Reactions of Bitcoin and Gold to Categorical Financial Stress: New Evidence from Quantile Estimation
Abstract
:1. Introduction
2. Empirical Methodology
2.1. Dataset and Descriptive Statistics
2.2. Empirical Models
3. Empirical Discussion
3.1. OLS Estimation
3.2. Quantile Estimations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Akhtaruzzaman, Md, Sabri Boubaker, Brian M. Lucey, and Ahmet Sensoy. 2021. Is gold a hedge or a safe-haven asset in the COVID–19 crisis? Economic Modelling 102: 105588. [Google Scholar] [CrossRef]
- Baur, Dirk G., and Thomas K. McDermott. 2010. Is gold a safe haven? International evidence. Journal of Banking & Finance 34: 1886–98. [Google Scholar]
- Bouoiyour, Jamal, Refk Selmi, and Mark E. Wohar. 2018. Measuring the response of gold prices to uncertainty: An analysis beyond the mean. Economic Modelling 75: 105–16. [Google Scholar] [CrossRef] [Green Version]
- Bouri, Elie, Rangan Gupta, Chi Keung Marco Lau, David Roubaud, and Shixuan Wang. 2018. Bitcoin and global financial stress: A copula-based approach to dependence and causality in the quantiles. The Quarterly Review of Economics and Finance 69: 297–307. [Google Scholar] [CrossRef] [Green Version]
- Buchinsky, Moshe. 1995. Estimating the asymptotic covariance matrix for quantile regression models a Monte Carlo study. Journal of Econometrics 68: 303–38. [Google Scholar] [CrossRef]
- Chemkha, Rahma, Ahmed BenSaïda, Ahmed Ghorbel, and Tahar Tayachi. 2021. Hedge and safe haven properties during COVID-19: Evidence from Bitcoin and gold. The Quarterly Review of Economics and Finance 82: 71–85. [Google Scholar] [CrossRef]
- Chevapatrakul, Thanaset. 2015. Monetary environments and stock returns: International evidence based on the quantile regression technique. International Review of Financial Analysis 38: 83–108. [Google Scholar] [CrossRef]
- Das, Debojyoti, Surya Bhushan Kumar, Aviral Kumar Tiwari, Muhammad Shahbaz, and Haslifah M. Hasim. 2018. On the relationship of gold, crude oil, stocks with financial stress: A causality-in-quantiles approach. Finance Research Letters 27: 169–74. [Google Scholar] [CrossRef] [Green Version]
- Das, Debojyoti, M. Kannadhasan, and Malay Bhattacharyya. 2019. Do the emerging stock markets react to international economic policy uncertainty, geopolitical risk and financial stress alike? The North American Journal of Economics and Finance 48: 1–19. [Google Scholar] [CrossRef]
- Demiralay, Sercan. 2019. Global Risk Factors and Stock Returns during Bull and Bear Market Conditions: Evidence from Emerging Economies in Europe. Prague Economic Papers 28: 402–15. [Google Scholar] [CrossRef] [Green Version]
- Disli, Mustafa, Ruslan Nagayev, Kinan Salim, Siti K. Rizkiah, and Ahmet F. Aysan. 2021. In search of safe haven assets during COVID-19 pandemic: An empirical analysis of different investor types. Research in International Business and Finance 58: 101461. [Google Scholar] [CrossRef]
- Hood, Matthew, and Farooq Malik. 2013. Is gold the best hedge and a safe haven under changing stock market volatility? Review of Financial Economics 22: 47–52. [Google Scholar] [CrossRef]
- Hoque, Mohammad Enamul, Mohd Azlan Shah Zaidi, and M. Kabir Hassan. 2021. Geopolitical Uncertainties and Malaysian Stock Market Returns: Do Market Conditions Matter? Mathematics 9: 2393. [Google Scholar] [CrossRef]
- Jareño, Francisco, María de la O González, Marta Tolentino, and Karen Sierra. 2020. Bitcoin and gold price returns: A quantile regression and NARDL analysis. Resources Policy 67: 101666. [Google Scholar] [CrossRef]
- Kocaarslan, Baris, Ugur Soytas, Ramazan Sari, and Ecenur Ugurlu. 2019. The changing role of financial stress, oil price, and gold price in financial contagion among US and BRIC markets. International Review of Finance 19: 541–74. [Google Scholar] [CrossRef]
- Koenker, Roger, and Gilbert Bassett Jr. 1978. Regression quantiles. Econometrica: Journal of the Econometric Society 46: 33–50. [Google Scholar] [CrossRef]
- Koenker, Roger, and Kevin F. Hallock. 2001. Quantile regression. Journal of Economic Perspectives 15: 43–156. [Google Scholar] [CrossRef]
- Li, Sile, and Brian M. Lucey. 2017. Reassessing the role of precious metals as safe havens—What colour is your haven and why? Journal of Commodity Markets 7: 1–14. [Google Scholar] [CrossRef]
- McCauley, Robert N., and Patrick McGuire. 2009. Dollar appreciation in 2008: Safe haven, carry trades, dollar shortage and overhedging. BIS Quarterly Review 2009: 85–93. [Google Scholar]
- Mensi, Walid, Shawkat Hammoudeh, Juan Carlos Reboredo, and Duc Khuong Nguyen. 2014. Do global factors impact BRICS stock markets? A quantile regression approach. Emerging Markets Review 19: 1–17. [Google Scholar] [CrossRef]
- Miyazaki, Takashi. 2019. Clarifying the response of gold return to financial indicators: An empirical comparative analysis using ordinary least squares, robust and quantile regressions. Journal of Risk and Financial Management 12: 33. [Google Scholar] [CrossRef] [Green Version]
- Monin, Phillip J. 2019. The OFR financial stress index. Risks 7: 25. [Google Scholar] [CrossRef] [Green Version]
- Shahzad, Syed Jawad Hussain, Elie Bouri, David Roubaud, Ladislav Kristoufek, and Brian Lucey. 2019. Is Bitcoin a better safe-haven investment than gold and commodities? International Review of Financial Analysis 63: 322–30. [Google Scholar] [CrossRef]
- Tronzano, Marco. 2020. Safe-haven assets, financial crises, and macroeconomic variables: Evidence from the last two decades (2000–2018). Journal of Risk and Financial Management 13: 40. [Google Scholar] [CrossRef] [Green Version]
- Wang, Kuan-Min, and Yuan-Ming Lee. 2022. Is gold a safe haven for exchange rate risks? An empirical study of major currency countries. Journal of Multinational Financial Management 63: 100705. [Google Scholar] [CrossRef]
- Zhang, Hongwei, and Peijin Wang. 2021. Does Bitcoin or gold react to financial stress alike? Evidence from the US and China. International Review of Economics & Finance 71: 629–48. [Google Scholar]
CR | EV | SA | FUND | VOLA | GOLD | BITCOIN | |
---|---|---|---|---|---|---|---|
Mean | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Std. Dev. | 0.068 | 0.065 | 0.025 | 0.172 | 0.740 | 0.181 | 0.043 |
Skewness | −0.547 | −0.277 | 0.055 | −0.610 | −0.236 | −0.770 | 0.142 |
Kurtosis | 5.440 | 6.878 | 4.829 | 13.632 | 23.668 | 7.314 | 26.277 |
Jarque-Bera | 161.19 *** | 345.98 *** | 75.69 *** | 2581.62 *** | 9634.27 *** | 472.89 *** | 12,215.62 *** |
Phillips-Perron (PP) Unit Root | −147.30 *** | −283.22 *** | −269.98 *** | −182.33 *** | −138.92 *** | −149.41 *** | −270.03 *** |
Adjusted Dickey–Fuller (ADF) Unit Root | −10.56 *** | −9.33 *** | −9.14 *** | −9.12 *** | −9.79 *** | −9.85 *** | −11.97 *** |
Variable | C | CR | EV | SA | FUND | VOLA | R-Squared | F-Statistic |
---|---|---|---|---|---|---|---|---|
Panel A: Full-Sample: Jul-2010 to Nov-2020 | ||||||||
GOLD | 0.00 (−0.01) | 1.867 (15.47) *** | 0.931 (11.1) *** | 0.915 (3.77) *** | −0.229 (−4.99) *** | −0.003 (−0.57) | 0.674 | 221.64 *** |
BITCOIN | 0.00 (−0.03) | −0.009 (−0.24) | 0.094 (3.63) *** | 0.925 (12.26) *** | 0.023 (1.97) ** | 0.002 (1.23) | 0.437 | 83.10 *** |
Panel B: Before COVID-19: Jul-2010 to Feb-2020 | ||||||||
GOLD | −0.0000 (−0.0081) | 1.873 (14.68) *** | 0.940 (10.89) *** | 0.940 (3.68) *** | −0.236511 (−4.951) *** | −0.003 (−0.49) | 0.673 | 204.5 *** |
BITCOIN | −0.000 (−0.002) | −0.019 (−0.49) | 0.0907 (3.37) *** | 0.938 (11.81) *** | 0.025 (1.72) | 0.002 (1.24) | 0.433 | 75.71 *** |
Panel C: During COVID-19: Mar-2020 to Nov-2020 | ||||||||
GOLD | 0.0005 (0.060) | 1.601 (5.286) *** | 0.268 (0.607) | 0.361 (0.520) | 0.157 (0.822) | −0.020 (−1.13) | 0.744 | 20.36 *** |
BITCOIN | −0.000 (−0.006) | 0.173 (2.198) *** | 0.402 (3.50) *** | 0.554 (3.07) *** | −0.037 (−0.76) | −0.001 (−0.333) | 0.670 | 14.24 *** |
Variable | C | CR | EV | SA | FUND | VOLA | Pseudo R-Squared | Adjusted R-Squared | Slope-Equity | Symmetric |
---|---|---|---|---|---|---|---|---|---|---|
Panel A: Full-Sample: Jul-2010 to Nov-2020 | ||||||||||
τ = 0.10 | −0.103 (−15.68) ** | 1.764 (7.83) *** | 1.055 (7.85) *** | 1.451 (4.99) *** | −0.241 (−2.94) ** | −0.008 (−0.81) | 0.4805 | 0.4756 | 68.79 *** | 35.23 |
τ = 0.25 | −0.048 (−9.69) *** | 1.799 (12.12) *** | 0.916 (9.95) *** | 1.257 (3.99) *** | −0.241 (−4.80) *** | −0.004 (−0.98) | 0.4721 | 0.4672 | ||
τ = 0.50 | −0.002 (−0.48) | 1.700 (12.79) *** | 0.910 (8.26) *** | 0.980 (4.07) *** | −0.171 (−3.95) *** | 0.000 (−0.05) | 0.4558 | 0.4507 | ||
τ = 0.75 | 0.045 (9.94) *** | 1.723 (12.12) *** | 0.825 (7.19) *** | 0.889 (2.89) ** | −0.164 (−2.88) ** | 0.004 (0.62) | 0.4255 | 0.4202 | ||
τ = 0.90 | 0.109 (12.81)*** | 1.530 (5.73)*** | 0.916 (9.01) *** | 1.347 (3.29) *** | −0.203 (−1.37) | −0.005 (−0.67) | 0.3890 | 0.3833 | ||
Panel B: Before COVID-19: Jul-2010 to Feb-2020 | ||||||||||
τ = 0.10 | −0.103 (−14.87) *** | 1.763 (7.64) *** | 1.054 (7.88) *** | 1.451 (4.86) *** | −0.241 (−2.78) ** | −0.008 (−0.66) | 0.4814 | 0.4762 | 48.50 ** | 23.75 |
τ = 0.25 | −0.049 (−9.69) *** | 1.762 (11.85) *** | 0.919 (9.61) *** | 1.345 (4.54) *** | −0.237 (−4.82) *** | −0.004 (−0.95) | 0.4749 | 0.4695 | ||
τ = 0.50 | −0.002 (−0.66) | 1.747 (12.53) *** | 0.969 (9.09) *** | 1.037 (4.27) *** | −0.195 (−4.50) *** | −0.001 (−0.02) | 0.4563 | 0.4508 | ||
τ = 0.75 | 0.043 (8.93) *** | 1.745 (12.08) *** | 0.818 (6.93) *** | 0.991 (2.88) *** | −0.172 (−2.88) *** | 0.006 (1.56) | 0.4219 | 0.4161 | ||
τ = 0.90 | 0.108 (13.33) *** | 1.569 (7.19) *** | 0.885 (8.91) *** | 1.266 (3.12) *** | −0.225 (−1.99) ** | −0.004 (−0.61) | 0.3884 | 0.3822 | ||
Panel C: During COVID-19: Mar 2020 to Nov-2020 | ||||||||||
τ = 0.10 | −0.046 (−3.02) *** | 2.055 (4.81) *** | 0.147 (0.274) | −1.459 (−1.72) * | 0.259 (1.155) | −0.016 (−0.91) | 0.5208 | 0.4524 | 63.0 *** | 25.51 |
τ = 0.25 | −0.033 (−2.10) ** | 1.974 (4.45) *** | 0.356 (0.636) | −0.833 (−1.019) | 0.1353 (0.589) | −0.004 (−0.225) | 0.5268 | 0.4592 | ||
τ = 0.50 | 0.003 (0.30) | 1.459 (4.33) *** | 0.317 (0.686) | 0.188 (0.234) | 0.139 (0.58) | −0.014 (−0.576) | 0.5381 | 0.4722 | ||
τ = 0.75 | 0.029 (3.05) *** | 1.471 (5.28) *** | 0.296 (0.907) | 0.537 (0.921) | 0.055 (0.251) | −0.027 (−1.150) | 0.5479 | 0.4833 | ||
τ = 0.90 | 0.063 (3.20) *** | 1.358 (3.54) *** | 0.1762 (0.308) | 1.163 (1.02) | 0.320 (1.110) | −0.042 (−0.932) | 0.5286 | 0.4613 |
Variable | C | CR | EV | SA | FUND | VOLA | Pseudo R-Squared | Adjusted R-Squared | Slope-Equity | Symmetric |
---|---|---|---|---|---|---|---|---|---|---|
Panel A: Full-Sample (Jul-2010 to Nov-2020) | ||||||||||
τ = 0.1 | −0.024 (−17.56) *** | −0.015 (−0.46) | 0.077 (4.25) *** | 1.030 (16.11) *** | 0.025 (2.41) *** | 0.004 (3.37) *** | 0.3924 | 0.3867 | 74.81 *** | 35.23 |
τ = 0.25 | −0.014 (−12.67) *** | −0.044 (−1.19) | 0.089 (3.13) *** | 1.016 (14.76) *** | 0.028 (1.65) * | 0.002 (1.71)* | 0.4052 | 0.3996 | ||
τ = 0.50 | −0.002 (−1.70) * | −0.058 (−1.78)* | 0.085 (3.00) ** | 1.011 (12.80) *** | 0.032 (2.02) ** | 0.000 (−0.34) | 0.3798 | 0.3741 | ||
τ = 0.75 | 0.013 (8.81) *** | −0.047 (−0.87) | 0.078 (2.74) ** | 1.047 (8.15) *** | 0.017 (1.30) | −0.002 (−1.23) | 0.3379 | 0.3317 | ||
τ = 0.90 | 0.028 (15.17) *** | 0.013 (0.35) | 0.073 (3.21) *** | 0.956 (10.30) *** | 0.021 (2.32) *** | 0.002 (0.85) | 0.3367 | 0.3305 | ||
Panel B: Before COVID-19: Jul-2010 to Feb-2020 | ||||||||||
τ = 0.1 | −0.025 (−16.81)*** | −0.0334 (−1.01) | 0.072 (3.64)*** | 1.074 (16.08)*** | 0.032 (3.46)*** | 0.004 (2.55) ** | 0.3965 | 0.3904 | 40.53 ** | 20.67 |
τ = 0.25 | −0.014 (−11.95)*** | −0.043 (−1.14) | 0.088 (3.03)*** | 1.00 (13.88) *** | 0.029 (1.64) | 0.002 (1.75) * | 0.4018 | 0.3958 | ||
τ = 0.50 | −0.002 (−1.38) | −0.068 (−1.95) *** | 0.086 (2.90) *** | 1.044 (12.12) *** | 0.031 (1.91) * | 0.001 (0.53) | 0.3785 | 0.3722 | ||
τ = 0.75 | 0.014 (9.01) *** | −0.071 (−1.66) * | 0.063 (2.14) ** | 1.024 (7.57) *** | 0.029 (2.29) ** | −0.001 (−0.27) | 0.3421 | 0.3355 | ||
τ = 0.90 | 0.028 (14.24) *** | −0.008 (−0.21) | 0.070 (2.93) | 0.989 (10.26) *** | 0.023 (2.06) ** | 0.002 (0.66) | 0.3417 | 0.3350 | ||
Panel C: During COVID-19: Mar-2020 to Nov-2020 | ||||||||||
τ = 0.1 | −0.014 (−2.95) *** | 0.238 (1.29) | 0.571 (1.98) ** | 0.443 (0.94) | −0.127 (−1.20) | 0.001 (0.11) | 0.4823 | 0.4084 | 24.02 ** | 18.07 |
τ = 0.25 | −0.008 (−2.53) ** | 0.116 (0.72) | 0.374 (1.62) | 0.779 (2.27) ** | −0.07 (−0.70) | −0.004 (−0.67) | 0.5100 | 0.4400 | ||
τ = 0.50 | −0.001 (−0.17) | 0.066 (0.45) | 0.197 (1.15) | 0.873 (2.67) ** | 0.009 (0.12) | −0.006 (−0.96) | 0.4576 | 0.3801 | ||
τ = 0.75 | 0.012 (2.92) *** | 0.147 (1.64) * | 0.576 (3.51) *** | 0.572 (1.96) ** | −0.004 (−0.07) | 0.002 (0.42) | 0.4440 | 0.3646 | ||
τ = 0.90 | 0.018 (3.99) *** | 0.119 (1.30) | 0.666 (3.93) *** | 0.617 (2.01) ** | 0.004 (0.07) | 0.006 (1.06) | 0.4985 | 0.4269 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoque, M.E.; Low, S.-W. Reactions of Bitcoin and Gold to Categorical Financial Stress: New Evidence from Quantile Estimation. Risks 2022, 10, 136. https://doi.org/10.3390/risks10070136
Hoque ME, Low S-W. Reactions of Bitcoin and Gold to Categorical Financial Stress: New Evidence from Quantile Estimation. Risks. 2022; 10(7):136. https://doi.org/10.3390/risks10070136
Chicago/Turabian StyleHoque, Mohammad Enamul, and Soo-Wah Low. 2022. "Reactions of Bitcoin and Gold to Categorical Financial Stress: New Evidence from Quantile Estimation" Risks 10, no. 7: 136. https://doi.org/10.3390/risks10070136
APA StyleHoque, M. E., & Low, S. -W. (2022). Reactions of Bitcoin and Gold to Categorical Financial Stress: New Evidence from Quantile Estimation. Risks, 10(7), 136. https://doi.org/10.3390/risks10070136