High Prevalence of Astigmatism in Children after School Suspension during the COVID-19 Pandemic Is Associated with Axial Elongation
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Vision Screening Procedure
2.3. Data Analysis
3. Results
3.1. Demographic Characteristics and Refractive Status
3.2. Prevalence of Astigmatism
3.3. Astigmats vs. Non-Astigmats
3.4. Multiple Linear Regression Analyses
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Hashemi, H.; Fotouhi, A.; Yekta, A.; Pakzad, R.; Ostadimoghaddam, H.; Khabazkhoob, M. Global and Regional Estimates of Prevalence of Refractive Errors: Systematic Review and Meta-Analysis. J. Curr. Ophthalmol. 2017, 30, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Leung, T.-W.; Lam, A.K.-C.; Deng, L.; Kee, C.-S. Characteristics of Astigmatism as a Function of Age in a Hong Kong Clinical Population. Optom. Vis. Sci. 2012, 89, 984–992. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Maguire, M.G.; Ciner, E.; Kulp, M.T.; Cyert, L.A.; Quinn, G.E.; Orel-Bixler, D.; Moore, B.; Ying, G.S. Vision in Preschoolers (VIP) Study Group (2014) Risk Factors for Astigmatism in the Vision in Preschoolers (VIP) Study. Optom. Vis. Sci. 2014, 91, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Kleinstein, R.N.; Jones, L.A.; Hullett, S.; Kwon, S.; Lee, R.J.; Friedman, N.E.; Manny, R.E.; Mutti, D.O.; Yu, J.A.; Zadnik, K.; et al. Refractive Error and Ethnicity in Children. Arch. Ophthalmol. 2003, 121, 1141–1147. [Google Scholar] [CrossRef] [PubMed]
- McKean-Cowdin, R.; Varma, R.; Cotter, S.A.; Tarczy-Hornoch, K.; Borchert, M.S.; Lin, J.H.; Wen, G.; Azen, S.P.; Torres, M.; Tielsch, J.M.; et al. Risk Factors for Astigmatism in Preschool Children: The Multi-Ethnic Pediatric Eye Disease and Baltimore Pediatric Eye Disease Studies. Ophthalmology 2011, 118, 1974–1981. [Google Scholar] [CrossRef]
- Zhao, J.; Pan, X.; Sui, R.; Munoz, S.R.; Sperduto, R.D.; Leon, B.E. Refractive Error Study in Children: Results from Shunyi District, China. Am. J. Ophthalmol. 2000, 129, 427–435. [Google Scholar] [CrossRef]
- He, M.; Zeng, J.; Liu, Y.; Xu, J.; Pokharel, G.P.; Ellwein, L.B. Refractive Error and Visual Impairment in Urban Children in Southern China. Investig. Ophthalmol. Vis. Sci. 2004, 45, 793–799. [Google Scholar] [CrossRef]
- Wu, J.F.; Bi, H.S.; Wang, S.M.; Hu, Y.Y.; Wu, H.; Sun, W.; Lu, T.L.; Wang, X.R.; Jonas, J.B. Refractive Error, Visual Acuity and Causes of Vision Loss in Children in Shandong, China. The Shandong Children Eye Study. PLoS ONE 2013, 8, e82763. [Google Scholar] [CrossRef]
- Li, S.-M.; Liu, L.-R.; Li, S.-Y.; Ji, Y.-Z.; Fu, J.; Wang, Y.; Li, H.; Zhu, B.-D.; Yang, Z.; Li, L.; et al. Design, Methodology and Baseline Data of a School-Based Cohort Study in Central China: The Anyang Childhood Eye Study. Ophthalmic Epidemiol. 2013, 20, 348–359. [Google Scholar] [CrossRef]
- Han, B.; Zhou, W.; Liu, C.; Yang, Y.; Cheng, H.; Xu, X. Epidemiological Study on Visual Acuity and Refractive Status of Primary Students and Junior High School Students in Shenzhen. Int. J. Ophthalmol. Clin. Res. 2016, 16, 2103–2106. [Google Scholar]
- Tong, L.; Saw, S.-M.; CARKEET, A.; Chan, W.-Y.; Wu, H.-M.; Tan, D. Prevalence Rates and Epidemiological Risk Factors for Astigmatism in Singapore School Children. Optom. Vis. Sci. 2002, 79, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.Y.; Lam, C.H.-I.; Yu, W.Y.; Li, Z.C.; Chin, M.P.; Lakshmanan, Y.; Wong, F.S.Y.; Do, C.W.; Lee, P.H.; Chan, H.H.L. Childhood Exposure to Constricted Living Space: A Possible Environmental Threat for Myopia Development. Ophthalmic Physiol. Opt. 2017, 37, 568–575. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Chen, A.; Zou, M.; Liu, Z.; Young, C.A.; Zheng, D.; Jin, G. Prevalence and Time Trends of Refractive Error in Chinese Children: A Systematic Review and Meta-Analysis. J. Glob. Health 2021, 11, 08006. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Cheung, S.S.L.; Chan, H.-N.; Zhang, Y.; Wang, Y.M.; Yip, B.H.; Kam, K.W.; Yu, M.; Cheng, C.-Y.; Young, A.L.; et al. Myopia Incidence and Lifestyle Changes among School Children during the COVID-19 Pandemic: A Population-Based Prospective Study. Br. J. Ophthalmol. 2021, bjophthalmol-2021-319307. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Musch, D.C.; Wei, N.; Qi, X.; Ding, G.; Li, X.; Song, L.; Zhang, Y.; Ning, Y.; et al. Progression of Myopia in School-Aged Children after COVID-19 Home Confinement. JAMA Ophthalmol. 2021, 139, 293–300. [Google Scholar] [CrossRef]
- Mu, J.; Zhong, H.; Liu, M.; Jiang, M.; Shuai, X.; Chen, Y.; Long, W.; Zhang, S. Trends in Myopia Development among Primary and Secondary School Students during the COVID-19 Pandemic: A Large-Scale Cross-Sectional Study. Front. Public Health 2022, 10, 859285. [Google Scholar] [CrossRef]
- Liang, Y.; Leung, T.-W.; Lian, J.T.; Kee, C.-S. Significant Increase in Astigmatism in Children after Study at Home during the COVID-19 Lockdown. Clin. Exp. Optom. 2022, 11, 19–26. [Google Scholar] [CrossRef]
- Liang, Y.; Kee, C.-S. Risk Factors for Myopia in 2 Hong Kong School Systems: A Pilot Study. Asia-Pac. J. Ophthalmol. 2022, 11, 19–26. [Google Scholar] [CrossRef]
- Thibos, L.N.; Wheeler, W.; Horner, D. Power Vectors: An Application of Fourier Analysis to the Description and Statistical Analysis of Refractive Error. Optom. Vis. Sci. 1997, 74, 367–375. [Google Scholar] [CrossRef]
- Chan, S.E.; Kuo, H.K.; Tsai, C.L.; Wu, P.C. Astigmatism in Chinese Primary School Children: Prevalence, Change, and Effect on Myopic Shift. Jpn. J. Ophthalmol. 2018, 62, 321–326. [Google Scholar] [CrossRef]
- Pi, L.-H.; Chen, L.; Liu, Q.; Ke, N.; Fang, J.; Zhang, S.; Xiao, J.; Ye, W.-J.; Xiong, Y.; Shi, H.; et al. Refractive Status and Prevalence of Refractive Errors in Suburban School-Age Children. Int. J. Med. Sci. 2010, 7, 342–353. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.S.; Lam, D.S.; Lam, R.F.; Lau, J.T.; Chong, K.S.; Cheung, E.Y.; Lai, R.Y.; Chew, S.J. Prevalence, Incidence, and Progression of Myopia of School Children in Hong Kong. Investig. Ophthalmol. Vis. Sci. 2004, 45, 1071–1075. [Google Scholar] [CrossRef] [PubMed]
- Shih, Y.F.; Hsiao, C.K.; Tung, Y.L.; Lin, L.L.; Chen, C.J.; Hung, P.T. The Prevalence of Astigmatism in Taiwan Schoolchildren. Optom. Vis. Sci. 2004, 81, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Mao, J.; Luo, R.; Li, F.; Pokharel, G.P.; Ellwein, L.B. Accuracy of Noncycloplegic Autorefraction in School-Age Children in China. Optom. Vis. Sci. 2004, 81, 49–55. [Google Scholar] [CrossRef]
- Ma, D.; Wei, S.; Li, S.-M.; Yang, X.; Cao, K.; Hu, J.; Fan, S.; Zhang, L.; Wang, N. Progression of Myopia in a Natural Cohort of Chinese Children during COVID-19 Pandemic. Graefes Arch. Clin. Exp. Ophthalmol. 2021, 259, 2813–2820. [Google Scholar] [CrossRef]
- Mandel, Y.; Stone, R.A.; Zadok, D. Parameters Associated with the Different Astigmatism Axis Orientations. Investig. Ophthalmol. Vis. Sci. 2010, 51, 723–730. [Google Scholar] [CrossRef]
- Gwiazda, J.; Grice, K.; Held, R.; McLellan, J.; Thorn, F. Astigmatism and the Development of Myopia in Children. Vis. Res. 2000, 40, 1019–1026. [Google Scholar] [CrossRef]
- Guggenheim, J.A.; Farbrother, J.E. The Association between Spherical and Cylindrical Component Powers. Optom. Vis. Sci. 2004, 81, 62–63. [Google Scholar] [CrossRef]
- Feldkaemper, M.; Schaeffel, F. An Updated View on the Role of Dopamine in Myopia. Exp. Eye Res. 2013, 114, 106–119. [Google Scholar] [CrossRef]
- Tideman, J.W.; Polling, J.R.; Voortman, T.; Jaddoe, V.W.V.; Uitterlinden, A.G.; Hofman, A.; Vingerling, J.; Franco, O.H.; Klaver, C.C.W. Low Serum Vitamin D Is Associated with Axial Length and Risk of Myopia in Young Children. Eur. J. Epidemiol. 2016, 31, 491–499. [Google Scholar] [CrossRef]
- Guggenheim, J.A.; Northstone, K.; McMahon, G.; Ness, A.R.; Deere, K.; Mattocks, C.; Pourcain, B.S.; Williams, C. Time Outdoors and Physical Activity as Predictors of Incident Myopia in Childhood: A Prospective Cohort Study. Investig. Ophthalmol. Vis. Sci. 2012, 53, 2856–2865. [Google Scholar] [CrossRef] [PubMed]
- Rose, K.A.; Morgan, I.G.; Ip, J.; Kifley, A.; Huynh, S.; Smith, W.; Mitchell, P. Outdoor Activity Reduces the Prevalence of Myopia in Children. Ophthalmology 2008, 115, 1279–1285. [Google Scholar] [CrossRef] [PubMed]
- Farbrother, J.E.; Welsby, J.W.; Guggenheim, J.A. Astigmatic Axis Is Related to the Level of Spherical Ametropia. Optom. Vis. Sci. 2004, 81, 18–26. [Google Scholar] [CrossRef]
- Kuo, Y.C.; Wang, J.H.; Chiu, C.J. Comparison of Open-Field Autorefraction, Closed-Field Autorefraction, and Retinoscopy for Refractive Measurements of Children and Adolescents in Taiwan. J. Formos. Med. Assoc. 2020, 119, 1251–1258. [Google Scholar] [CrossRef] [PubMed]
Definitions | n | Astigmatism ≥ 0.50 D | Astigmatism ≥ 0.75 D | Astigmatism ≥ 1.00 D | ||||
---|---|---|---|---|---|---|---|---|
Prevalence (95% CI) | p Values | Prevalence (95% CI) | p Values | Prevalence (95% CI) | p Values | |||
Total | 418 | 76.3 (72.0–80.4) | 46.5 (41.7–61.4) | 28.9 (24.6–33.5) | ||||
Age | 8 | 73 | 72.6 (61.4–81.6) | 0.77 | 45.2 (34.4–56.6) | 0.40 | 21.9 (13.9–32.8) | 0.28 |
9 | 146 | 78.8 (71.4–84.7) | 41.8 (34.1–49.9) | 26.7 (20.2–34.4) | ||||
10 | 143 | 75.5 (67.8–81.9) | 51.7 (43.6–59.8) | 31.5 (24.4–39.5) | ||||
11 | 56 | 76.8 (64.1–86.0) | 46.4 (34.0–59.3) | 35.7 (24.5–48.8) | ||||
Gender | Male | 234 | 76.5 (70.6–81.5) | 0.92 | 47.4 (41.1–53.8) | 0.64 | 29.1 (23.6–35.2) | 0.86 |
Female | 184 | 76.1 (69.5–81.7) | 45.1 (38.1–52.3) | 28.3 (22.3–35.2) |
Astigmats (n = 195) | Non-Astigmats (n = 223) | p Values | |
---|---|---|---|
Age (years) | 9.48 ± 0.93 | 9.40 ± 0.93 | 0.927 |
Gender | |||
Males (%) | 57.2 | 54.9 | 0.636 |
Spherical-equivalent Error (D) | −1.88 ± 1.67 | −1.35 ± 1.04 | <0.001 |
Axial Length (mm) | 23.85 ± 1.18 | 23.58 ± 0.86 | <0.001 |
Reading Time (hour) | 1.33 ± 0.87 | 1.32 ± 0.97 | 0.994 |
Screen Time (hour) | 2.50 ± 1.82 | 2.47 ± 2.15 | 0.242 |
Outdoor Activities Time (hour) | 1.42 ± 1.30 | 1.74 ± 1.67 | 0.044 |
Beta | p-Value | |
---|---|---|
Cylindrical Error | ||
Axial length | 0.181 | <0.001 |
Reading hours | 0.003 | 0.946 |
Screen hours | −0.011 | 0.584 |
Outdoor hours | −0.017 | 0.498 |
J0 Astigmatism | ||
Axial length | 0.099 | <0.001 |
Reading hours | −0.013 | 0.543 |
Screen hours | −0.016 | 0.123 |
Outdoor hours | −0.007 | 0.579 |
J45 Astigmatism | ||
Axial length | 0.002 | 0.872 |
Reading hours | −0.01 | 0.443 |
Screen hours | 0.017 | 0.013 |
Outdoor hours | −0.011 | 0.161 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wong, S.-C.; Kee, C.-S.; Leung, T.-W. High Prevalence of Astigmatism in Children after School Suspension during the COVID-19 Pandemic Is Associated with Axial Elongation. Children 2022, 9, 919. https://doi.org/10.3390/children9060919
Wong S-C, Kee C-S, Leung T-W. High Prevalence of Astigmatism in Children after School Suspension during the COVID-19 Pandemic Is Associated with Axial Elongation. Children. 2022; 9(6):919. https://doi.org/10.3390/children9060919
Chicago/Turabian StyleWong, Suei-Cheng, Chea-Su Kee, and Tsz-Wing Leung. 2022. "High Prevalence of Astigmatism in Children after School Suspension during the COVID-19 Pandemic Is Associated with Axial Elongation" Children 9, no. 6: 919. https://doi.org/10.3390/children9060919
APA StyleWong, S. -C., Kee, C. -S., & Leung, T. -W. (2022). High Prevalence of Astigmatism in Children after School Suspension during the COVID-19 Pandemic Is Associated with Axial Elongation. Children, 9(6), 919. https://doi.org/10.3390/children9060919