New Technological Approach for the Evaluation of Postural Control Abilities in Children with Developmental Coordination Disorder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures/Assessment Protocol
2.2.1. Movement Assessment Battery for Children-Second Edition (MABC-2)
2.2.2. VRRS Postural Control Evaluation with Stabilometric Balance Platform
- -
- Mean Distance: mean value of the displacements from the center of the platform;
- -
- Root Mean Square of the mean Distance;
- -
- Total Excursion: length of the trajectory travelled by COP;
- -
- Velocity: oscillation velocity determined as the ratio of the total excursion and the duration of the test;
- -
- Frequency: rotational frequency defined as the ratio of the mean velocity and the mean distance.
2.3. Setting and Data Collection
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Williams, J.W.B.; First, M. Diagnostic and statistical manual of mental disorders. In Encyclopedia of Social Work; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Macnab, J.J.; Miller, L.T.; Polatajko, H.J. The search for subtypes of DCD: Is cluster analysis the answer? Hum. Mov. Sci. 2001, 20, 49–72. [Google Scholar] [CrossRef]
- World Health Organization. International Classification of Functioning, Disability, and Health: Children & Youth Version: ICF-CY; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Steindl, R.; Kunz, K.; Schrott-Fischer, A.; Scholtz, A.W. Effect of age and sex on maturation of sensory systems and balance control. Dev. Med. Child Neurol. 2006, 48, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Verbecque, E.; Vereeck, L.; Hallemans, A. Postural sway in children: A literature review. Gait Posture 2016, 49, 402–410. [Google Scholar] [CrossRef] [PubMed]
- Cuisinier, R.; Olivier, I.; Vaugoyeau, M.; Nougier, V.; Assaiante, C. Reweighting of Sensory Inputs to Control Quiet Standing in Children from 7 to 11 and in Adults. PLoS ONE 2011, 6, e19697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nolan, L.; Grigorenko, A.; Thorstensson, A. Balance control: Sex and age differences in 9-to 16-year-olds. Dev. Med. Child Neurol. 2005, 47, 449–454. [Google Scholar] [CrossRef]
- Paillard, T.; Noé, F. Techniques and Methods for Testing the Postural Function in Healthy and Pathological Subjects. BioMed. Res. Int. 2015, 2015, 891390. [Google Scholar] [CrossRef] [Green Version]
- Kembhavi, G.; Darrah, J.; Magill-Evans, J.; Loomis, J. Using the berg balance scale to distinguish balance abilities in children with cerebral palsy. Pediatric Phys. Ther. Off. Publ. Sect. Pediatrics Am. Phys. Ther. Assoc. 2002, 14, 92–99. [Google Scholar] [CrossRef]
- Williams, E.N.; Carroll, S.G.; Reddihough, D.S.; Phillips, B.A.; Galea, M.P. Investigation of the timed ‘up & go’ test in children. Dev. Med. Child Neurol. 2005, 47, 518–524. [Google Scholar]
- Melzer, I.; Benjuya, N.; Kaplanski, J.; Alexander, N. Association between ankle muscle strength and limit of stability in older adults. Age Ageing 2008, 38, 119–123. [Google Scholar] [CrossRef] [Green Version]
- Norris, R.A.; Wilder, E.; Norton, J. The Functional Reach Test in 3- to 5-Year-Old Children Without Disabilities. Pediatr. Phys. Ther. 2008, 20, 47–52. [Google Scholar] [CrossRef]
- Franjoine, M.R.; Gunther, J.S.; Taylor, M.J. Pediatric Balance Scale: A Modified Version of the Berg Balance Scale for the School-Age Child with Mild to Moderate Motor Impairment. Pediatr. Phys. Ther. 2003, 15, 114–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henderson, S.E.; Sugden, D.; Barnett, A.L. Movement assessment battery for children-2. Res. Dev. Disabil. 2007. [Google Scholar] [CrossRef]
- Bruininks, R.H.; Bruininks, B.D. Bruininks-Oseretsky Test of Motor Proficiency; American Guidance Service: Circle Pines, MN, USA, 1978. [Google Scholar]
- van der Linde, B.W.; van Netten, J.J.; Otten, B.; Postema, K.; Geuze, R.H.; Schoemaker, M.M. Development and psychometric properties of the DCDDaily: A new test for clinical assessment of capacity in activities of daily living in children with developmental coordination disorder. Clin. Rehabil. 2013, 27, 834–844. [Google Scholar] [CrossRef] [PubMed]
- Wilson, B.N.; Crawford, S.G.; Green, D.; Roberts, G.; Aylott, A.; Kaplan, B.J. Psychometric properties of the revised developmental coordination disorder questionnaire. Phys. Occup. Ther. Pediatr. 2009, 29, 182–202. [Google Scholar] [CrossRef]
- Bair, W.-N.; Kiemel, T.; Jeka, J.J.; Clark, J.E. Development of multisensory reweighting for posture control in children. Exp. Brain Res. 2007, 183, 435–446. [Google Scholar] [CrossRef] [Green Version]
- Demura, S.-I.; Noda, M.; Kitabayashi, T.; Aoki, H. Age-Stage Differences in Body Sway during a Static Upright Posture Based on Sway Factors and Relative Accumulation of Power Frequency. Percept. Mot. Ski. 2008, 107, 89–98. [Google Scholar] [CrossRef]
- Rinaldi, N.M.; Polastri, P.F.; Barela, J.A. Age-related changes in postural control sensory reweighting. Neurosci. Lett. 2009, 467, 225–229. [Google Scholar] [CrossRef]
- Agostini, V.; Aiello, E.; Fortunato, D.; Knaflitz, M.; Gastaldi, L. A wearable device to assess postural sway. In Proceedings of the 2019 IEEE 23rd International Symposium on Consumer Technologies (ISCT), Ancona, Italy, 19–21 June 2019; pp. 197–200. [Google Scholar]
- Soyuer, F. Technological methods used in evaluating the balance. Int. J. Spine Res. 2020, 2, 60–63. [Google Scholar]
- Beani, E.; Filogna, S.; Martini, G.; Barzacchi, V.; Ferrari, A.; Guidi, E.; Menici, V.; Cioni, G.; Sgandurra, G. Application of Virtual Reality Rehabilitation System for the assessment of postural control while standing in typical children and peers with neurodevelopmental disorders. Gait Posture 2021, 92, 364–370. [Google Scholar] [CrossRef]
- Menici, V.; Barzacchi, V.; Filogna, S.; Beani, E.; Tinelli, F.; Cioni, G.; Sgandurra, G. Tele-Rehabilitation for Postural Control by Means of Virtual Reality Rehabilitation System in an Adolescent with Motor Disorder: A Case Study. Front. Psychol. 2021, 12, 4217. [Google Scholar] [CrossRef]
- Prieto, T.E.; Myklebust, J.B.; Hoffmann, R.G.; Lovett, E.G.; Myklebust, B.M. Measures of postural steadiness: Differences between healthy young and elderly adults. IEEE Trans. Biomed. Eng. 1996, 43, 956–966. [Google Scholar] [CrossRef] [PubMed]
- Fong, S.S.; Fu, A.; Ng, G.Y. Taekwondo training speeds up the development of balance and sensory functions in young adolescents. J. Sci. Med. Sport 2012, 15, 64–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fong, S.S.; Ng, S.M.S.; Chung, L.M.Y.; Ki, W.; Chow, L.P.; Macfarlane, D.J. Direction-specific impairment of stability limits and falls in children with developmental coordination disorder: Implications for rehabilitation. Gait Posture 2016, 43, 60–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winter, D.A. Human balance and posture control during standing and walking. Gait Posture 1995, 3, 193–214. [Google Scholar] [CrossRef]
- Geuze, R.H. Static balance and developmental coordination disorder. Hum. Mov. Sci. 2003, 22, 527–548. [Google Scholar] [CrossRef]
- Przysucha, E.P.; Taylor, M.J.; Weber, D. The nature and control of postural adaptations of boys with and without developmental coordination disorder. Adapt. Phys. Act. Q. 2008, 25, 1–16. [Google Scholar] [CrossRef]
- Ashmead, D.H.; Mccarty, M.E. Postural Sway of Human Infants While Standing in Light and Dark. Child Dev. 1991, 62, 1276. [Google Scholar] [CrossRef]
- Williams, H.G. Motor control in children with developmental coordination disorder. In Developmental Coordination Disorder; Cermak, S.A., Larkin, D., Eds.; Thomson Learning: Albany, NY, USA, 2002; pp. 117–137. [Google Scholar]
- Johnston, L.M.; Burns, Y.R.; Brauer, S.G.; Richardson, C.A. Differences in postural control and movement performance during goal directed reaching in children with developmental coordination disorder. Hum. Mov. Sci. 2002, 21, 583–601. [Google Scholar] [CrossRef]
- Geuze, R.H. Postural Control in Children with Developmental Coordination Disorder. Neural Plast. 2005, 12, 183–196. [Google Scholar] [CrossRef] [Green Version]
- Horak, F.B.; Nashner, L.M.; Diener, H.C. Postural strategies associated with somatosensory and vestibular loss. Exp. Brain Res. 1990, 82, 167–177. [Google Scholar] [CrossRef]
- Nashner, L.M. Computerized dynamic posturography. In Handbook of Balance Function Testing; Mosby Yearbook Inc.: St Louis, MO, USA, 1993; pp. 208–307. [Google Scholar]
- Shumway-Cook, A.; Woollacott, M.H. Motor Control: Translating Research into Clinical Practice; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2007. [Google Scholar]
- Tsai, C.-L.; Wu, S.K.; Huang, C.-H. Static balance in children with developmental coordination disorder. Hum. Mov. Sci. 2008, 27, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Cherng, R.-J.; Hsu, Y.-W.; Chen, Y.-J.; Chen, J.-Y. Standing balance of children with developmental coordination disorder under altered sensory conditions. Hum. Mov. Sci. 2007, 26, 913–926. [Google Scholar] [CrossRef] [PubMed]
- Blank, R.; Barnett, A.L.; Cairney, J.; Green, D.; Kirby, A.; Polatajko, H.; Rosenblum, S.; Smits-Engelsman, B.; Sugden, D.; Wilson, P.; et al. International clinical practice recommendations on the definition, diagnosis, assessment, intervention, and psychosocial aspects of developmental coordination disorder. Dev. Med. Child Neurol. 2019, 61, 242–285. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.T.; Tsang, W.W.; Schooling, C.M.; Fong, S.S. Reactive balance performance and neuromuscular and cognitive responses to unpredictable balance perturbations in children with developmental coordination disorder. Gait Posture 2018, 62, 20–26. [Google Scholar] [CrossRef] [Green Version]
- Miller, H.L.; Caçola, P.M.; Sherrod, G.M.; Patterson, R.M.; Bugnariu, N.L. Children with Autism Spectrum Disorder, Developmental Coordination Disorder, and typical development differ in characteristics of dynamic postural control: A preliminary study. Gait Posture 2019, 67, 9–11. [Google Scholar] [CrossRef]
- Pirini, M.; Bisi, M.C.; Turolla, A.; Agostini, M.; Vidale, D.; Fiorentin, A.; Piron, F. Postural Rehabilitation Within the VRRS (Virtual Reality Rehabilitation System) Environment. In Advanced Technologies for the Rehabilitation of Gait and Balance Disorders; Springer: Cham, Switzerland, 2018; pp. 335–355. [Google Scholar]
- Manenti, R.; Gobbi, E.; Baglio, F.; Macis, A.; Ferrari, C.; Pagnoni, I.; Rossetto, F.; Di Tella, S.; Alemanno, F.; Cimino, V.; et al. Effectiveness of an innovative cognitive treatment and telerehabilitation on subjects with mild cognitive impairment: A multicenter, randomized, active-controlled study. Front. Aging Neurosci. 2020, 12, 400. [Google Scholar] [CrossRef]
- Fascio, E.; Vitale, J.A.; Sirtori, P.; Peretti, G.; Banfi, G.; Mangiavini, L. Early Virtual-Reality-Based Home Rehabilitation after Total Hip Arthroplasty: A Randomized Controlled Trial. J. Clin. Med. 2022, 11, 1766. [Google Scholar] [CrossRef]
- Olivieri, I.; Chiappedi, M.; Meriggi, P.; Mazzola, M.; Grandi, A.; Angelini, L. Rehabilitation of Children with Hemiparesis: A Pilot Study on the Use of Virtual Reality. BioMed Res. Int. 2013, 2013, 695935. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, G.; Jelsma, D.; Jelsma, J.; Smits-Engelsman, B. The efficacy of two task-orientated interventions for children with Developmental Coordination Disorder: Neuromotor Task Training and Nintendo Wii Fit training. Res. Dev. Disabil. 2013, 34, 2449–2461. [Google Scholar] [CrossRef]
- Cavalcante Neto, J.L.; Steenbergen, B.; Tudella, E. Motor intervention with and without Nintendo® Wii for children with developmental coordination disorder: Protocol for a randomized clinical trial. Trials 2019, 20, 794. [Google Scholar] [CrossRef] [Green Version]
- Cavalcante Neto, J.L.; Steenbergen, B.; Zamunér, A.R.; Tudella, E. Wii training versus non-Wii task-specific training on motor learning in children with developmental coordination disorder: A randomized controlled trial. Ann. Phys. Rehabil. Med. 2020, 64, 101390. [Google Scholar] [CrossRef] [PubMed]
- Jelsma, D.; Geuze, R.H.; Mombarg, R.; Smits-Engelsman, B.C.M. The impact of Wii Fit intervention on dynamic balance control in children with probable Developmental Coordination Disorder and balance problems. Hum. Mov. Sci. 2014, 33, 404–418. [Google Scholar] [CrossRef] [PubMed]
VRRS Parameters | Parameters Short Name | Centre of Pressure | Anterior Posterior | Medial Lateral |
---|---|---|---|---|
Mean Distance | MD | MDCOP | MDAP | MDML |
Root Mean Square of Distance | RMS | RMSCOP | RMSAP | RMSML |
Total Excursion | ESC | ESCCOP | ESCAP | ESCML |
Velocity | VEL | VELCOP | VELAP | VELML |
Frequency | FREQ | FREQCOP | FREQAP | FREQML |
Sway area | SWAY | SWAY |
VRRS Parameters | Mean Value | Standard Deviation | Standard Error | p-Value | |||
---|---|---|---|---|---|---|---|
TD | DCD | TD | DCD | TD | DCD | ||
MDCOP [mm] | 7.57 | 10.59 | 2.29 | 6.42 | 0.41 | 1.47 | 0.020 * |
MDAP [mm] | 5.49 | 7.22 | 1.27 | 2.95 | 0.23 | 0.69 | 0.029 * |
MDML [mm] | 3.98 | 6.01 | 1.99 | 5.05 | 0.36 | 1.19 | 0.055 |
RMSCOP [mm] | 8.93 | 12.78 | 2.89 | 8.36 | 0.52 | 1.97 | 0.025 * |
RMSAP [mm] | 6.98 | 9.27 | 1.64 | 3.95 | 0.30 | 0.93 | 0.030 * |
RMSML [mm] | 5.18 | 8.23 | 2.82 | 7.88 | 0.51 | 1.85 | 0.059 |
ESCCOP [mm] | 2080.49 | 2015.76 | 629.18 | 1064.45 | 114.87 | 250.89 | 0.817 |
ESCAP [mm] | 1106.26 | 1124.59 | 274.43 | 571.04 | 50.10 | 134.59 | 0.900 |
ESCML [mm] | 1514.18 | 1411.92 | 528.16 | 784.49 | 96.42 | 184.90 | 0.592 |
VELCOP [ms−1] | 36.98 | 35.86 | 11.23 | 18.98 | 2.05 | 4.47 | 0.822 |
VELAP [ms−1] | 19.66 | 20.00 | 4.88 | 10.19 | 0.89 | 2.40 | 0.894 |
VELML [ms−1] | 26.92 | 25.12 | 9.43 | 13.99 | 1.72 | 3.29 | 0.597 |
SWAY [mm2s−1] | 105.61 | 164.35 | 68.03 | 198.37 | 12.42 | 46.75 | 0.239 |
FREQCOP [Hz] | 0.81 | 0.57 | 0.15 | 0.13 | 0.02 | 0.03 | 0.000 ** |
FREQAP [Hz] | 0.66 | 0.50 | 0.13 | 0.13 | 0.02 | 0.03 | 0.000 ** |
FREQML [Hz] | 1.42 | 0.93 | 0.49 | 0.35 | 0.08 | 0.08 | 0.001 ** |
VRRS Parameters | MABC-2 Balance Standard Score | MABC-2 Balance Percentile Score | MABC-2 Total Standard Score | MABC-2 Total Percentile Score | ||||
---|---|---|---|---|---|---|---|---|
ρ | p-value | ρ | p-value | ρ | p-value | ρ | p-value | |
MDCOP | −0.428 ** | 0.003 | −0.359 * | 0.014 | −0.399 ** | 0.006 | −0.305 * | 0.039 |
MDAP | −0.388 ** | 0.008 | −0.335 * | 0.023 | −0.384 ** | 0.008 | −0.299 * | 0.044 |
MDML | −0.415 ** | 0.004 | −0.350 * | 0.017 | −0.374 ** | 0.011 | −0.290 * | 0.050 |
RMSCOP | −0.422 ** | 0.004 | −0.348 * | 0.018 | −0.396 ** | 0.006 | −0.297 * | 0.045 |
RMSAP | −0.384 ** | 0.008 | −0.337 * | 0.022 | −0.381 ** | 0.009 | −0.298 * | 0.044 |
RMSML | −0.414 ** | 0.004 | −0.338 * | 0.022 | −0.377 ** | 0.010 | −0.291 * | 0.050 |
ESCCOP | −0.020 | 0.895 | −0.005 | 0.975 | 0.001 | 0.997 | 0.033 | 0.829 |
ESCAP | −0.020 | 0.894 | −0.032 | 0.834 | −0.027 | 0.858 | −0.018 | 0.911 |
ESCML | −0.010 | 0.950 | 0.020 | 0.894 | 0.027 | 0.860 | 0.069 | 0.651 |
VELCOP | −0.019 | 0.902 | 0.004 | 0.979 | 0.001 | 0.993 | 0.033 | 0.829 |
VELAP | −0.019 | 0.902 | −0.031 | 0.840 | −0.026 | 0.863 | −0.017 | 0.911 |
VELML | −0.008 | 0.955 | 0.021 | 0.891 | 0.027 | 0.858 | 0.068 | 0.651 |
SWAY | −0.286 | 0.054 | −0.227 | 0.129 | −0.279 | 0.060 | −0.198 | 0.188 |
FREQCOP | 0.695 ** | 0.000 | 0.673 ** | 0.000 | 0.699 ** | 0.000 | 0.643 ** | 0.000 |
FREQAP | 0.533 ** | 0.000 | 0.468 ** | 0.001 | 0.532 ** | 0.000 | 0.439 ** | 0.002 |
FREQML | 0.614 ** | 0.000 | 0.629 ** | 0.000 | 0.604 ** | 0.000 | 0.587 ** | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martini, G.; Beani, E.; Filogna, S.; Menici, V.; Cioni, G.; Battini, R.; Sgandurra, G. New Technological Approach for the Evaluation of Postural Control Abilities in Children with Developmental Coordination Disorder. Children 2022, 9, 957. https://doi.org/10.3390/children9070957
Martini G, Beani E, Filogna S, Menici V, Cioni G, Battini R, Sgandurra G. New Technological Approach for the Evaluation of Postural Control Abilities in Children with Developmental Coordination Disorder. Children. 2022; 9(7):957. https://doi.org/10.3390/children9070957
Chicago/Turabian StyleMartini, Giada, Elena Beani, Silvia Filogna, Valentina Menici, Giovanni Cioni, Roberta Battini, and Giuseppina Sgandurra. 2022. "New Technological Approach for the Evaluation of Postural Control Abilities in Children with Developmental Coordination Disorder" Children 9, no. 7: 957. https://doi.org/10.3390/children9070957
APA StyleMartini, G., Beani, E., Filogna, S., Menici, V., Cioni, G., Battini, R., & Sgandurra, G. (2022). New Technological Approach for the Evaluation of Postural Control Abilities in Children with Developmental Coordination Disorder. Children, 9(7), 957. https://doi.org/10.3390/children9070957