Factors Affecting High-Risk for Diabetes among Korean Adolescents: An Analysis Using the Eighth Korea National Health and Nutrition Examination Survey (2020)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Design
2.2. Data Source and Study Population
2.3. Study Variables
2.3.1. Diabetes
2.3.2. Characteristics of Adolescents’ Variables
2.3.3. Characteristics of the Parents’ Variables
2.4. Data Analysis
3. Results
3.1. Comparison of General Characteristics in General and High-Risk Groups for Diabetes among Adolescents
3.2. Comparison of Physiological and Biochemical Indicators in General and High-Risk Groups for Diabetes among Adolescents
3.3. Factors Affecting High-Risk for Diabetes among Adolescents
3.3.1. Adolescent Factors
3.3.2. Paternal Factors
3.3.3. Maternal Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, J.H.; Lim, J.S. Trends of diabetes and prediabetes prevalence among Korean adolescents from 2007 to 2018. J. Korean Med. Sci. 2021, 36, e112. [Google Scholar] [CrossRef] [PubMed]
- Magliano, D.J.; Sacre, J.W.; Harding, J.L.; Gregg, E.W.; Zimmet, P.Z.; Shaw, J.E. Young-onset type 2 diabetes mellitus—Implications for morbidity and mortality. Nat. Rev. Endocrinol. 2020, 16, 321–331. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.H. Diabetes in adolescence, appropriate transition to adult clinic. J. Korean Diabetes 2021, 22, 77–84. [Google Scholar] [CrossRef]
- Dart, A.B.; Martens, P.J.; Rigatto, C.; Brownell, M.D.; Dean, H.J.; Sellers, E.A. Earlier onset of complications in youth with type 2 diabetes. Diabetes Care 2014, 37, 436–443. [Google Scholar] [CrossRef] [PubMed]
- Mayer-Davis, E.J.; Kahkoska, A.R.; Jefferies, C.; Dabelea, D.; Balde, N.; Gong, C.X.; Aschner, P.; Craig, M.E. ISPAD clinical practice consensus guidelines 2018: Definition, epidemiology, and classification of diabetes in children and adolescents. Pediatr. Diabetes 2018, 19 (Suppl. 27), 7–19. [Google Scholar] [CrossRef]
- Daniels, S.R. The consequences of childhood overweight and obesity. Future Child. 2006, 16, 47–67. [Google Scholar] [CrossRef]
- Williams, D.E.; Cadwell, B.L.; Cheng, Y.J.; Cowie, C.C.; Gregg, E.W.; Geiss, L.S.; Engelgau, M.M.; Narayan, K.M.; Imperatore, G. Prevalence of impaired fasting glucose and its relationship with cardiovascular disease risk factors in US adolescents, 1999-2000. Pediatrics 2005, 116, 1122–1126. [Google Scholar] [CrossRef]
- Nathan, D.M.; Davidson, M.B.; DeFronzo, R.A.; Heine, R.J.; Henry, R.R.; Pratley, R.; Zinman, B.; American Diabetes Association. Impaired fasting glucose and impaired glucose tolerance: Implications for care. Diabetes Care 2007, 30, 753–759. [Google Scholar] [CrossRef]
- Bang, S.Y. Prevalence and related factors of metabolic syndrome in Korean adolescent. J. Korea Acad. Ind. Coop. Soc. 2018, 19, 309–316. [Google Scholar] [CrossRef]
- de Miranda, J.A.; Almeida, G.G.; Leão Martins, R.I.; Cunha, M.B.; Belo, V.A.; dos Santos, J.E.T.; Mourão-Júnior, C.A.; Moreira Lanna, C.M. The role of uric acid in the insulin resistance in children and adolescents with obesity. Rev. Paul. Pediatr. 2015, 33, 431–436. [Google Scholar] [CrossRef]
- Hannon, T.S.; Arslanian, S.A. The changing face of diabetes in youth: Lessons learned from studies of type 2 diabetes. Ann. N. Y. Acad. Sci. 2015, 1353, 113–137. [Google Scholar] [CrossRef] [PubMed]
- Viner, R.; White, B.; Christie, D. Type 2 diabetes in adolescents: A severe phenotype posing major clinical challenges and public health burden. Lancet 2017, 389, 2252–2260. [Google Scholar] [CrossRef]
- Hannon, T.S.; Rofey, D.L.; Lee, S.; Arslanian, S.A. Depressive symptoms and metabolic markers of risk for type 2 diabetes in obese adolescents. Pediatr. Diabetes 2013, 14, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Shomaker, L.B.; Tanofsky-Kraff, M.; Young-Hyman, D.; Han, J.C.; Yanoff, L.B.; Brady, S.M.; Yanovski, S.Z.; Yanovski, J.A. Psychological symptoms and insulin sensitivity in adolescents. Pediatr. Diabetes 2010, 11, 417–423. [Google Scholar] [CrossRef]
- Jaser, S.S.; Holl, M.G.; Jefferson, V.; Grey, M. Correlates of depressive symptoms in urban youth at risk for type 2 diabetes mellitus. J. Sch. Health 2009, 79, 286–292. [Google Scholar] [CrossRef]
- Cappuccio, F.P.; D’Elia, L.; Strazzullo, P.; Miller, M.A. Quantity and quality of sleep and incidence of type 2 diabetes: A systematic review and meta-analysis. Diabetes Care 2010, 33, 414–420. [Google Scholar] [CrossRef]
- Korea Centers for Disease Control and Prevention. The Eighth Korea National Health and Nutrition Examination Survey (KNHANES VIII-2); Report No. 117002; Korea Centers for Disease Control and Prevention: Cheongju-si, Korea, 2022. Available online: https://knhanes.kdca.go.kr/knhanes/sub03/sub03_02_05.do (accessed on 15 March 2022).
- American Diabetes Association. 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes—2021. Diabetes Care 2020, 44, S15–S33. [Google Scholar] [CrossRef]
- Kang, H.; Kwon, O.-H.; Lee, W.-C.; Ko, J.-H. The relationship between obesity and lifestyle factors in Korean adolescents: The 6th Korea national health and nutrition examination survey (2013–2014). Korean J. Fam. Pract. 2016, 6, 205–210. [Google Scholar] [CrossRef]
- Hwang, S.; Kye, S. Self-rated health status among Korean adolescents: Differences in home environmental factors, health behaviors, psychological factors, and dietary habits. J. Korean Soc. Sch. Community Health Educ. 2018, 19, 27–45. [Google Scholar] [CrossRef]
- Moon, W.-J. The relation among adolescents metabolic syndrome, dietary life, physical activity and mental health—Using 7th national nutrition survey of 1st year (2016). J. Korea Acad. Ind. Coop. Soc. 2019, 20, 158–168. [Google Scholar] [CrossRef]
- Andes, L.J.; Cheng, Y.J.; Rolka, D.B.; Gregg, E.W.; Imperatore, G. Prevalence of prediabetes among adolescents and young adults in the United States, 2005–2016. JAMA Pediatr. 2020, 174, e194498. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, J.M.; Divers, J.; Isom, S.; Saydah, S.; Imperatore, G.; Pihoker, C.; Marcovina, S.M.; Mayer-Davis, E.J.; Hamman, R.F.; Dolan, L.; et al. Trends in prevalence of type 1 and type 2 diabetes in children and adolescents in the US, 2001–2017. JAMA 2021, 326, 717–727. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, R.; Neu, A. Diabetes in childhood and adolescence. Dtsch. Arztebl. Int. 2018, 115, 146–156. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. 13. Children and adolescents: Standards of medical care in diabetes—2021. Diabetes Care 2020, 44, S180–S199. [Google Scholar] [CrossRef]
- Argyropoulos, T.; Korakas, E.; Gikas, A.; Kountouri, A.; Kostaridou-Nikolopoulou, S.; Raptis, A.; Lambadiari, V. Stress hyperglycemia in children and adolescents as a prognostic indicator for the development of type 1 diabetes mellitus. Front. Pediatr. 2021, 9, 670976. [Google Scholar] [CrossRef]
- Wallace, A.S.; Wang, D.; Shin, J.-I.; Selvin, E. Screening and diagnosis of prediabetes and diabetes in US children and adolescents. Pediatrics 2020, 146, e20200265. [Google Scholar] [CrossRef]
- Hong, Y.H.; Chung, I.H.; Han, K.; Chung, S. Prevalence of type 2 diabetes mellitus among Korean children, adolescents, and adults younger than 30 years: Changes from 2002 to 2016. Diabetes Metab. J. 2022, 46, 297–306. [Google Scholar] [CrossRef]
- Cooper, A.R.; Goodman, A.; Page, A.S.; Sherar, L.B.; Esliger, D.W.; van Sluijs, E.M.; Andersen, L.B.; Anderssen, S.; Cardon, G.; Davey, R.; et al. Objectively measured physical activity and sedentary time in youth: The International children’s accelerometry database (ICAD). Int. J. Behav. Nutr. Phys. Act. 2015, 12, 113. [Google Scholar] [CrossRef]
- Jago, R.; Salway, R.; Emm-Collison, L.; Sebire, S.J.; Thompson, J.L.; Lawlor, D.A. Association of BMI category with change in children’s physical activity between ages 6 and 11 years: A longitudinal study. Int. J. Obes. 2020, 44, 104–113. [Google Scholar] [CrossRef]
- Grace, G.A.; Edward, S.; Gopalakrishnan, S. Dietary habits and obesity among adolescent school children: A case control study in an urban area of Kancheepuram district. Indian J. Community Med. 2021, 46, 637–640. [Google Scholar] [CrossRef]
- Winpenny, E.M.; van Sluijs, E.M.F.; White, M.; Klepp, K.-I.; Wold, B.; Lien, N. Changes in diet through adolescence and early adulthood: Longitudinal trajectories and association with key life transitions. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 86. [Google Scholar] [CrossRef] [PubMed]
- Boniol, M.; Dragomir, M.; Autier, P.; Boyle, P. Physical activity and change in fasting glucose and HbA1c: A quantitative meta-analysis of randomized trials. Acta. Diabetol. 2017, 54, 983–991. [Google Scholar] [CrossRef] [PubMed]
- Herbst, A.; Kapellen, T.; Schober, E.; Graf, C.; Meissner, T.; Holl, R.W. Impact of regular physical activity on blood glucose control and cardiovascular risk factors in adolescents with type 2 diabetes mellitus-A multicenter study of 578 patients from 225 centres. Pediatr. Diabetes 2015, 16, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.W. Factors related to self-rated health in adolescents: Findings from the Korea youth panel survey. Korean J. Health Prom. 2014, 31, 39–50. [Google Scholar] [CrossRef]
- Sollerhed, A.-C.; Lilja, E.; Heldt Holmgren, E.; Garmy, P. Subjective health, physical activity, body image and school wellbeing among adolescents in South of Sweden. Nurs. Rep. 2021, 11, 811–822. [Google Scholar] [CrossRef]
- Leppänen, M.H.; Lehtimäki, A.-V.; Roos, E.; Viljakainen, H. Body mass index, physical activity, and body image in adolescents. Children 2022, 9, 202. [Google Scholar] [CrossRef]
- Bakoula, C.; Kolaitis, G.; Veltsista, A.; Gika, A.; Chrousos, G.P. Parental stress affects the emotions and behaviour of children up to adolescence: A Greek prospective, longitudinal study. Stress 2009, 12, 486–498. [Google Scholar] [CrossRef]
- Kamis, C. The long-term impact of parental mental health on children’s distress trajectories in adulthood. Soc. Ment. Health 2021, 11, 54–68. [Google Scholar] [CrossRef]
- Ministry of Gender Equality and Family. 2020 Youth Comprehensive Survey. Available online: http://www.mogef.go.kr/mp/pcd/mp_pcd_s001d.do?mid=plc502&bbtSn=704797 (accessed on 5 June 2022).
- Kim, D.H. The protective factor of perceived stress in adolescences: Focused on resilience, parenting behavior, school life. Korean J. Str. Res. 2013, 21, 23–30. [Google Scholar]
- Kamba, A.; Daimon, M.; Murakami, H.; Otaka, H.; Matsuki, K.; Sato, E.; Tanabe, J.; Takayasu, S.; Matsuhashi, Y.; Yanagimachi, M.; et al. Association between higher serum cortisol levels and decreased insulin secretion in a general population. PLoS ONE 2016, 11, e0166077. [Google Scholar] [CrossRef]
- Park, H. A study on the relationships among factors affecting on children’s health behavior intention Parent’s perception on health, children’s perception on health, children’s health self efficacy, parental communication ability. Media Converg. Res. 2019, 26, 1–43. [Google Scholar] [CrossRef]
- Cottrell, L.; Harris, C.V.; Bradlyn, A.; Gunel, E.; Neal, W.A.; Abildso, L.; Coffman, J.W. Identifying the people and factors that influence children’s intentions to make lifestyle changes. Health Promot. Pract. 2012, 13, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Davison, B.; Saeedi, P.; Black, K.; Harrex, H.; Haszard, J.; Meredith-Jones, K.; Quigg, R.; Skeaff, S.; Stoner, L.; Wong, J.E.; et al. The association between parent diet quality and child dietary patterns in nine- to eleven-year-old children from Dunedin, New Zealand. Nutrients 2017, 9, 483. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, L.; Flores-Barrantes, P.; Moreno, L.A.; Manios, Y.; Gonzalez-Gil, E.M. The Influence of parental dietary behaviors and practices on children’s eating habits. Nutrients 2021, 13, 1138. [Google Scholar] [CrossRef]
- InterAct, C.; Scott, R.A.; Langenberg, C.; Sharp, S.J.; Franks, P.W.; Rolandsson, O.; Drogan, D.; van der Schouw, Y.T.; Ekelund, U.; Kerrison, N.D.; et al. The link between family history and risk of type 2 diabetes is not explained by anthropometric, lifestyle or genetic risk factors: The EPIC-InterAct study. Diabetologia 2013, 56, 60–69. [Google Scholar] [CrossRef]
- Wu, M.; Wen, J.; Qin, Y.; Zhao, H.; Pan, X.; Su, J.; Du, W.; Pan, E.; Zhang, Q.; Zhang, N.; et al. Familial history of diabetes is associated with poor glycaemic control in type 2 diabetics: A cross-sectional study. Sci. Rep. 2017, 7, 1432. [Google Scholar] [CrossRef]
Variables | Categories | General Group (n = 315, 2.4 m *) | High-Risk Group (n = 101, 0.7 m *) | Total (n = 416, 3.1 m *) | Rao–Scott χ2 (p) |
---|---|---|---|---|---|
n (%) | n (%) | n (%) | |||
Sex | Male | 173 (75.5) | 63 (24.5) | 236 (100.0) | 0.73 (0.394) |
Female | 142 (79.4) | 38 (20.6) | 180 (100.0) | ||
Age (years) | 12–14 | 143 (71.2) | 62 (28.8) | 205 (100.0) | 5.78 (0.018) |
15–18 | 172 (81.7) | 39 (18.3) | 211 (100.0) | ||
Family composition † | 2 generations | 272 (78.5) | 82 (21.5) | 354 (100.0) | 0.26 (0.612) |
3 generations | 31 (75.2) | 12 (24.8) | 43 (100.0) | ||
Type of house † | Detached house | 38 (69.1) | 24 (30.9) | 62 (100.0) | 1.42 (0.243) |
Apartment | 239 (79.3) | 64 (20.7) | 303 (100.0) | ||
Other | 37 (73.3) | 13 (26.7) | 50 (100.0) | ||
Household income † | Low | 19 (75.7) | 8 (24.3) | 27 (100.0) | 0.40 (0.666) |
Middle | 203 (76.0) | 70 (24.0) | 273 (100.0) | ||
High | 92 (80.4) | 23 (19.6) | 115 (100.0) | ||
Smoking experience | Yes | 29 (84.4) | 8 (15.6) | 37 (100.0) | 1.08 (0.300) |
No | 286 (76.6) | 93 (23.4) | 379 (100.0) | ||
Drinking experience | Yes | 68 (77.8) | 22 (22.2) | 90 (100.0) | 0.02 (0.882) |
No | 247 (77.1) | 79 (22.9) | 326 (100.0) |
Variables | Categories | General Group (n = 315, 2.4 m *) | High-Risk Group (n = 101, 0.7 m *) | Total (n = 416, 3.1 m *) | Rao–Scott χ2 or t (p) |
---|---|---|---|---|---|
n (%) or M ± SD | n (%) or M ± SD | n (%) or M ± SD | |||
BMI † | Underweight/Normal | 242 (83.2) | 55 (16.8) | 297 (100.0) | 12.84 (<0.001) |
Overweight | 30 (65.5) | 15 (34.5) | 45 (100.0) | ||
Obesity | 41 (57.2) | 30 (42.8) | 71 (100.0) | ||
Subjective health perception | Good | 201 (83.2) | 48 (16.8) | 249 (100.0) | 4.85 (0.009) |
Average | 102 (68.6) | 46 (31.4) | 148 (100.0) | ||
Poor | 12 (66.9) | 7 (33.1) | 19 (100.0) | ||
Perceived stress level | High | 80 (82.1) | 21 (17.9) | 101 (100.0) | 1.06 (0.349) |
Average | 172 (74.6) | 62 (25.4) | 234 (100.0) | ||
Low | 63 (79.0) | 18 (21.0) | 81 (100.0) | ||
Depressive mood experience | Yes | 18 (75.9) | 7 (24.1) | 25 (100.0) | 0.02 (0.882) |
No | 297 (77.4) | 94 (22.6) | 391 (100.0) | ||
Sleeping hours/day | 6.72 ± 0.09 | 7.10 ± 0.13 | 6.81 ± 0.07 | −2.09 (0.038) | |
Sitting time/day | 11.40 ± 0.28 | 10.97 ± 0.34 | 11.30 ± 0.23 | 1.01 (0.316) | |
Physical activity days/week | Not at all | 198 (74.5) | 73 (25.5) | 271 (100.0) | 2.93 (0.065) |
1–3/week | 81 (86.6) | 15 (13.4) | 96 (100.0) | ||
4–7/week | 36 (72.6) | 13 (27.4) | 49 (100.0) | ||
Muscle exercise days/week | Not at all | 183 (77.6) | 57 (22.4) | 240 (100.0) | 0.12 (0.887) |
1–3/week | 87 (77.9) | 29 (22.1) | 116 (100.0) | ||
4–7/week | 45 (74.4) | 15 (25.6) | 60 (100.0) | ||
SBP (mmHg) | 109.46 ± 0.84 | 112.73 ± 1.07 | 110.22 ± 0.68 | −2.39 (0.018) | |
DBP (mmHg) | 69.44 ± 0.57 | 70.40 ± 0.96 | 69.66 ± 0.51 | −0.90 (0.368) | |
FPG (mg/dL) | 89.37 ± 0.30 | 101.14 ± 2.25 | 92.04 ± 0.65 | −5.28 (<0.001) | |
HbA1c (%) | 5.30 ± 0.02 | 5.68 ± 0.07 | 5.39 ± 0.02 | −5.83 (<0.001) | |
Insulin (uIU/mL) | 14.24 ± 0.70 | 28.83 ± 3.33 | 17.56 ± 0.94 | −4.13 (<0.001) | |
TC (mg/dL) | 161.47 ± 1.52 | 167.09 ± 3.52 | 162.75 ± 1.53 | −1.55 (0.123) | |
HDL-C (mg/dL) | 51.39 ± 0.52 | 49.33 ± 1.02 | 50.92 ± 0.48 | 1.89 (0.059) | |
TG (mg/dL) | 90.62 ± 3.56 | 112.54 ± 7.93 | 95.60 ± 3.39 | −2.56 (0.011) | |
Uric acid (mg/dL) | 5.46 ± 0.08 | 5.92 ± 0.17 | 5.57 ± 0.08 | −2.47 (0.014) |
Variables (Reference) | Categories | Total (n = 416, 3.1 m *) | Males (n = 236, 1.6 m *) | Females (n = 180, 1.4 m *) | |||
---|---|---|---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | ||
Age (12–14 years) | 15–18 years | 0.55 (0.34, 0.90) | 0.019 | 0.44 (0.24, 0.83) | 0.012 | 1.39 (0.64, 3.04) | 0.406 |
Household income (High) | Middle | 1.29 (0.71, 2.34) | 0.398 | 1.38 (0.57, 3.35) | 0.479 | 1.30 (0.49, 3.46) | 0.596 |
Low | 1.32 (0.47, 3.67) | 0.596 | 1.58 (0.38, 6.65) | 0.531 | 1.28 (0.28, 5.83) | 0.751 | |
Smoking experience (No) | Yes | 0.60 (0.23, 1.59) | 0.305 | 0.80 (0.29, 2.22) | 0.662 | 0.29 (0.03, 2.45) | 0.254 |
Drinking experience (No) | Yes | 0.96 (0.55, 1.67) | 0.882 | 0.93 (0.46, 1.90) | 0.847 | 1.01 (0.39, 2.58) | 0.991 |
BMI (Underweight/Normal) | Overweight | 2.62 (1.30, 5.26) | 0.007 | 2.34 (1.01, 5.43) | 0.049 | 2.76 (0.69, 10.98) | 0.149 |
Obesity | 3.71 (2.08, 6.61) | <0.001 | 2.44 (1.11, 5.36) | 0.027 | 6.98 (3.20, 15.22) | <0.001 | |
Subjective health perception (Good) | Average | 2.26 (1.37, 3.75) | 0.002 | 2.20 (1.21, 4.01) | 0.010 | 2.44 (0.99, 6.03) | 0.054 |
Poor | 2.45 (0.80, 7.53) | 0.117 | 2.59 (0.68, 9.85) | 0.160 | 2.27 (0.32, 16.17) | 0.411 | |
Perceived stress level (Low) | High | 0.82 (0.35, 1.92) | 0.648 | 1.34 (0.46, 3.93) | 0.595 | 0.39 (0.09, 1.80) | 0.226 |
Average | 1.28 (0.64, 2.58) | 0.484 | 1.08 (0.49, 2.41) | 0.847 | 1.59 (0.53, 4.81) | 0.407 | |
Depressive mood experience (No) | Yes | 1.09 (0.36, 3.32) | 0.882 | 1.68 (0.41, 6.89) | 0.472 | 0.87 (0.15, 4.91) | 0.870 |
Sleeping hours/day | 1.19 (1.00, 1.40) | 0.044 | 1.13 (0.92, 1.38) | 0.253 | 1.25 (1.01, 1.54) | 0.038 | |
Sitting time/day | 0.97 (0.88, 1.08) | 0.576 | 1.00 (0.87, 1.14) | 0.953 | 0.94 (0.80, 1.10) | 0.400 | |
Physical activity days/week (Not at all) | 1–3/week | 0.45 (0.24, 0.85) | 0.014 | 0.37 (0.17, 0.81) | 0.013 | 0.48 (0.15, 1.54) | 0.213 |
4–7/week | 1.11 (0.49, 2.48) | 0.807 | 0.82 (0.29, 2.30) | 0.701 | 1.61 (0.33, 7.76) | 0.551 | |
Muscle exercise days/week (Not at all) | 1–3/week | 0.98 (0.54, 1.79) | 0.957 | 1.39 (0.68, 2.85) | 0.360 | 0.42 (0.15, 1.19) | 0.101 |
4–7/week | 1.19 (0.54, 2.62) | 0.658 | 1.14 (0.48, 2.73) | 0.762 | 1.92 (0.32, 11.34) | 0.470 | |
SBP (mmHg) | 1.03 (1.00, 1.05) | 0.021 | 1.00 (0.98, 1.03) | 0.829 | 1.08 (1.03, 1.12) | 0.002 | |
DBP (mmHg) | 1.01 (0.99, 1.04) | 0.367 | 1.00 (0.97, 1.03) | 0.867 | 1.04 (0.99, 1.09) | 0.166 | |
FPG (mg/dL) | 1.25 (1.16, 1.35) | <0.001 | 1.36 (1.23, 1.50) | <0.001 | 1.18 (1.06, 1.30) | 0.002 | |
HbA1c (%) | 1.94 (1.61, 2.34) | <0.001 | 1.75 (1.41, 2.18) | <0.001 | 2.37 (1.61, 3.51) | <0.001 | |
Insulin (uIU/mL) | 1.05 (1.03, 1.08) | <0.001 | 1.04 (1.02, 1.07) | 0.002 | 1.07 (1.03, 1.10) | <0.001 | |
TC (mg/dL) | 1.01 (1.00, 1.02) | 0.108 | 1.01 (1.00, 1.02) | 0.159 | 1.01 (0.99, 1.02) | 0.321 | |
HDL-C (mg/dL) | 0.98 (0.95, 1.00) | 0.073 | 0.98 (0.95, 1.01) | 0.174 | 0.97 (0.93, 1.02) | 0.274 | |
TG (mg/dL) | 1.01 (1.00, 1.01) | 0.007 | 1.01 (1.00, 1.01) | 0.057 | 1.01 (1.00, 1.01) | 0.037 | |
Uric acid (mg/dL) | 1.02 (1.01, 1.04) | 0.013 | 1.02 (0.98, 1.05) | 0.375 | 1.06 (1.01, 1.12) | 0.020 |
Variables (Reference) | Categories | Total (n = 416, 3.1 m *) | Males (n = 236, 1.6 m *) | Females (n = 180, 1.4 m *) | ||||
---|---|---|---|---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | |||
Paternal factor (n = 302) | BMI (kg/m2) | 1.06 (0.97, 1.15) | 0.189 | 1.11 (0.99, 1.23) | 0.066 | 0.97 (0.86, 1.10) | 0.635 | |
Physician-diagnosed diabetes (No) | Yes | 2.68 (0.98, 7.34) | 0.054 | 2.95 (0.58, 15.08) | 0.191 | 2.63 (0.74, 9.34) | 0.134 | |
Physician-diagnosed dyslipidemia (No) | Yes | 1.55 (0.75, 3.21) | 0.236 | 1.57 (0.61, 4.06) | 0.350 | 1.54 (0.48, 4.91) | 0.463 | |
Subjective health perception (Good) | Average | 1.49 (0.71, 3.15) | 0.289 | 1.09 (0.43, 2.74) | 0.857 | 2.82 (0.79, 10.08) | 0.110 | |
Poor | 2.27 (0.76, 6.72) | 0.139 | 1.02 (0.19, 5.46) | 0.985 | 7.32 (1.95, 27.51) | 0.004 | ||
Perceived stress level (Low) | High | 1.34 (0.30, 6.01) | 0.703 | 16.88 (2.15, 132.66) | 0.008 | 0.24 (0.03, 2.04) | 0.187 | |
Average | 1.74 (0.43, 6.93) | 0.432 | 17.48 (2.23, 136.80) | 0.007 | 0.59 (0.12, 2.93) | 0.515 | ||
SBP (mmHg) | 1.00 (0.98, 1.02) | 0.815 | 1.01 (0.98, 1.03) | 0.630 | 0.98 (0.94, 1.02) | 0.247 | ||
DBP (mmHg) | 1.01 (0.97, 1.05) | 0.696 | 1.04 (1.00, 1.09) | 0.077 | 0.95 (0.89, 1.02) | 0.130 | ||
FPG (mg/dL) | 1.01 (1.00, 1.03) | 0.149 | 1.01 (0.99, 1.03) | 0.517 | 1.02 (1.00, 1.04) | 0.145 | ||
HbA1c (%) | 1.03 (0.99, 1.08) | 0.182 | 1.03 (0.97, 1.09) | 0.344 | 1.03 (0.97, 1.10) | 0.312 | ||
Insulin (uIU/mL) | 0.98 (0.93, 1.03) | 0.425 | 0.99 (0.92, 1.06) | 0.770 | 0.96 (0.89, 1.03) | 0.238 | ||
TC (mg/dL) | 1.00 (0.99, 1.01) | 0.647 | 1.00 (0.99, 1.01) | 0.884 | 1.01 (0.99, 1.02) | 0.421 | ||
HDL-C (mg/dL) | 0.99 (0.97, 1.01) | 0.373 | 0.97 (0.94, 1.00) | 0.076 | 1.01 (0.98, 1.05) | 0.389 | ||
TG (mg/dL) | 1.00 (1.00, 1.00) | 0.201 | 1.00 (1.00, 1.01) | 0.116 | 1.00 (1.00, 1.00) | 0.958 | ||
Uric acid (mg/dL) | 1.01 (0.99, 1.04) | 0.324 | 0.99 (0.95, 1.02) | 0.465 | 1.07 (1.03, 1.12) | 0.001 |
Variables (Reference) | Categories | Total (n = 416, 3.1 m *) | Males (n = 236, 1.6 m *) | Females (n = 180, 1.4 m *) | ||||
---|---|---|---|---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | |||
Maternal factor (n = 375) | BMI (kg/m2) | 1.05 (0.99, 1.12) | 0.136 | 1.06 (0.96, 1.17) | 0.251 | 1.06 (0.98, 1.13) | 0.139 | |
Physician-diagnosed diabetes (No) | Yes | 10.02 (2.83, 35.51) | <0.001 | 14.44 (1.23, 170.16) | 0.034 | 9.07 (1.44, 57.28) | 0.019 | |
Physician-diagnosed dyslipidemia (No) | Yes | 1.51 (0.61, 3.77) | 0.373 | 1.22 (0.33, 4.49) | 0.765 | 1.99 (0.58, 6.88) | 0.275 | |
Subjective health perception (Good) | Average | 1.01 (0.53, 1.94) | 0.980 | 0.52 (0.22, 1.25) | 0.144 | 3.87 (1.35, 11.10) | 0.012 | |
Poor | 1.52 (0.58, 4.00) | 0.399 | 0.95 (0.29, 3.17) | 0.932 | 4.86 (1.13, 21.01) | 0.034 | ||
Perceived stress level (Low) | High | 0.80 (0.28, 2.24) | 0.664 | 0.93 (0.22, 3.84) | 0.915 | 0.59 (0.13, 2.83) | 0.511 | |
Average | 0.93 (0.36, 2.41) | 0.877 | 0.80 (0.22, 2.98) | 0.739 | 1.11 (0.26, 4.69) | 0.891 | ||
SBP (mmHg) | 1.00 (0.98, 1.02) | 0.954 | 0.99 (0.96, 1.02) | 0.617 | 1.01 (0.98, 1.04) | 0.407 | ||
DBP (mmHg) | 0.99 (0.96, 1.02) | 0.626 | 1.00 (0.95, 1.04) | 0.924 | 0.99 (0.95, 1.04) | 0.688 | ||
FPG (mg/dL) | 1.03 (1.01, 1.04) | 0.001 | 1.03 (1.00, 1.07) | 0.030 | 1.02 (1.00, 1.04) | 0.019 | ||
HbA1c (%) | 1.11 (1.05, 1.17) | <0.001 | 1.12 (1.02, 1.24) | 0.024 | 1.11 (1.04, 1.18) | 0.003 | ||
Insulin (uIU/mL) | 1.00 (0.95, 1.05) | 0.992 | 0.99 (0.92, 1.07) | 0.861 | 1.01 (0.95, 1.08) | 0.690 | ||
TC (mg/dL) | 1.00 (0.99, 1.01) | 0.603 | 1.01 (1.00, 1.02) | 0.321 | 0.98 (0.97, 1.00) | 0.028 | ||
HDL-C (mg/dL) | 1.00 (0.97, 1.02) | 0.747 | 1.01 (0.98, 1.05) | 0.438 | 0.97 (0.94, 1.00) | 0.056 | ||
TG (mg/dL) | 1.00 (0.99, 1.00) | 0.357 | 1.00 (0.99, 1.00) | 0.485 | 1.00 (0.99, 1.01) | 0.659 | ||
Uric acid (mg/dL) | 0.98 (0.94, 1.01) | 0.229 | 0.98 (0.95, 1.02) | 0.412 | 0.96 (0.90, 1.04) | 0.311 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bang, K.-S.; Jang, S.-Y.; Choe, J.-H. Factors Affecting High-Risk for Diabetes among Korean Adolescents: An Analysis Using the Eighth Korea National Health and Nutrition Examination Survey (2020). Children 2022, 9, 1249. https://doi.org/10.3390/children9081249
Bang K-S, Jang S-Y, Choe J-H. Factors Affecting High-Risk for Diabetes among Korean Adolescents: An Analysis Using the Eighth Korea National Health and Nutrition Examination Survey (2020). Children. 2022; 9(8):1249. https://doi.org/10.3390/children9081249
Chicago/Turabian StyleBang, Kyung-Sook, Sang-Youn Jang, and Ji-Hye Choe. 2022. "Factors Affecting High-Risk for Diabetes among Korean Adolescents: An Analysis Using the Eighth Korea National Health and Nutrition Examination Survey (2020)" Children 9, no. 8: 1249. https://doi.org/10.3390/children9081249
APA StyleBang, K. -S., Jang, S. -Y., & Choe, J. -H. (2022). Factors Affecting High-Risk for Diabetes among Korean Adolescents: An Analysis Using the Eighth Korea National Health and Nutrition Examination Survey (2020). Children, 9(8), 1249. https://doi.org/10.3390/children9081249