Antibiotherapy in Children with Cystic Fibrosis—An Extensive Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
- Population: patients with CF
- Intervention: antibiotic treatment of respiratory exacerbations
- Comparisons: literature research
- Outcome: accuracy
- Study design: any
2.2. Inclusion Criteria
- Original articles, special articles, systematic reviews were taken into consideration for the systematic review.
- Studies involving pediatric CF patients with recurrent infections with various types of germs.
- Only studies involving the cystic fibrosis/antibiotics /infections were included.
- Studies written only in English were taken into consideration.
2.3. Exclusion Criteria
- Studies that discussed the same topic, which proved to have the same hypothesis and results were not included in the paper, being included only a limited number of studies that presented superior results to the others.
- Studies involving adult CF population were not taken into consideration for the research of this review.
- Studies that presented only in vitro results, without clinical outcome, were also not included.
3. Results
3.1. Antibiotic Treatment in CF Patients
3.1.1. Pseudomonas aeruginosa Infection
3.1.2. Staphylococcus aureus Infection
3.1.3. Methicillin-Resistant Staphylococcus aureus (MRSA)
3.1.4. Burkholderia cepacia Complex Strain
3.1.5. Stenotrophomonas maltophilia
3.1.6. Infection with Achromobacter (Alcaligenes) xylosoxidans
3.1.7. Nontuberculous mycobacteria (NTM)
3.1.8. Infection with Haemophilus Influenza
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Boeck, K.; Wilschanski, M.; Castellani, C.; Taylor, C.; Cuppens, H.; Dodge, J.; Sinaasappel, M. Cystic fibrosis: Terminology and diagnostic algorithms. Thorax 2006, 61, 627–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dediu, M.; Ciuca, I.M.; Marc, M.S.; Boeriu, E.; Pop, L.L. Factors influencing lung function in patients with cystic fibrosis in western romania. J. Multidiscip. Healthc. 2021, 14, 1423–1429. [Google Scholar] [CrossRef] [PubMed]
- MacKenzie, T.; Gifford, A.H.; Sabadosa, K.A.; Quinton, H.B.; Knapp, E.A.; Goss, C.H.; Marshall, B.C. Longevity of patients with cystic fibrosis in 2000 to 2010 and beyond: Survival analysis of the Cystic Fibrosis Foundation Patient Registry. Ann. Intern. Med. 2014, 161, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Castellani, C.; Duff, A.J.A.; Bell, S.C.; Heijerman, H.G.M.; Munck, A.; Ratjen, F.; Sermet-Gaudelus, I.; Southern, K.W.; Barben, J.; Flume, P.A.; et al. ECFS best practice guidelines: The 2018 revision. J. Cyst. Fibros. 2018, 17, 153–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chmiel, J.F.; Aksamit, T.R.; Chotirmall, S.H.; Dasenbrook, E.C.; Elborn, J.S.; LiPuma, J.J.; Ranganathan, S.C.; Waters, V.J.; Ratjen, F.A. Antibiotic management of lung infections in cystic fibrosis. I. The microbiome, methicillin-resistant Staphylococcus aureus, gram-negative bacteria, and multiple infections. Ann. Am. Thorac. Soc. 2014, 11, 1120–1129. [Google Scholar] [CrossRef] [Green Version]
- Sanders, D.B.; Bittner, R.C.L.; Rosenfeld, M.; Hoffman, L.R.; Redding, G.J.; Goss, C.H. Failure to recover to baseline pulmonary function after cystic fibrosis pulmonary exacerbation. Am. J. Respir. Crit. Care Med. 2010, 182, 627–632. [Google Scholar] [CrossRef] [Green Version]
- Mogayzel, P.J.; Naureckas, E.T.; Robinson, K.A.; Brady, C.; Guill, M.; Lahiri, T.; Lubsch, L.; Matsui, J.; Oermann, C.M.; Ratjen, F.; et al. Cystic fibrosis foundation pulmonary guideline pharmacologic approaches to prevention and Eradication of Initial Pseudomonas aeruginosa Infection. Ann. Am. Thorac. Soc. 2014, 11, 1640–1650. [Google Scholar] [CrossRef]
- Habib, A.R.R.; Kajbafzadeh, M.; Desai, S.; Yang, C.L.; Skolnik, K.; Quon, B.S. A Systematic Review of the Clinical Efficacy and Safety of CFTR Modulators in Cystic Fibrosis. Sci. Rep. 2019, 9, 7234. [Google Scholar] [CrossRef]
- Flume, P.A.; Mogayzel, P.J.; Robinson, K.A.; Goss, C.H.; Rosenblatt, R.L.; Kuhn, R.J.; Marshall, B.C.; Bujan, J.; Downs, A.; Finder, J.; et al. Cystic fibrosis pulmonary guidelines: Treatment of pulmonary exacerbations. Am. J. Respir. Crit. Care Med. 2009, 180, 802–808. [Google Scholar] [CrossRef] [Green Version]
- Cystic Fibrosis Foundation. Cystic Fibrosis Foundation Patient Registry 2012; Annual Data Report; Bethesda: Rockville, MD, USA, 2013. [Google Scholar]
- Döring, G.; Flume, P.; Heijerman, H.; Elborn, J.S. Treatment of lung infection in patients with cystic fibrosis: Current and future strategies. J. Cyst. Fibros. 2012, 11, 461–479. [Google Scholar] [CrossRef] [Green Version]
- Frederiksen, B.; Koch, C.; Høiby, N. Antibiotic treatment of initial colonization with Pseudomonas aeruginosa postpones chronic infection and prevents deterioration of pulmonary function in cystic fibrosis. Pediatr. Pulmonol. 1997, 23, 330–335. [Google Scholar] [CrossRef]
- Agent, P.; Parrott, H. Inhaled therapy in cystic fibrosis: Agents, devices and regimens. Breathe 2015, 11, 111–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doring, G.; Conway, S.P.; Heijerman, H.G.; Hodson, M.E.; Hoiby, A.; Smyth, A.; Touw, D.J. Antibiotic therapy against Pseudomonas aeruginosa in cystic fibrosis: A European consensus. Eur. Respir. J. 2000, 16, 749–767. [Google Scholar] [CrossRef] [PubMed]
- Saiman, L.; Siegel, J. Infection Control Recommendations for Patients With Cystic Fibrosis: Microbiology, Important Pathogens, and Infection Control Practices to Prevent Patient-to-Patient Transmission. Infect. Control Hosp. Epidemiol. 2003, 24, S6–S52. [Google Scholar] [CrossRef] [PubMed]
- Gibson, R.L.; Emerson, J.; McNamara, S.; Burns, J.L.; Rosenfeld, M.; Yunker, A.; Hamblett, N.; Accurso, F.; Dovey, M.; Hiatt, P.; et al. Significant microbiological effect of inhaled tobramycin in young children with cystic fibrosis. Am. J. Respir. Crit. Care Med. 2003, 167, 841–849. [Google Scholar] [CrossRef] [PubMed]
- Kerem, E.; Corey, M.; Stein, R.; Gold, R.; Levison, H. Risk factors for Pseudomonas aeruginosa colonization in cystic fibrosis patients. Pediatr. Infect. Dis. J. 1990, 9, 494–498. [Google Scholar] [CrossRef] [PubMed]
- Langton Hewer, S.C.; Smyth, A.R. Antibiotic strategies for eradicating Pseudomonas aeruginosa in people with cystic fibrosis. Cochrane Database Syst. Rev. 2014, 2014, CD004197. [Google Scholar]
- Lee, T.W.R.; Brownlee, K.G.; Conway, S.P.; Denton, M.; Littlewood, J.M. Evaluation of a new definition for chronic Pseudomonas aeruginosa infection in cystic fibrosis patients. J. Cyst. Fibros. 2003, 2, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Høiby, N.; Ciofu, O.; Bjarnsholt, T. Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol. 2010, 5, 1663–1674. [Google Scholar] [CrossRef]
- Ciofu, O.; Mandsberg, L.F.; Wang, H.; Høiby, N. Phenotypes selected during chronic lung infection in cystic fibrosis patients: Implications for the treatment of Pseudomonas aeruginosa biofilm infections. FEMS Immunol. Med. Microbiol. 2012, 66, 120. [Google Scholar] [CrossRef] [Green Version]
- Aaron, S.D.; Vandemheen, K.L.; Ferris, W.; Fergusson, D.; Tullis, E.; Haase, D.; Berthiaume, Y.; Brown, N.; Wilcox, P.; Yozghatlian, V.; et al. Combination antibiotic susceptibility testing to treat exacerbations of cystic fibrosis associated with multiresistant bacteria: A randomised, double-blind, controlled clinical trial. Lancet 2005, 366, 463–471. [Google Scholar] [CrossRef]
- Smyth, A. Multiresistant pulmonary infection in cystic fibrosis—Prevention is better than cure. Lancet 2005, 366, 433–435. [Google Scholar] [CrossRef]
- Saiman, L.; Mehar, F.; Niu, W.W.; Neu, H.C.; Shaw, K.J.; Miller, G.; Prince, A. Antibiotic susceptibility of multiply resistant Pseudomonas aeruginosa isolated from patients with cystic fibrosis, including candidates for transplantation. Clin. Infect. Dis. 1996, 23, 532–537. [Google Scholar] [CrossRef]
- Flume, P.A.; Mogayzel, P.J.; Robinson, K.A.; Rosenblatt, R.L.; Quittell, L.; Marshall, B.C. Cystic Fibrosis Pulmonary Guidelines. Am. J. Respir. Crit. Care Med. 2010, 182, 298–306. [Google Scholar] [CrossRef]
- Rosenfeld, M.; Gibson, R.; McNamara, S.; Emerson, J.; McCoyd, K.S.; Shell, R.; Borowitz, D.; Konstan, M.W.; Retsch-Bogart, G.; Wilmott, R.W.; et al. Serum and lower respiratory tract drug concentrations after tobramycin inhalation in young children with cystic fibrosis. J. Pediatr. 2001, 139, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Smyth, A.R.; Bell, S.C.; Bojcin, S.; Bryon, M.; Duff, A.; Flume, P.; Kashirskaya, N.; Munck, A.; Ratjen, F.; Schwarzenberg, S.J.; et al. European Cystic Fibrosis Society Standards of Care: Best Practice guidelines. J. Cyst. Fibros. 2014, 13 (Suppl. 1), S23–S42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oermann, C.M.; Retsch-Bogart, G.Z.; Quittner, A.L.; Gibson, R.L.; Mccoy, K.S.; Montgomery, A.B.; Cooper, P.J. An 18-month study of the safety and efficacy of repeated courses of inhaled aztreonam lysine in cystic fibrosis. Pediatr. Pulmonol. 2010, 45, 1121–1134. [Google Scholar] [CrossRef] [Green Version]
- Mogayzel, P.J., Jr.; Naureckas, E.T.; Robinson, K.A.; Mueller, G.; Hadjiliadis, D.; Hoag, J.B.; Lubsch, L.; Hazle, L.; Sabadosa, K.; Marshall, B.; et al. Cystic fibrosis pulmonary guidelines. Chronic medications for maintenance of lung health. Am. J. Respir. Crit. Care Med. 2013, 187, 680–689. [Google Scholar] [CrossRef]
- Frost, F.; Young, G.R.; Wright, L.; Miah, N.; Smith, D.L.; Winstanley, C.; Walshaw, M.J.; Fothergill, J.L.; Nazareth, D. The clinical and microbiological utility of inhaled aztreonam lysine for the treatment of acute pulmonary exacerbations of cystic fibrosis: An open-label randomised crossover study (AZTEC-CF). J. Cyst. Fibros. 2021, 20, 994–1002. [Google Scholar] [CrossRef]
- Ballmann, M.; Smyth, A.; Geller, D.E. Therapeutic approaches to chronic cystic fibrosis respiratory infections with available, emerging aerosolized antibiotics. Respir. Med. 2011, 105 (Suppl. 2), S2–S8. [Google Scholar] [CrossRef]
- Saiman, L.; Anstead, M.; Mayer-Hamblett, N.; Lands, L.C.; Kloster, M.; Hocevar-Trnka, J.; Goss, C.H.; Rose, L.M.; Burns, J.L.; Marshall, B.C.; et al. Effect of azithromycin on pulmonary function in patients with cystic fibrosis uninfected with Pseudomonas aeruginosa: A randomized controlled trial. JAMA 2010, 303, 1707–1715. [Google Scholar] [CrossRef] [PubMed]
- de Groot, R.; Smith, A.L. Antibiotic Pharmacokinetics in Cystic Fibrosis: Differences and Clinical Significance. Clin. Pharmacokinet. 1987, 13, 228–253. [Google Scholar] [CrossRef] [PubMed]
- Jackson, L.; Waters, V. Factors influencing the acquisition and eradication of early Pseudomonas aeruginosa infection in cystic fibrosis. J. Cyst. Fibros. 2021, 20, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Parkins, M.D.; Rendall, J.C.; Elborn, J.S. Incidence and risk factors for pulmonary exacerbation treatment failures in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa. Chest 2012, 141, 485–493. [Google Scholar] [CrossRef]
- Smith, A.L.; Fiel, S.B.; Mayer-Hamblett, N.; Ramsey, B.; Burns, J.L. Susceptibility Testing of Pseudomonas aeruginosa Isolates and Clinical Response to Parenteral Antibiotic Administration Lack of Association in Cystic Fibrosis. Chest 2003, 123, 1495–1502. [Google Scholar] [CrossRef] [Green Version]
- Frederiksen, B.; Koch, C.; Høiby, N. Changing Epidemiology of Pseudomonas aeruginosa Infection in Danish Cystic Fibrosis Patients (1974–1995). Pediatr. Pulmonol. 1999, 28, 159–166. [Google Scholar] [CrossRef]
- Saiman, L.; Siegel, J.D.; LiPuma, J.J.; Brown, R.F.; Bryson, E.A.; Chambers, M.J.; Downer, V.S.; Fliege, J.; Hazle, L.A.; Jain, M.; et al. Infection prevention and control guideline for cystic fibrosis: 2013 update. Infect. Control Hosp. Epidemiol. 2014, 35 (Suppl. 1), S1–S67. [Google Scholar] [CrossRef]
- Littlewood, J.M.; Bevan, A.; Connett, G.; Conway, S.; Govan, J.; Hodson, M. Antibiotic Treatment for Cystic Fibrosis: Report of the UK Cystic Fibrosis Trust Antibiotic Group; Cystic Fibrosis Trust: London, UK, 2009; pp. 1–50. [Google Scholar]
- Sader, H.S.; Duncan, L.R.; Doyle, T.B.; Castanheira, M. Antimicrobial activity of ceftazidime/avibactam, ceftolozane/tazobactam and comparator agents against Pseudomonas aeruginosa from cystic fibrosis patients. JAC-Antimicrob. Resist. 2021, 3, dlab126. [Google Scholar] [CrossRef]
- Bensman, T.J.; Wang, J.; Jayne, J.; Fukushima, L.; Rao, A.P.; D’Argenio, D.Z.; Beringer, P.M. Pharmacokinetic-Pharmacodynamic Target Attainment Analyses To Determine Optimal Dosing of Ceftazidime-Avibactam for the Treatment of Acute Pulmonary Exacerbations in Patients with Cystic Fibrosis. Antimicrob. Agents Chemother. 2017, 61, e00988-17. [Google Scholar] [CrossRef] [Green Version]
- Cowart, M.C.; Ferguson, C.L. Optimization of Aztreonam in Combination with Ceftazidime/Avibactam in a Cystic Fibrosis Patient with Chronic Stenotrophomonas maltophilia Pneumonia Using Therapeutic Drug Monitoring: A Case Study. Ther. Drug Monit. 2021, 43, 146–149. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Condren, M.; Walter, J. Ceftazidime-avibactam for the treatment of multidrug resistant Burkholderia cepacia complex in a pediatric cystic fibrosis patient. Pediatr. Pulmonol. 2020, 55, 283–284. [Google Scholar] [CrossRef] [PubMed]
- Treggiari, M.M.; Rosenfeld, M.; Mayer-Hamblett, N.; Retsch-Bogart, G.; Gibson, R.L.; Williams, J.; Emerson, J.; Kronmal, R.A.; Ramsey, B.W. Early Anti-Pseudomonal Acquisition in Young Patients with Cystic Fibrosis: Rationale and Design of the EPIC Clinical Trial and Observational Study. Contemp. Clin. Trials 2009, 30, 256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esposito, S.; Pennoni, G.; Mencarini, V.; Palladino, N.; Peccini, L.; Principi, N. Antimicrobial Treatment of Staphylococcus aureus in Patients with Cystic Fibrosis. Front. Pharmacol. 2019, 10, 849. [Google Scholar] [CrossRef] [PubMed]
- Cogen, J.; Emerson, J.; Sanders, D.B.; Ren, C.; Schechter, M.S.; Gibson, R.L.; Morgan, W.; Rosenfeld, M. Risk factors for lung function decline in a large cohort of young cystic fibrosis patients. Pediatr. Pulmonol. 2015, 50, 763–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stutman, H.R.; Lieberman, J.M.; Nussbaum, E.; Marks, M.I. Antibiotic prophylaxis in infants and young children with cystic fibrosis: A randomized controlled trial. J. Pediatr. 2002, 140, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Ratjen, F.; Comes, G.; Paul, K.; Posselt, H.G.; Wagner, T.O.F.; Harms, K. Effect of continuous antistaphylococcal therapy on the rate of P. aeruginosa acquisition in patients with cystic fibrosis. Pediatr. Pulmonol. 2001, 31, 13–16. [Google Scholar] [CrossRef]
- Akil, N.; Muhlebach, M.S. Biology and management of methicillin resistant Staphylococcus aureus in cystic fibrosis. Pediatr. Pulmonol. 2018, 53, S64–S74. [Google Scholar] [CrossRef] [Green Version]
- Döring, G.; Hoiby, N. Early intervention and prevention of lung disease in cystic fibrosis: A European consensus. J. Cyst. Fibros. 2004, 3, 67–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dasenbrook, E.C.; Merlo, C.A.; Diener-West, M.; Lechtzin, N.; Boyle, M.P. Persistent methicillin-resistant Staphylococcus aureus and rate of FEV1 decline in cystic fibrosis. Am. J. Respir. Crit. Care Med. 2008, 178, 814–821. [Google Scholar] [CrossRef]
- Waterer, G.; Lord, J.; Hofmann, T.; Jouhikainen, T. Phase I, Dose-Escalating Study of the Safety and Pharmacokinetics of Inhaled Dry-Powder Vancomycin (AeroVanc) in Volunteers and Patients with Cystic Fibrosis: A New Approach to Therapy for Methicillin-Resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2020, 64, e01776-19. [Google Scholar] [CrossRef]
- Dezube, R.; Jennings, M.T.; Rykiel, M.; Diener-West, M.; Boyle, M.P.; Chmiel, J.F.; Dasenbrook, E.C. Eradication of persistent methicillin-resistant Staphylococcus aureus infection in cystic fibrosis. J. Cyst. Fibros. 2019, 18, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Generali, J.A.; Cada, D.J. Off-label drug uses. Hosp. Pharm. 2009, 44, 232–233. [Google Scholar] [CrossRef]
- Dolce, D.; Neri, S.; Grisotto, L.; Campana, S.; Ravenni, N.; Miselli, F.; Camera, E.; Zavataro, L.; Braggion, C.; Fiscarelli, E.V.; et al. Methicillin-resistant Staphylococcus aureus eradication in cystic fibrosis patients: A randomized multicenter study. PLoS ONE 2019, 14, e0213497. [Google Scholar] [CrossRef]
- Liu, C.; Bayer, A.; Cosgrove, S.E.; Daum, R.S.; Fridkin, S.K.; Gorwitz, R.J.; Kaplan, S.L.; Karchmer, A.W.; Levine, D.P.; Murray, B.E.; et al. Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children: Executive summary. Clin. Infect. Dis. 2011, 52, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Walkey, A.J.; O’Donnell, M.R.; Wiener, R.S. Linezolid vs Glycopeptide Antibiotics for the Treatment of Suspected Methicillin-Resistant Staphylococcus aureus Nosocomial Pneumonia: A Meta-analysis of Randomized Controlled Trials. Chest 2011, 139, 1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo, D.K.H.; Muhlebach, M.S.; Smyth, A.R. Interventions for the eradication of meticillin-resistant Staphylococcus aureus (MRSA) in people with cystic fibrosis. Cochrane Database Syst. Rev. 2018, 2018, CD009650. [Google Scholar] [CrossRef]
- Drevinek, P.; Mahenthiralingam, E. Burkholderia cenocepacia in cystic fibrosis: Epidemiology and molecular mechanisms of virulence. Clin. Microbiol. Infect. 2010, 16, 821–830. [Google Scholar] [CrossRef] [Green Version]
- Mahenthiralingam, E.; Urban, T.A.; Goldberg, J.B. The multifarious, multireplicon Burkholderia cepacia complex. Nat. Rev. Microbiol. 2005, 3, 144–156. [Google Scholar] [CrossRef]
- Speert, D.P.; Henry, D.; Vandamme, P.; Corey, M.; Mahenthiralingam, E. Epidemiology of Burkholderia cepacia Complex in Patients with Cystic Fibrosis, Canada. Emerg. Infect. Dis. J. 2002, 8, 181–187. [Google Scholar] [CrossRef] [Green Version]
- Scoffone, V.C.; Chiarelli, L.R.; Trespidi, G.; Mentasti, M.; Riccardi, G.; Buroni, S. Burkholderia cenocepacia infections in cystic fibrosis patients: Drug resistance and therapeutic approaches. Front. Microbiol. 2017, 8, 1592. [Google Scholar] [CrossRef] [Green Version]
- Avgeri, S.G.; Matthaiou, D.K.; Dimopoulos, G.; Grammatikos, A.P.; Falagas, M.E. Therapeutic options for Burkholderia cepacia infections beyond co-trimoxazole: A systematic review of the clinical evidence. Int. J. Antimicrob. Agents 2009, 33, 394–404. [Google Scholar] [CrossRef] [PubMed]
- Esposito, A.; Pompilio, A.; Bettua, C.; Crocetta, V.; Giacobazzi, E.; Fiscarelli, E.; Jousson, O.; Bonaventura, G. Evolution of stenotrophomonas maltophilia in cystic fibrosis lung over chronic infection: A genomic and phenotypic population study. Front. Microbiol. 2017, 8, 1590. [Google Scholar] [CrossRef] [PubMed]
- Berdah, L.; Taytard, J.; Leyronnas, S.; Clement, A.; Boelle, P.Y.; Corvol, H. Stenotrophomonas maltophilia: A marker of lung disease severity. Pediatr. Pulmonol. 2018, 53, 426–430. [Google Scholar] [CrossRef]
- De Vrankrijker, A.M.M.; Wolfs, T.F.W.; Van Der Ent, C.K. Challenging and emerging pathogens in cystic fibrosis. Paediatr. Respir. Rev. 2010, 11, 246–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waters, V.; Yau, Y.; Prasad, S.; Lu, A.; Atenafu, E.; Crandall, I.; Tom, S.; Tullis, E.; Ratjen, F. Stenotrophomonas maltophilia in cystic fibrosis: Serologic response and effect on lung disease. Am. J. Respir. Crit. Care Med. 2011, 183, 635–640. [Google Scholar] [CrossRef]
- Capaldo, C.; Beauruelle, C.; Saliou, P.; Rault, G.; Ramel, S.; Héry-Arnaud, G. Investigation of Stenotrophomonas maltophilia epidemiology in a French cystic fibrosis center. Respir. Med. Res. 2020, 78, 100757. [Google Scholar] [CrossRef]
- Amin, R.; Waters, V. Antibiotic treatment for Stenotrophomonas maltophilia in people with cystic fibrosis. Cochrane Database Syst. Rev. 2016, 2016, CD009249. [Google Scholar]
- De Baets, F.; Schelstraete, P.; Van Daele, S.; Haerynck, F.; Vaneechoutte, M. Achromobacter xylosoxidans in cystic fibrosis: Prevalence and clinical relevance. J. Cyst. Fibros. 2007, 6, 75–78. [Google Scholar] [CrossRef] [Green Version]
- Saiman, L.; Chen, Y.; Tabibi, S.; San Gabriel, P.; Zhou, J.; Liu, Z.; Lai, L.; Whittier, S. Identification and antimicrobial susceptibility of Alcaligenes xylosoxidans isolated from patients with cystic fibrosis. J. Clin. Microbiol. 2001, 39, 3942–3945. [Google Scholar] [CrossRef] [Green Version]
- Billinger, M.E.; Olivier, K.N.; Viboud, C.; Montes De Oca, R.; Steiner, C.; Holland, S.M.; Prevots, D.R. Nontuberculous Mycobacteria–associated Lung Disease in Hospitalized Persons, United States, 1998–2005. Emerg. Infect. Dis. 2009, 15, 1562. [Google Scholar] [CrossRef]
- Waters, V.; Ratjen, F. Antibiotic treatment for nontuberculous mycobacteria lung infection in people with cystic fibrosis. Cochrane Database Syst. Rev. 2020, 2020, CD010004. [Google Scholar]
- Chmiel, J.F.; Aksamit, T.R.; Chotirmall, S.H.; Dasenbrook, E.C.; Elborn, J.S.; LiPuma, J.J.; Ranganathan, S.C.; Waters, V.J.; Ratjen, F.A. Antibiotic management of lung infections in cystic fibrosis. II. Nontuberculous mycobacteria, anaerobic bacteria, and fungi. Ann. Am. Thorac. Soc. 2014, 11, 1298–1306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DaCosta, A.; Jordan, C.L.; Giddings, O.; Lin, F.-C.; Gilligan, P.; Esther, C.R. Outcomes associated with antibiotic regimens for treatment of Mycobacterium abscessus in cystic fibrosis patients. J. Cyst. Fibros. 2017, 16, 483–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olivier, K.N.; Weber, D.J.; Wallace, R.J.; Faiz, A.R.; Lee, J.H.; Zhang, Y.; Brown-Elliot, B.A.; Handler, A.; Wilson, R.W.; Schechter, M.S.; et al. Nontuberculous mycobacteria. I: Multicenter prevalence study in cystic fibrosis. Am. J. Respir. Crit. Care Med. 2003, 167, 828–834. [Google Scholar] [CrossRef]
- Floto, A.; Olivier, K.N.; Saiman, L.; Daley, C.L.; Herrmann, J.-L.; Nick, J.A.; Noone, P.G.; Bilton, D.; Corris, P.; Gibson, R.L.; et al. US Cystic Fibrosis Foundation and European Cystic Fibrosis Society consensus recommendations for the management of non-tuberculous mycobacteria in individuals with cystic fibrosis. Thorax 2016, 71 (Suppl. 1), i1–i22. [Google Scholar] [CrossRef] [Green Version]
- Burke, A.; Smith, D.; Coulter, C.; Bell, S.C.; Thomson, R.; Roberts, J.A. Clinical Pharmacokinetic and Pharmacodynamic Considerations in the Drug Treatment of Non-Tuberculous Mycobacteria in Cystic Fibrosis. Clin. Pharmacokinet. 2021, 60, 1081–1102. [Google Scholar] [CrossRef]
- Rayner, R.J.; Hiller, E.J.; Ispahani, P.; Baker, M. Haemophilus infection in cystic fibrosis. Arch. Dis. Child. 1990, 65, 255. [Google Scholar] [CrossRef] [Green Version]
- Starner, T.D.; Zhang, N.; Kim, G.H.; Apicella, M.A.; McCray, P.B. Haemophilus influenzae Forms Biofilms on Airway Epithelia. Am. J. Respir. Crit. Care Med. 2012, 174, 213–220. [Google Scholar] [CrossRef] [Green Version]
- Cardines, R.; Giufrè, M.; Pompilio, A.; Fiscarelli, E.; Ricciotti, G.; Di Bonaventura, G.; Cerquetti, M. Haemophilus influenzae in children with cystic fibrosis: Antimicrobial susceptibility, molecular epidemiology, distribution of adhesins and biofilm formation. Int. J. Med. Microbiol. 2012, 302, 45–52. [Google Scholar] [CrossRef]
- Watts, S.C.; Judd, L.M.; Carzino, R.; Ranganathan, S.; Holt, K.E. Genomic Diversity and Antimicrobial Resistance of Haemophilus Colonizing the Airways of Young Children with Cystic Fibrosis. mSystems 2021, 6, e0017821. [Google Scholar] [CrossRef]
Microbe | Drug | Dose | Administration | Period | Reference |
---|---|---|---|---|---|
Pseudomonas aeruginosa
| Ciprofloxacin + Tobramycin Or Colomycin Ceftazidime or Meropenem or Colomycin + Amikacin Or Tobramycin | 15–20 mg/kgc/day 300 mg/kgc/day 75–150 mg/kgc/day 150–200 mg/kg/day in 3 or 4 divided doses 120 mg/kg/day 25.000 Units/kg 30 mg/day 10 mg/kg/day | oral nebulized nebulized i.v. | 14 days 28 days/month, 28 days break, 3 months daily, 6 months 14–21 days | Döring et al. [14] Flume et al. [9] Treggiari et al. [44] |
Microbe | Drug | Dose | Administration | Period | Administrations per Day | Reference |
---|---|---|---|---|---|---|
Staphylococcus aureus First infection | Flucloxacillin Fusidic acid Rifampicin | 100 mg/kg/day 25–50 mg/kg/day 15–20 mg/kg/day | oral oral, i.v. oral, i.v. | 2–4 weeks | 3–4 2–3 2 | Döring et al. [11] |
Microbe | Drug | Dose | Administration | Period | Administrations per Day | Reference |
---|---|---|---|---|---|---|
Staphylococcus aureusMRSA
| Fusidic acid | 25–50 mg/kg/day | oral | 2–4 weeks | 2–3 | Döring et al. [11] Dolce et al. [55] Waterer et al. [52] Chmiel et al. [5] |
Rifampicin | 15–20 mg/kg/day | oral | 2–4 weeks | 2–3 | ||
TMP-SMX | 8–12 mg TMP/kg/day | oral | 2–4 weeks | 2 | ||
Vancomycin + | 250 mg nebulized | nebulized | 28 days/month | 2 | ||
Mupirocin | topical (intranasal) | 14 days | 2 | |||
| Vancomycin or Linezolid | 15–20 mg/kg Q6–8 <12 years: 10 mg/kg Q8 >12 years: 10 mg/kg Q12 | i.v. i.v. | 14–21 | 3–4 2–3 (<45 kg consider Q8 hour dosing) |
Microbe | Drug | Dose (mg/kg/Day) | Administration | Period | Administrations per Day | Reference |
---|---|---|---|---|---|---|
Burkholderia cepacia complex | TMP-SMX Aztreonam Tobramycin Piperacillin/tazobactam Ceftazidime Ticarcillin–clavulanate | 50–100 (oral) 10–20 (i.v.) 150–250 10 350–450 50–200 200–300/6–10 | oral or i.v. i.v. i.v. i.v. i.v. i.v. | 2–4 weeks | 2–4 3 1–3 4 3 3 | Döring et al. [11] |
Microbe | Drug | Dose mg/kg/Day | Administration | Period | Reference |
---|---|---|---|---|---|
Stenotrophomonas maltophilia and Achromobacter xylosoxidans | Minocycline | 2–3 | oral | 2–4 weeks | Döring et al. [11] |
Ceftazidime | 150–200 | i.v. | |||
Meropenem | 120 | i.v. | |||
Ciprofloxacin | 20–30 | oral, i.v. | |||
Aztreonam | 150–250 | i.v. | |||
Amikacin | 30 | i.v. | |||
Doxycycline | 2–3 | oral | |||
TMP-SMX | 50–100 (oral) 10–20 (i.v.) | oral, i.v. | |||
Ceftazidime | 150–200 | i.v. | |||
Meropenem | 120 | i.v. | |||
Colomycin | 25.000 Units/kg | i.v. | |||
Tobramycin | 10 | i.v. | |||
Ciprofloxacin | 20–30 | oral, i.v. | |||
Aztreonam | 150–250 | i.v. | |||
Piperacillin/tazobactam | 350–450 | i.v. |
Microbe | Drug | Dose | Administration | Period | Reference |
---|---|---|---|---|---|
Mycobacterium avium complex | Clarithromycin Azithromycin Ethambutol Rifabutin Rifampicin Amikacin | 15 mg/kg 5 mg/kg 15 mg/kg 150–300 mg/day 450–600 mg/day 15 mg/kg/day | oral oral oral oral oral i.v. | 2–4 weeks | Döring et al. [11] Chmiel et al. [74] Floto et al. [77] |
Mycobacterium abscessus | Imipenem + Amikacin after 3 weeks oral consolidation with: Rifampicin Azithromycin Ethambutol | 20–25mg/kg Q6 15 mg/kg/day | i.v. i.v. oral | 21 days 14 days 12–24 months |
Microbe | Drug | Dose mg/kg/Day | Administration | Period | Reference |
---|---|---|---|---|---|
Haemophilus influenzae | Döring et al. [11] | ||||
| Amoxicillin + clavulanic acid | 50–100 | oral | 4 weeks | |
Azithromycin | 10 | oral | 4 weeks | ||
Clarithromycin | 15–20 | oral | 4weeks | ||
Cefixime | 8–16 | oral | 2–4 weeks | ||
| Ceftazidime + Amikacin or Tobramycin | 150–200 15 10 | i.v. | 14 days |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciuca, I.M.; Dediu, M.; Popin, D.; Pop, L.L.; Tamas, L.A.; Pilut, C.N.; Almajan Guta, B.; Popa, Z.L. Antibiotherapy in Children with Cystic Fibrosis—An Extensive Review. Children 2022, 9, 1258. https://doi.org/10.3390/children9081258
Ciuca IM, Dediu M, Popin D, Pop LL, Tamas LA, Pilut CN, Almajan Guta B, Popa ZL. Antibiotherapy in Children with Cystic Fibrosis—An Extensive Review. Children. 2022; 9(8):1258. https://doi.org/10.3390/children9081258
Chicago/Turabian StyleCiuca, Ioana Mihaiela, Mihaela Dediu, Diana Popin, Liviu Laurentiu Pop, Liviu Athos Tamas, Ciprian Nicolae Pilut, Bogdan Almajan Guta, and Zoran Laurentiu Popa. 2022. "Antibiotherapy in Children with Cystic Fibrosis—An Extensive Review" Children 9, no. 8: 1258. https://doi.org/10.3390/children9081258
APA StyleCiuca, I. M., Dediu, M., Popin, D., Pop, L. L., Tamas, L. A., Pilut, C. N., Almajan Guta, B., & Popa, Z. L. (2022). Antibiotherapy in Children with Cystic Fibrosis—An Extensive Review. Children, 9(8), 1258. https://doi.org/10.3390/children9081258