Special Issue “Data Science in Insurance”
Conflicts of Interest
References
- Asimit, Alexandru V., Ioannis Kyriakou, Simone Santoni, Salvatore Scognamiglio, and Rui Zhu. 2022. Robust classification via support vector machines. Risks 10: 154. [Google Scholar] [CrossRef]
- Barredo Arrieta, Alejandro, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham Tabik, Alberto Barbado, Salvador Garcia, Sergio Gil-Lopez, Daniel Molina, Richard Benjamins, and et al. 2020. Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai. Information Fusion 58: 82–115. [Google Scholar] [CrossRef]
- Boucher, Jean-Philippe. 2022a. Bonus-malus scale models: Creating artificial past claims history. Annals of Actuarial Science 17: 1–27. [Google Scholar] [CrossRef]
- Boucher, Jean-Philippe. 2022b. Multiple bonus-malus scale models for insureds of different sizes. Risks 10: 152. [Google Scholar] [CrossRef]
- Boucher, Jean-Philippe, and Rofick Inoussa. 2014. A posteriori ratemaking with panel data. ASTIN Bulletin 44: 587–612. [Google Scholar] [CrossRef]
- Clinciu, Miruna, and Helen Hastie. 2019. A survey of explainable ai terminology. In Proceedings of the 1st Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence. Stroudsburg: Association for Computational Linguistics, pp. 8–13. [Google Scholar] [CrossRef]
- Diao, Liqun, and Chengguo Weng. 2019. Regression tree credibility model. North American Actuarial Journal 23: 1–28. [Google Scholar] [CrossRef]
- Flaig, Solveig, and Gero Junike. 2022. Scenario generation for market risk models using generative neural networks. Risks 10: 199. [Google Scholar] [CrossRef]
- Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial networks. Advances in Neural Information Processing Systems 3: 139–44. [Google Scholar] [CrossRef]
- Jose, Alex, Angus S. Macdonald, George Tzougas, and George Streftaris. 2022. A combined neural network approach for the prediction of admission rates related to respiratory diseases. Risks 10: 217. [Google Scholar] [CrossRef]
- Owens, Emer, Barry Sheehan, Martin Mullins, Martin Cunneen, Juliane Ressel, and German Castignani. 2022. Explainable artificial intelligence (xai) in insurance. Risks 10: 230. [Google Scholar] [CrossRef]
- Richman, Ronald, and Mario V. Wüthrich. 2023. Localglmnet: Interpretable deep learning for tabular data. Scandinavian Actuarial Journal 2023: 71–95. [Google Scholar] [CrossRef]
- Sangari, Seema, Eric Dallal, and Michael Whitman. 2022. Modeling under-reporting in cyber incidents. Risks 10: 200. [Google Scholar] [CrossRef]
- Schelldorfer, Jürg, and Mario Wuthrich. 2019. Nesting classical actuarial models into neural networks. SSRN Electronic Journal. [Google Scholar] [CrossRef]
- Sriram, Varun, Zijie Fan, and Ni Liu. 2023. Eclipse: Holistic ai system for preparing insurer policy data. Risks 11: 4. [Google Scholar] [CrossRef]
- Tzougas, George, and Ziyi Li. 2021. Neural Network Embedding of the Mixed Poisson Regression Model for Claim Counts. Available online: https://insurancedatascience.org/project/2021_london/ (accessed on 21 April 2023).
- Verschuren, Robert. 2021. Predictive claim scores for dynamic multi-product risk classification in insurance. Astin Bulletin 51: 1–25. [Google Scholar] [CrossRef]
- Wüthrich, Mario. 2019. Bias regularization in neural network models for general insurance pricing. European Actuarial Journal 10: 179–202. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clemente, G.P.; Della Corte, F.; Savelli, N.; Zappa, D. Special Issue “Data Science in Insurance”. Risks 2023, 11, 80. https://doi.org/10.3390/risks11050080
Clemente GP, Della Corte F, Savelli N, Zappa D. Special Issue “Data Science in Insurance”. Risks. 2023; 11(5):80. https://doi.org/10.3390/risks11050080
Chicago/Turabian StyleClemente, Gian Paolo, Francesco Della Corte, Nino Savelli, and Diego Zappa. 2023. "Special Issue “Data Science in Insurance”" Risks 11, no. 5: 80. https://doi.org/10.3390/risks11050080
APA StyleClemente, G. P., Della Corte, F., Savelli, N., & Zappa, D. (2023). Special Issue “Data Science in Insurance”. Risks, 11(5), 80. https://doi.org/10.3390/risks11050080