Sleep disturbances after pediatric traumatic brain injury: A systematic review of prevalence, risk factors, and association with recovery. Sleep 2020, 43, zsaa083. [Google Scholar] [CrossRef] [PubMed]
- Archbold, K.H.; Pituch, K.J.; Panahi, P.; Chervin, R.D. Symptoms of sleep disturbances among children at two general pediatric clinics. J. Pediatr. 2002, 140, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Sandsmark, D.K.; Elliott, J.E.; Lim, M.M. Sleep-Wake Disturbances after Traumatic Brain Injury: Synthesis of Human and Animal Studies. Sleep 2017, 40, zsx044. [Google Scholar] [CrossRef] [Green Version]
- Tham, S.W.; Palermo, T.M.; Vavilala, M.S.; Wang, J.; Jaffe, K.M.; Koepsell, T.D.; Dorsch, A.; Temkin, N.; Durbin, D.; Rivara, F.P. The longitudinal course, risk factors, and impact of sleep disturbances in children with traumatic brain injury. J. Neurotrauma 2012, 29, 154–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmood, O.; Rapport, L.J.; Hanks, R.A.; Fichtenberg, N.L. Neuropsychological performance and sleep disturbance following traumatic brain injury. J. Head Trauma Rehabil. 2004, 19, 378–390. [Google Scholar] [CrossRef] [PubMed]
- Shay, N.; Yeates, K.O.; Walz, N.C.; Stancin, T.; Taylor, H.G.; Beebe, D.W.; Caldwell, C.T.; Krivitzky, L.; Cassedy, A.; Wade, S.L. Sleep problems and their relationship to cognitive and behavioral outcomes in young children with traumatic brain injury. J. Neurotrauma 2014, 31, 1305–1312. [Google Scholar] [CrossRef]
- Owens, J.A. Neurocognitive and behavioral impact of sleep disordered breathing in children. Pediatr. Pulmonol. 2009, 44, 417–422. [Google Scholar] [CrossRef]
- Gozal, D.; Kheirandish-Gozal, L. Neurocognitive and behavioral morbidity in children with sleep disorders. Curr. Opin. Pulm. Med. 2007, 13, 505–509. [Google Scholar] [CrossRef]
- Treble-Barna, A.; Zang, H.; Zhang, N.; Taylor, H.G.; Yeates, K.O.; Wade, S. Long-Term Neuropsychological Profiles and Their Role as Mediators of Adaptive Functioning after Traumatic Brain Injury in Early Childhood. J. Neurotrauma 2017, 34, 353–362. [Google Scholar] [CrossRef] [Green Version]
- Lambregts, S.A.M.; Smetsers, J.E.M.; Verhoeven, I.; de Kloet, A.J.; van de Port, I.G.L.; Ribbers, G.M.; Catsman-Berrevoets, C.E. Cognitive function and participation in children and youth with mild traumatic brain injury two years after injury. Brain Inj. 2018, 32, 230–241. [Google Scholar] [CrossRef]
- Arnett, A.B.; Peterson, R.L.; Kirkwood, M.W.; Taylor, H.G.; Stancin, T.; Brown, T.M.; Wade, S.L. Behavioral and cognitive predictors of educational outcomes in pediatric traumatic brain injury. J. Int. Neuropsychol. Soc. 2013, 19, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Max, J.E.; Wilde, E.A.; Bigler, E.D.; Hanten, G.; Dennis, M.; Schachar, R.J.; Saunders, A.E.; Ewing-Cobbs, L.; Chapman, S.B.; Thompson, W.K.; et al. Personality Change Due to Traumatic Brain Injury in Children and Adolescents: Neurocognitive Correlates. J. Neuropsychiatry Clin. Neurosci. 2015, 27, 272–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganesalingam, K.; Sanson, A.; Anderson, V.; Yeates, K.O. Self-regulation as a mediator of the effects of childhood traumatic brain injury on social and behavioral functioning. J. Int. Neuropsychol. Soc. 2007, 13, 298–311. [Google Scholar] [CrossRef] [PubMed]
- Fischer, J.T.; Hannay, H.J.; Alfano, C.A.; Swank, P.R.; Ewing-Cobbs, L. Sleep disturbances and internalizing behavior problems following pediatric traumatic injury. Neuropsychology 2018, 32, 161–175. [Google Scholar] [CrossRef]
- Treble-Barna, A.; Schultz, H.; Minich, N.; Taylor, H.G.; Yeates, K.O.; Stancin, T.; Wade, S.L. Long-term classroom functioning and its association with neuropsychological and academic performance following traumatic brain injury during early childhood. Neuropsychology 2017, 31, 486–498. [Google Scholar] [CrossRef]
- Beauchamp, M.; Catroppa, C.; Godfrey, C.; Morse, S.; Rosenfeld, J.V.; Anderson, V. Selective changes in executive functioning ten years after severe childhood traumatic brain injury. Dev. Neuropsychol. 2011, 36, 578–595. [Google Scholar] [CrossRef]
- Gorman, S.; Barnes, M.A.; Swank, P.R.; Prasad, M.; Ewing-Cobbs, L. The effects of pediatric traumatic brain injury on verbal and visual-spatial working memory. J. Int. Neuropsychol. Soc. 2012, 18, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Keenan, H.T.; Clark, A.E.; Holubkov, R.; Cox, C.S.; Ewing-Cobbs, L. Psychosocial and Executive Function Recovery Trajectories One Year after Pediatric Traumatic Brain Injury: The Influence of Age and Injury Severity. J. Neurotrauma 2018, 35, 286–296. [Google Scholar] [CrossRef]
- Halbower, A.C.; Degaonkar, M.; Barker, P.B.; Earley, C.J.; Marcus, C.L.; Smith, P.L.; Prahme, M.C.; Mahone, E.M. Childhood obstructive sleep apnea associates with neuropsychological deficits and neuronal brain injury. PLoS Med. 2006, 3, e301. [Google Scholar] [CrossRef] [Green Version]
- Hall, T.A.; Leonard, S.; Bradbury, K.; Holding, E.; Lee, J.; Wagner, A.; Duvall, S.; Williams, C.N. Post-intensive care syndrome in a cohort of infants & young children receiving integrated care via a pediatric critical care & neurotrauma recovery program: A pilot investigation. Clin. Neuropsychol. 2022, 36, 639–663. [Google Scholar]
- Hall, T.A.; Leonard, S.; Bradbury, K.; Dury, K.; Recht, G.; Randall, J.; Noor, M.; Williams, C.N. Post-intensive care syndrome in a cohort of school-aged children and adolescent ICU survivors: The importance of follow-up in the acute recovery phase. J. Pediatric Intensive Care 2022, in press. [Google Scholar]
- Reilly, P.L.; Simpson, D.A.; Sprod, R.; Thomas, L. Assessing the conscious level in infants and young children: A paediatric version of the Glasgow Coma Scale. Childs Nerv. Syst. 1988, 4, 30–33. [Google Scholar] [PubMed]
- Baker, S.P.; O’Neill, B.; Haddon, W., Jr.; Long, W.B. The injury severity score: A method for describing patients with multiple injuries and evaluating emergency care. J. Trauma 1974, 14, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Committee on Medical Aspects of Automotive Safety—JAMA. Rating the severity of tissue damage. I. The abbreviated scale. JAMA 1971, 215, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Association for the Advancement of Automotive Medicine. Abbreviated Injury Severity (AIS) Scales 2015. Available online: https://www.aaam.org/ais-2015-released/ (accessed on 5 May 2022).
- Hashmi, Z.G.; Kaji, A.H.; Nathens, A.B. Practical Guide to Surgical Data Sets: National Trauma Data Bank (NTDB). JAMA Surg. 2018, 153, 852–853. [Google Scholar] [CrossRef]
- American College of Surgeons. National Trauma Data Standards. Available online: https://www.facs.org/quality-programs/trauma/quality/national-trauma-data-bank/national-trauma-data-standard/ (accessed on 5 May 2022).
- Pollack, M.M.; Holubkov, R.; Glass, P.; Dean, J.M.; Meert, K.L.; Zimmerman, J.; Anand, K.J.; Carcillo, J.; Newth, C.J.; Harrison, R.; et al. Human Development Collaborative Pediatric Critical Care Research, Functional Status Scale: New pediatric outcome measure. Pediatrics 2009, 124, e18–e28. [Google Scholar] [CrossRef] [Green Version]
- Holding, E.Z.; Turner, E.M.; Hall, T.A.; Leonard, S.; Bradbury, K.R.; Williams, C.N. The Association Between Functional Status and Health-Related Quality of Life Following Discharge from the Pediatric Intensive Care Unit. Neurocrit. Care 2021, 35, 347–357. [Google Scholar] [CrossRef]
- Williams, C.N.; Eriksson, C.O.; Kirby, A.; Piantino, J.A.; Hall, T.A.; Luther, M.; McEvoy, C.T. Hospital Mortality and Functional Outcomes in Pediatric Neurocritical Care. Hosp. Pediatr. 2019, 9, 958–966. [Google Scholar] [CrossRef]
- Bruni, O.; Ottaviano, S.; Guidetti, V.; Romoli, M.; Innocenzi, M.; Cortesi, F.; Giannotti, F. The Sleep Disturbance Scale for Children (SDSC). Construction and validation of an instrument to evaluate sleep disturbances in childhood and adolescence. J. Sleep Res 1996, 5, 251–261. [Google Scholar] [CrossRef]
- Poppert Cordts, K.M.; Hall, T.A.; Hartman, M.E.; Luther, M.; Wagner, A.; Piantino, J.; Guilliams, K.P.; Guerriero, R.M.; Jara, J.; Williams, C.N. Sleep Measure Validation in a Pediatric Neurocritical Care Acquired Brain Injury Population. Neurocrit. Care 2020, 33, 196–206. [Google Scholar] [CrossRef]
- Gioia, G.A.; Isquith, P.K.; Guy, S.C.; Kenworthy, L. Behavior Rating Inventory of Executive Function®, 2nd ed.; (BRIEF®2); PAR, Inc.: Lutz, FL, USA, 2015. [Google Scholar]
- Gioia, G.A.; Isquith, P.K. Ecological assessment of executive function in traumatic brain injury. Dev. Neuropsychol. 2004, 25, 135–158. [Google Scholar] [CrossRef]
- National Institute of Neurological Disorders and Stroke (NINDS). Common Data Elements for Pediatric TBI Research. Available online: https://www.commondataelements.ninds.nih.gov/Traumatic%20Brain%20Injury (accessed on 26 April 2022).
- Gioia, G.A.; Espy, K.; Isquith, P.K. Behavior Rating Inventory of Executive Function®; Preschool Version (BRIEF®P); PAR, Inc.: Lutz, FL, USA, 2003. [Google Scholar]
- Franzen, M.D.; Burgess, E.J.; Smith-Seemiller, L. Methods of estimating premorbid functioning. Arch. Clin. Neuropsychol. 1997, 12, 711–738. [Google Scholar] [CrossRef] [PubMed]
- Gladsjo, J.A.; Heaton, R.K.; Palmer, B.W.; Taylor, M.J.; Jeste, D.V. Use of oral reading to estimate premorbid intellectual and neuropsychological functioning. J. Int. Neuropsychol. Soc. 1999, 5, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M. Children’s Memory Scale; NCS Pearson, Inc.: Bloomington, MN, USA, 1997. [Google Scholar]
- Wechsler, D. Wechsler Adult Intelligence Scale, 4th ed.; NCS Pearson, Inc.: Bloomington, MN, USA, 2008. [Google Scholar]
- Sherman, E.M.S.; Brooks, B.L. Child and Adolescent Memory Profile; PAR: Lutz, FL, USA, 2015. [Google Scholar]
- Delis, D.C.; Kaplan, E.; Kramer, J.H. Delis-Kaplan Executive Function System; NCS Pearson, Inc.: Bloomington, MN, USA, 2001. [Google Scholar]
- Wechsler, D. Wechsler Intelligence Scale for Children, 5th ed.; NCS Pearson, Inc.: Bloomington, MN, USA, 2014. [Google Scholar]
- Dodd, J.N.; Hall, T.A.; Guilliams, K.; Guerriero, R.M.; Wagner, A.; Malone, S.; Williams, C.N.; Hartman, M.E.; Piantino, J. Optimizing Neurocritical Care Follow-up through the Integration of Neuropsychology. Pediatr. Neurol. 2018, 89, 58–62. [Google Scholar] [CrossRef]
- Hartman, M.E.; Williams, C.N.; Hall, T.A.; Bosworth, C.C.; Piantino, J.A. Post-Intensive-Care Syndrome for the Pediatric Neurologist. Pediatr. Neurol. 2020, 108, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Sesma, H.W.; Slomine, B.S.; Ding, R.; McCarthy, M.L. Children’s Health After Trauma Study, Executive functioning in the first year after pediatric traumatic brain injury. Pediatrics 2008, 121, e1686–e1695. [Google Scholar] [CrossRef] [PubMed]
- Narad, M.E.; Treble-Barna, A.; Peugh, J.; Yeates, K.O.; Taylor, H.G.; Stancin, T.; Wade, S.L. Recovery Trajectories of Executive Functioning after Pediatric TBI: A Latent Class Growth Modeling Analysis. J. Head Trauma Rehabil. 2017, 32, 98–106. [Google Scholar] [CrossRef]
- Keys, M.E.; Delaplain, P.; Kirby, K.A.; Boudreau, K.I.; Rosenbaum, K.; Inaba, K.; Lekawa, M.; Nahmias, J. Early cognitive impairment is common in pediatric patients following mild traumatic brain injury. J. Trauma Acute Care Surg. 2021, 91, 861–866. [Google Scholar] [CrossRef]
- Finnanger, T.G.; Olsen, A.; Skandsen, T.; Lydersen, S.; Vik, A.; Evensen, K.A.; Catroppa, C.; Haberg, A.K.; Andersson, S.; Indredavik, M.S. Life after Adolescent and Adult Moderate and Severe Traumatic Brain Injury: Self-Reported Executive, Emotional, and Behavioural Function 2–5 Years after Injury. Behav. Neurol. 2015, 2015, 329241. [Google Scholar] [CrossRef] [Green Version]
- Allen, D.N.; Leany, B.D.; Thaler, N.S.; Cross, C.; Sutton, G.P.; Mayfield, J. Memory and attention profiles in pediatric traumatic brain injury. Arch. Clin. Neuropsychol. 2010, 25, 618–633. [Google Scholar] [CrossRef]
- Kurowski, B.G.; Taylor, H.G.; Yeates, K.O.; Walz, N.C.; Stancin, T.; Wade, S.L. Caregiver ratings of long-term executive dysfunction and attention problems after early childhood traumatic brain injury: Family functioning is important. PM R 2011, 3, 836–845. [Google Scholar] [CrossRef]
- Keenan, H.T.; Clark, A.E.; Holubkov, R.; Cox, C.S.; Patel, R.P.; Moore, K.R.; Ewing-Cobbs, L. Latent Class Analysis to Classify Injury Severity in Pediatric Traumatic Brain Injury. J. Neurotrauma 2020, 37, 1512–1520. [Google Scholar] [CrossRef] [PubMed]
- King, J.T., Jr.; Carlier, P.M.; Marion, D.W. Early Glasgow Outcome Scale scores predict long-term functional outcome in patients with severe traumatic brain injury. J. Neurotrauma 2005, 22, 947–954. [Google Scholar] [CrossRef] [PubMed]
- Lieh-Lai, M.W.; Theodorou, A.A.; Sarnaik, A.P.; Meert, K.L.; Moylan, P.M.; Canady, A.I. Limitations of the Glasgow Coma Scale in predicting outcome in children with traumatic brain injury. J. Pediatr. 1992, 120 Pt 1, 195–199. [Google Scholar] [CrossRef]
- Foreman, B.P.; Caesar, R.R.; Parks, J.; Madden, C.; Gentilello, L.M.; Shafi, S.; Carlile, M.C.; Harper, C.R.; Diaz-Arrastia, R.R. Usefulness of the abbreviated injury score and the injury severity score in comparison to the Glasgow Coma Scale in predicting outcome after traumatic brain injury. J. Trauma 2007, 62, 946–950. [Google Scholar] [CrossRef]
- Chandee, T.; Lyons, V.H.; Vavilala, M.S.; Krishnamoorthy, V.; Chaikittisilpa, N.; Watanitanon, A.; Lele, A.V. Critical Care Resource Utilization and Outcomes of Children With Moderate Traumatic Brain Injury. Pediatr. Crit. Care Med. 2017, 18, 1166–1174. [Google Scholar] [CrossRef]
- Toschlog, E.A.; MacElligot, J.; Sagraves, S.G.; Schenarts, P.J.; Bard, M.R.; Goettler, C.E.; Rotondo, M.F.; Swanson, M.S. The relationship of Injury Severity Score and Glasgow Coma Score to rehabilitative potential in patients suffering traumatic brain injury. Am. Surg. 2003, 69, 491–497, discussion 497–498. [Google Scholar]
- Backeljauw, B.; Kurowski, B.G. Interventions for attention problems after pediatric traumatic brain injury: What is the evidence? PM R 2014, 6, 814–824. [Google Scholar] [CrossRef] [Green Version]
- Treble-Barna, A.; Sohlberg, M.M.; Harn, B.E.; Wade, S.L. Cognitive Intervention for Attention and Executive Function Impairments in Children with Traumatic Brain Injury: A Pilot Study. J. Head Trauma Rehabil. 2016, 31, 407–418. [Google Scholar] [CrossRef]
- Turner, A.D.; Sullivan, T.; Drury, K.; Hall, T.A.; Williams, C.N.; Guilliams, K.P.; Murphy, S.; Iqbal O’Meara, A.M. Cognitive Dysfunction after Analgesia and Sedation: Out of the Operating Room and Into the Pediatric Intensive Care Unit. Front. Behav. Neurosci. 2021, 15, 713668. [Google Scholar] [CrossRef]
- Kachmar, A.G.; Irving, S.Y.; Connolly, C.A.; Curley, M.A.Q. A Systematic Review of Risk Factors Associated with Cognitive Impairment after Pediatric Critical Illness. Pediatr. Crit. Care Med. 2018, 19, e164–e171. [Google Scholar] [CrossRef]
- McConnell, B.; Duffield, T.; Hall, T.; Piantino, J.; Seitz, D.; Soden, D.; Williams, C. Post-traumatic Headache after Pediatric Traumatic Brain Injury: Prevalence, Risk Factors, and Association with Neurocognitive Outcomes. J. Child Neurol. 2020, 35, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Bruni, O.; Russo, P.M.; Ferri, R.; Novelli, L.; Galli, F.; Guidetti, V. Relationships between headache and sleep in a non-clinical population of children and adolescents. Sleep Med. 2008, 9, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Dosi, C.; Figura, M.; Ferri, R.; Bruni, O. Sleep and Headache. Semin. Pediatr. Neurol. 2015, 22, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Holland, P.R. Headache and sleep: Shared pathophysiological mechanisms. Cephalalgia 2014, 34, 725–744. [Google Scholar] [CrossRef]
- Kacperski, J.; Hung, R.; Blume, H.K. Pediatric Posttraumatic Headache. Semin. Pediatr. Neurol. 2016, 23, 27–34. [Google Scholar] [CrossRef]
- Osorio, M.B.; Kurowski, B.G.; Beebe, D.; Taylor, H.G.; Brown, T.M.; Kirkwood, M.W.; Wade, S.L. Association of daytime somnolence with executive functioning in the first 6 months after adolescent traumatic brain injury. PM R 2013, 5, 554–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barlow, K.M.; Brooks, B.L.; Esser, M.J.; Kirton, A.; Mikrogianakis, A.; Zemek, R.L.; MacMaster, F.P.; Nettel-Aguirre, A.; Yeates, K.O.; Kirk, V.; et al. Efficacy of Melatonin in Children with Postconcussive Symptoms: A Randomized Clinical Trial. Pediatrics 2020, 145, e20192812. [Google Scholar] [CrossRef]
- Barlow, K.M.; Kirk, V.; Brooks, B.; Esser, M.J.; Yeates, K.O.; Zemek, R.; Kirton, A.; Mikrogianakis, A.; MacMaster, F.; Nettel-Aguirre, A.; et al. Efficacy of Melatonin for Sleep Disturbance in Children with Persistent Post-Concussion Symptoms: Secondary Analysis of a Randomized Controlled Trial. J. Neurotrauma 2021, 38, 950–959. [Google Scholar] [CrossRef]
- Toplak, M.E.; West, R.F.; Stanovich, K.E. Practitioner review: Do performance-based measures and ratings of executive function assess the same construct? J. Child Psychol. Psychiatry 2013, 54, 131–143. [Google Scholar] [CrossRef]
- Ten Eycke, K.D.; Dewey, D. Parent-report and performance-based measures of executive function assess different constructs. Child Neuropsychol. 2016, 22, 889–906. [Google Scholar] [CrossRef]
- Dahdah, M.N.; Barnes, S.; Buros, A.; Dubiel, R.; Dunklin, C.; Callender, L.; Harper, C.; Wilson, A.; Diaz-Arrastia, R.; Bergquist, T.; et al. Variations in Inpatient Rehabilitation Functional Outcomes Across Centers in the Traumatic Brain Injury Model Systems Study and the Influence of Demographics and Injury Severity on Patient Outcomes. Arch. Phys. Med. Rehabil. 2016, 97, 1821–1831. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Gary, K.W.; Neimeier, J.P.; Ward, J.; Lapane, K.L. Randomized controlled trials in adult traumatic brain injury. Brain Inj. 2012, 26, 1523–1548. [Google Scholar] [CrossRef] [PubMed]
- Bennetts, S.K.; Mensah, F.K.; Westrupp, E.M.; Hackworth, N.J.; Reilly, S. The Agreement between Parent-Reported and Directly Measured Child Language and Parenting Behaviors. Front. Psychol. 2016, 7, 1710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zapolski, T.C.; Smith, G.T. Comparison of Parent versus Child-Report of Child Impulsivity Traits and Prediction of Outcome Variables. J. Psychopathol. Behav. Assess. 2013, 35, 301–313. [Google Scholar] [CrossRef] [Green Version]
- Grandner, M.A.; Patel, N.P.; Gehrman, P.R.; Xie, D.; Sha, D.; Weaver, T.; Gooneratne, N. Who gets the best sleep? Ethnic and socioeconomic factors related to sleep complaints. Sleep Med. 2010, 11, 470–478. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M.; Aggarwal, S.; Madaan, P.; Saini, L.; Bhutani, M. Impact of COVID-19 pandemic on sleep in children and adolescents: A systematic review and meta-analysis. Sleep Med. 2021, 84, 259–267. [Google Scholar] [CrossRef]
All | Sleep Disturbance | Normal Sleep | X2 or U | p-Value | |
---|---|---|---|---|---|
N = 131 (%) | n = 89 (%) | n = 42 (%) | |||
Age, Median years (IQR) | 11.5 (7.4, 13.8) | 11.5 (7.2, 14.3) | 11.0 (7.7, 13.7) | 1881 | 0.95 |
Male sex | 78 (60%) | 58 (65%) | 20 (48%) | 3.65 | 0.06 |
Race | 9.00 | 0.17 | |||
White | 94 (72%) | 62 (70%) | 32 (76%) | ||
Asian | 5 (4%) | 4 (5%) | 1 (2%) | ||
Pacific Islander | 3 (2%) | 1 (1%) | 2 (5%) | ||
African American | 1 (1%) | 0 (0%) | 1 (2%) | ||
American Indian or Alaska Native | 1 (1%) | 1 (1%) | 0 (0%) | ||
More than one race | 9 (7%) | 9 (10%) | 0 (0%) | ||
Declined or not reported | 18 (14%) | 12 (14%) | 6 (14%) | ||
Hispanic ethnicity | 13 (10%) | 6 (7%) | 7 (17%) | 3.15 | 0.11 |
Medicaid insurance | 79 (60%) | 52 (58%) | 27 (64%) | 0.41 | 0.52 |
Pre-injury chronic condition | |||||
Medical | 12 (9%) | 8 (9%) | 4 (10%) | 0.01 | >0.99 |
Psychiatric | 13 (10%) | 10 (11%) | 3 (7%) | 0.54 | 0.55 |
Neurodevelopmental | 23 (18%) | 21 (24%) | 2 (5%) | 6.99 | 0.01 |
Critical care intervention, any | 61 (47%) | 42 (47%) | 19 (45%) | 0.04 | 0.83 |
Mechanical ventilation | 39 (30%) | 25 (28%) | 14 (33%) | 0.38 | 0.54 |
Arterial line | 11 (8%) | 4 (4%) | 7 (17%) | 5.5 | 0.04 |
Central venous line | 8 (6%) | 4 (5%) | 4 (10%) | 1.26 | 0.27 |
ICP monitor | 7 (5%) | 2 (2%) | 5 (12%) | 5.26 | 0.03 |
Neurosurgical intervention | 11 (8%) | 7 (8%) | 4 (10%) | 0.1 | 0.74 |
Other surgical intervention | 37 (28%) | 24 (27%) | 13 (31%) | 0.22 | 0.64 |
Hyperosmolar therapy | 4 (3%) | 3 (3%) | 1 (2%) | 0.09 | >0.99 |
Targeted temperature management | 3 (2%) | 0 (0%) | 3 (7%) | 6.51 | 0.03 |
Antiepileptic infusion | 9 (7%) | 6 (7%) | 3 (7%) | 0.01 | >0.99 |
Hemodynamic resuscitation | 6 (5%) | 3 (3%) | 3 (7%) | 0.93 | 0.39 |
Median hours mechanical ventilation (IQR) | 4.5 (2.6, 25.1) | 4.2 (2.8, 24.0) | 6.2 (2.3, 203.1) | 146 | 0.39 |
Any seizure | 18 (14%) | 11 (12%) | 7 (17%) | 0.45 | 0.59 |
Length of stay, Median days (IQR) | |||||
Critical care | 1.0 (0.7, 2.1) | 1.0 (0.6, 2.2) | 1.4 (0.7, 1.9) | 547 | 0.77 |
Hospital | 2.6 (0.9, 5.5) | 2.8 (1.1, 5.4) | 1.7 (0.9, 5.8) | 1931 | 0.76 |
Inpatient rehabilitation discharge | 9 (7%) | 4 (5%) | 5 (12%) | 2.45 | 0.15 |
Median days from discharge to follow up (IQR) | 49 (38, 69) | 49 (38, 67) | 49 (38, 74) | 1838 | 0.88 |
Functional Status Scale, Median (IQR) | |||||
Pre-admission baseline | 6 (6, 6) | 6 (6, 6) | 6 (6, 6) | 1869 | 0.49 |
Follow-up | 6 (6, 6) | 6 (6, 6) | 6 (6, 7) | 1713 | 0.42 |
Worsening in Functional Status Scale | 25 (19%) | 15 (17%) | 10 (24%) | 0.97 | 0.35 |
Glasgow Coma Scale, Median (IQR) | 15 (14, 15) | 15 (14, 15) | 15 (12, 15) | 2056 | 0.29 |
Brain injury severity category by GCS | 4.28 | 0.23 | |||
Mild (13–15) | 56 (43%) | 36 (40%) | 20 (48%) | ||
Mild Complicated (13–15, radiographic injury) | 49 (37%) | 38 (43%) | 11 (26%) | ||
Moderate (9–12) | 12 (9%) | 6 (7%) | 6 (14%) | ||
Severe (3–8) | 14 (11%) | 9 (10%) | 5 (12%) | ||
Injury Severity Scale, Median (IQR) | 11 (6, 19) | 14 (6, 21) | 10 (5, 17) | 2041 | 0.15 |
Abbreviated Injury Scale a, Median (IQR) | |||||
Head/neck, n = 101 | 3 (2, 4) | 3 (2, 4) | 3 (1, 4) | 1251 | 0.48 |
Face, n = 29 | 2 (1, 2) | 2 (1, 2) | 1 (1, 2) | 97 | 0.33 |
Chest, n = 28 | 3 (2, 3) | 3 (2, 3) | 3 (2, 3) | 77 | 0.88 |
Abdomen/pelvis, n = 22 | 3 (2, 4) | 3 (2, 4) | 2 (2, 3) | 41 | 0.71 |
Extremity, n = 37 | 2 (2, 3) | 2 (2, 2) | 3 (2, 3) | 88 | 0.05 |
External, n = 115 | 1 (1, 1) | 1 (1, 1) | 1 (1, 1) | 1455 | 0.58 |
Mechanism of injury | 5.01 | 0.66 | |||
Fall | 36 (28%) | 22 (25%) | 14 (33%) | ||
Motor vehicle accident | 34 (26%) | 26 (29%) | 8 (19%) | ||
Auto-pedestrian/bike | 16 (12%) | 11 (12%) | 5 (12%) | ||
Bicycle, skateboard, scooter | 21 (16%) | 14 (16%) | 7 (17%) | ||
ATV | 9 (7%) | 6 (7%) | 3 (7%) | ||
Other blunt | 12 (9%) | 8 (9%) | 4 (10%) | ||
Penetrating | 2 (2%) | 2 (2%) | 0 (0%) | ||
Unknown | 1 (1%) | 0 (0%) | 1 (2%) | ||
Type of intracranial injury on imaging | |||||
No hemorrhage or fracture | 56 (43%) | 38 (43%) | 18 (43%) | 0.001 | >0.99 |
Subdural | 26 (20%) | 18 (20%) | 8 (19%) | 0.03 | >0.99 |
Subarachnoid | 21 (16%) | 15 (17%) | 6 (14%) | 0.14 | 0.8 |
Epidural | 11 (8%) | 10 (11%) | 1 (2%) | 2.91 | 0.1 |
Contusion | 25 (19%) | 14 (16%) | 11 (26%) | 2.02 | 0.16 |
Diffuse axonal injury | 11 (8%) | 6 (7%) | 5 (12%) | 0.99 | 0.33 |
Mixed or multiple in same location | 11 (8%) | 4 (5%) | 7 (17%) | 5.5 | 0.04 |
Indeterminate | 5 (4%) | 4 (5%) | 1 (2%) | 0.35 | >0.99 |
Location of intracranial injury on imaging | |||||
Frontal | 37 (28%) | 25 (28%) | 12 (29%) | 0.003 | 0.95 |
Parietal | 21 (16%) | 15 (17%) | 6 (14%) | 0.14 | 0.8 |
Temporal | 26 (20%) | 14 (16%) | 12 (29%) | 2.96 | 0.09 |
Occipital | 20 (15%) | 14 (16%) | 6 (14%) | 0.05 | >0.99 |
Cerebellum | 3 (2%) | 2 (2%) | 1 (2%) | 0.002 | >0.99 |
Abusive injury suspected/confirmed | 3 (2%) | 1 (1%) | 2 (5%) | 1.69 | 0.24 |
Headaches weekly or more frequent at follow-up | 22 (17%) | 17 (19%) | 5 (12%) | 1.06 | 0.45 |
New psychological diagnosis at follow-up | 32 (24%) | 26 (29%) | 6 (14%) | 3.44 | 0.08 |
All Mean (SD) | Normal Sleep Mean (SD) | Sleep Disturbance Mean (SD) | t(df) | p-Value | |
---|---|---|---|---|---|
GEC T-score, n = 100 | 53.89 (12.43) | 47.42 (9.48) | 56.8 (12.55) | −3.7 (98) | <0.001 |
Neurocognitive Index (NCI) z-score, n = 79 | −0.05 (1.01) | 0.24 (0.91) | −0.20 (1.04) | 1.9 (77) | 0.06 |
Numbers combined, n = 108 | 8.40 (2.73) | 8.78 (2.67) | 8.20 (2.76) | 1.1 (106) | 0.29 |
Lists Immediate, n = 110 | 8.50 (2.70) | 8.67 (2.94) | 8.42 (2.59) | 0.5 (108) | 0.67 |
Lists Delayed, n = 111 | 8.60 (3.29) | 8.76 (3.48) | 8.53 (3.22) | 0.3 (109) | 0.74 |
DKEFS number letter switching, n = 85 | 7.21 (4.05) | 8.10 (3.32) | 6.75 (4.33) | 1.5 (83) | 0.11 |
DKEFS category fluency, n = 88 | 9.69 (3.53) | 10.06 (3.90) | 9.49 (3.33) | 0.7 (86) | 0.49 |
DKEFS letter fluency, n = 87 | 8.14 (2.81) | 7.90 (2.66) | 8.27 (2.91) | −0.6 (85) | 0.56 |
Combined coding, n = 105 | 8.31 (3.09) | 8.97 (2.96) | 8.00 (3.13) | 1.5 (103) | 0.13 |
Combined symbol search, n = 105 | 9.59 (3.39) | 10.06 (2.44) | 9.37 (3.75) | 1.0 (103) | 0.26 |
Word reading, n = 111 | 97.97 (16.02) | 99.76 (17.38) | 97.09 (15.36) | 0.8 (110) | 0.43 |
Global Executive Composite, n = 100 β-Coefficient (95% Confidence Interval) | Neurocognitive Index, n = 79 β-Coefficient (95% Confidence Interval) | |
---|---|---|
Age in years | 0.42 (−0.17, 1.00) | −0.03 (−0.11, 0.05) |
Male sex | 3.21 (−1.74, 8.17) | −0.29 (−0.75, 0.17) |
White race | 2.89 (−2.49, 8.27) | −0.24 (−0.77, 0.31 |
Hispanic ethnicity | −5.62 (−14.21, 2.97) | 0.23 (−0.63, 1.09) |
Medicaid insurance | 1.93 (−3.06, 6.92) | −0.76 (−1.19, −0.33) * |
Pre-injury chronic condition, any | 6.85 (1.44, 12.26) * | −0.53 (−1.00, −0.07) * |
Medical | −3.79 (−12.42, 4.84) | −0.46 (−1.17, 0.25) |
Psychiatric | 11.12 (3.17, 19.08) * | −0.52 (−1.20, 0.15) |
Neurodevelopmental | 13.38 (7.17, 19.58) * | −0.81 (−1.32, −0.30) * |
Word reading (baseline estimate, log score) | −23.2 (−66.61, 20.21 | 8.27 (5.81, 10.73) * |
Critical care intervention, any | 1.97 (−2.98, 6.93) | 0.04 (−0.42, 0.49) |
Mechanical ventilation | 3.80 (−1.61, 9.21) | 0.17 (−0.31, 0.65) |
Any seizure | 0.93 (−8.21, 10.07) | −0.11 (−0.68, 0.46) |
Length of stay (LN days) | ||
Critical care | 0.61 (−3.14, 4.36) | 0.20 (−0.15, 0.54) |
Hospital | 1.07 (−1.14, 3.29) | −0.18 (−0.39, 0.03) |
Inpatient rehabilitation discharge | 2.60 (−7.83, 13.03) | −0.33 (−1.19, 0.53) |
Time from discharge to follow-up, days | −0.03 (−0.14, 0.08) | 0.001 (−0.01, 0.01) |
Functional Status Scale, any worsening | −0.19 (−6.43, 6.06) | −0.07 (−0.63, 0.49) |
Injury severity by Glasgow Coma Scale | ||
Mild (13–15) | Reference | Reference |
Mild complicated (13–15, +imaging) | 0.04 (−5.46, 5.55) | −0.01 (−0.54, 0.52) |
Moderate (9–12) | 0.23 (−9.23, 9.69) | −0.33 (−1.23, 0.57) |
Severe (3–8) | 6.51 (−2.49, 15.51) | −0.16 (−0.87, 0.54) |
Injury Severity Scale scores | ||
Lowest quartile | Reference | Reference |
Middle quartiles | 3.25 (−4.42, 10.91) | −0.74 (−1.33, −0.15) * |
Highest quartile | 7.05 (−1.59, 15.67) | −0.73 (−1.40, −0.05) * |
Abbreviated Injury Scale (0–2 reference) | ||
Head ≥ 3–5 | 2.44 (−2.55, 7.42) | −0.25 (−0.70, 0.21) |
Chest ≥ 3–5 | 1.37 (−5.77, 8.51) | −0.34 (−1.00, 0.31) |
Abdomen pelvis ≥ 3–5 | 4.41 (−3.46, 12.29) | 0.01 (−0.74, 0.77) |
Extremity ≥ 3–5 | −1.91 (−9.27, 5.45) | −0.16 (−0.82, 0.50) |
Mechanism of injury | ||
Fall | Reference | Reference |
Motor vehicle accident | 6.94 (−0.01, 13.88) | 0.11 (−0.53, 0.75) |
Auto-pedestrian/bike | 7.49 (−1.22, 16.21) | −0.48 (−1.29, 0.34) |
Bicycle, skateboard, scooter | 1.41 (−6.41, 9.24) | 0.52 (−0.19, 1.24) |
All terrain vehicle | 0.16 (−9.46, 9.78) | 0.03 (−0.82, 0.87) |
Other | 5.74 (−2.97, 14.46) | 0.61 (−0.21, 1.42) |
Abusive injury suspected or confirmed | 5.21 (−1.98, 12.40) | 0.40 (−0.61, 1.42) |
Headaches more than weekly frequency | 0.79 (−5.53, 7.10) | −0.81 (−1.32, −0.30) * |
New psychological diagnosis | 3.38 (−2.10, 8.86) | −0.20 (−0.76, 0.35) |
Sleep disturbance present | 9.38 (4.36, 14.40) * | −0.44 (−0.91, −0.03) * |
KERRYPNX | Full Model Beta Coefficient (95% Confidence Interval) | Reduced Model Beta Coefficient (95% Confidence Interval) |
---|---|---|
Injury Severity Scale | -- | |
Lowest quartile | Reference | |
Middle quartiles | 2.97 (−3.94, 9.88) | |
Highest quartile | 3.65 (−4.22, 11.52) | |
Word reading (log score) | −7.60 (−51.17, 35.97) | -- |
Pre-injury Psychiatric Condition * | 8.41 (−0.20, 17.01) | 9.02 (0.88, 17.15) |
Pre-injury Neurodevelopmental Condition * | 8.04 (0.76, 15.31) | 8.58 (1.68, 15.48) |
Sleep disturbance present * | 8.04 (2.49, 13.59) | 7.76 (2.47, 13.06) |
Full Model Beta Coefficient (95% Confidence Interval) | Reduced Model Beta Coefficient (95% Confidence Interval) | |
---|---|---|
Medicaid insurance | −0.24 (−0.61, 0.13) | −− |
Pre-injury neurodevelopmental condition | −0.30 (−0.73, 0.13) | −− |
Word reading (log score) * | 5.73 (3.21, 8.25) | 6.37 (3.89, 8.85) |
Injury Severity Scale score | ||
Lowest quartile | Reference | Reference |
Middle quartiles * | −0.48 (−0.95, −0.004) | −0.59 (−1.05, −0.13) |
Highest quartile * | −0.48 (−1.03, 0.07) | −0.60 (−1.12, −0.07) |
Headache weekly or more frequent * | −0.48 (−0.88, −0.07) | −0.53 (−0.93, −0.12) |
Sleep disturbance present * | −0.32 (−0.69, 0.05) | −0.40 (−0.76, −0.04) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Williams, C.N.; McEvoy, C.T.; Lim, M.M.; Shea, S.A.; Kumar, V.; Nagarajan, D.; Drury, K.; Rich-Wimmer, N.; Hall, T.A. Sleep and Executive Functioning in Pediatric Traumatic Brain Injury Survivors after Critical Care. Children 2022, 9, 748. https://doi.org/10.3390/children9050748
Williams CN, McEvoy CT, Lim MM, Shea SA, Kumar V, Nagarajan D, Drury K, Rich-Wimmer N, Hall TA. Sleep and Executive Functioning in Pediatric Traumatic Brain Injury Survivors after Critical Care. Children. 2022; 9(5):748. https://doi.org/10.3390/children9050748
Chicago/Turabian StyleWilliams, Cydni N., Cindy T. McEvoy, Miranda M. Lim, Steven A. Shea, Vivek Kumar, Divya Nagarajan, Kurt Drury, Natalia Rich-Wimmer, and Trevor A. Hall. 2022. "Sleep and Executive Functioning in Pediatric Traumatic Brain Injury Survivors after Critical Care" Children 9, no. 5: 748. https://doi.org/10.3390/children9050748
APA StyleWilliams, C. N., McEvoy, C. T., Lim, M. M., Shea, S. A., Kumar, V., Nagarajan, D., Drury, K., Rich-Wimmer, N., & Hall, T. A. (2022). Sleep and Executive Functioning in Pediatric Traumatic Brain Injury Survivors after Critical Care. Children, 9(5), 748. https://doi.org/10.3390/children9050748