Assessing the Impact of Syrian Refugee Influx on the Jordanian Stock Exchange Market
Abstract
:1. Introduction
- Does the Syrian war affect Jordan’s stock market?
- Which event(s) has/have the highest impact on the sub-sectors indices available in Jordan’s stock market?
- Analysis of the impacts of various events related to the Syrian civil war and the influx of Syrian refugees on Jordan’s stock exchange market performance.
- Identification of the key events that impacted on Jordan’s General, Financials, Services, and Industries stock indices.
- Develop linear regression models that can predict the behavior of the Jordanian stock based on collected data and other Syrian variables.
2. Literature Review
3. Syrian War Timeline
- Protests and Intifada (March–July 2011) (Omri 2012);
- Early armed rebellion (July 2011–April 2012) (Landis 2011; Omri 2012);
- Escalation of the fighting (2012–2013) (Chulov 2013; Davy 2014)
- The Rise of Islamic Groups (January–September 2014) (Schwartz 2014; Guthrie 2015);
- US Intervention, Rebel Group Attacks (September 2014–September 2015) (Mazzetti et al. 2017);
- The Syrian–American conflict, areas of de-escalation, breaking the siege of Deir Ezzor (April–December 2017) (Avenäs 2017);
- Army advance in northern Hama and Ghouta, Turkish intervention in Afrin (January–March 2018) (Brown 2018);
- Army advance in the south, US-led airstrikes (April–August 2018) (Al Jazeera 2018).
4. Amman Stock Market Indices
5. Research Methodology
5.1. Syrian Civil War Indicators
5.2. Correlation Analysis
5.3. Stepwise Multiple Linear Regression
- Null hypothesis (H0): the Syrian Refugee Influx does not affect Jordanian stock indices.
- Alternative hypothesis (Ha): the Syrian Refugee Influx does affect Jordanian stock indices.
6. Analysis Results and Discussion
6.1. Correlation Analysis
6.2. Stepwise Multiple Linear Regression
7. Conclusions
8. Research Implications and Limitations
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Al-Dalahmeh, Main, and Krisztina Dajnoki. 2021. The socio-economic impact of the Syrian refugees influx in Jordan: A systematic review analyses. Cross Cultural Management Journal 2: 145–56. [Google Scholar]
- Al Jazeera. 2018. Erdogan: Operation in Syria’s Afrin Has Begun. Available online: https://www.aljazeera.com/news/2018/1/21/erdogan-operation-in-syrias-afrin-has-begun (accessed on 21 January 2018).
- Al-Najjar, Dania, Hamzeh F. Assous, Hazem Al-Najjar, and Nadia Al-Rousan. 2022a. Ramadan effect and indices movement estimation: A case study from eight Arab countries. Journal of Islamic Marketing. ahead-of-print. [Google Scholar] [CrossRef]
- Al-Najjar, Dania, Hazem Al-Najjar, and Nadia Al-Rousan. 2022b. Long-Term General Index Prediction Based on Feature Selection and Search Methods: Amman Stock Exchange Market. Economy of Regions 18: 4. [Google Scholar] [CrossRef]
- Al-Najjar, Dania, Hazem Al-Najjar, Nadia Al-Rousan, and Hamzeh F. Assous. 2022c. Developing Machine Learning Techniques to Investigate the Impact of Air Quality Indices on Tadawul Exchange Index. Complexity 2022: 4079524. [Google Scholar] [CrossRef]
- Alrababa’h, Ala, Andrea Dillon, Scott Williamson, Jens Hainmueller, Dominik Hangartner, and Jeremy Weinstein. 2019. Attitudes Toward Migrants in a Highly Impacted Economy: Evidence from the Syrian Refugee Crisis in Jordan. Comparative Political Studies 54: 33–76. [Google Scholar] [CrossRef]
- Alrefai, Ahmed Hussein. 2021. Is refugee influx a cause of economic vulnerability: An empirical study of Jordan (1990–2018). International Journal of Economics and Business Research 22: 394–406. [Google Scholar] [CrossRef]
- Alshoubaki, Wa’ed, and Michael Harris. 2018. The impact of Syrian refugees on Jordan: A framework for analysis. Journal of International Studies 11: 154–79. [Google Scholar] [CrossRef]
- Assaad, Ragui, Thomas Ginn, and Mohamed Saleh. 2018. Impact of Syrian Refugees in Jordan on Education Outcomes for Jordanian Youth. Economic Research Forum Working Paper Series. Cairo: Economic Research Forum, vol. 1214. [Google Scholar]
- Avenäs, Sebastian. 2017. Why the bear kicked the hornet’s nest: Causal processes of Russian foreign policy on Syria. Available online: https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1068607&dswid=3595 (accessed on 13 June 2023).
- Baez, Javier E. 2011. Civil wars beyond their borders: The human capital and health consequences of hosting refugees. Journal of Development Economics 96: 391–408. [Google Scholar] [CrossRef] [Green Version]
- Barro, Robert J. 1991. Economic Growth in a Cross Section of Countries. The Quarterly Journal of Economics 106: 407–43. [Google Scholar] [CrossRef] [Green Version]
- Bataineh, Abdullah, and Pierluigi Montalbano. 2018. The Impact of Syrian Crisis on the Quality of Education in Jordan: A Quantitative and Qualitative Assessment. No. 7/2018. Rome: Sapienza University of Rome, pp. 1–27. [Google Scholar]
- Brown, Devin P. 2018. The Case for Management in the Turkish-Kurdish Conflict. College of Arts & Sciences Senior Honors Theses. Paper 165. Available online: https://ir.library.louisville.edu/honors/165 (accessed on 13 June 2023).
- Burns, Ross. 2019. Damascus: A History. Abingdon: Routledge. [Google Scholar]
- Ceritoglu, Evren, H. Burcu Gurcihan Yunculer, Huzeyfe Torun, and Semih Tumen. 2017. The impact of Syrian refugees on natives’ labor market outcomes in Turkey: Evidence from a quasi-experimental design. IZA Journal of Labor Policy 6: 5. [Google Scholar] [CrossRef] [Green Version]
- Chulov, Martin. 2013. Free Syrian Army Threatens Blood Feud after Senior Officer Killed by Jihadists. London: The Guardian. [Google Scholar]
- Dator, Wireen, Hamzeh Abunab, and Norenia Dao-Ayen. 2018. Health challenges and access to health care among Syrian refugees in Jordan: A review. Eastern Mediterranean Health Journal 24: 7. [Google Scholar] [CrossRef] [PubMed]
- David, Anda, Mohamed Ali Marouani, Charbel Nahas, and Björn Nilsson. 2018. The economics of the Syrian refugee crisis in neighbouring countries: The case of Lebanon. Economics of Transition and Institutional Change 28: 89–109. [Google Scholar] [CrossRef] [Green Version]
- Davy, Jonathan. 2014. Prevailing Neorealism: Explaining How International Politics Hinders Humanitarian Intervention in Syrian Civil War. Ph.D. dissertation, President University, West Java, Indonesia. [Google Scholar]
- De Groot, Olaf J. 2010. The spillover effects of conflict on economic growth in neighbouring countries in africa. Defence and Peace Economics 21: 149–64. [Google Scholar] [CrossRef]
- Dhaini, Suzanne R., Nuhad Dumit, Gladys Honein-Abouhaidar, Ibtisam M. Al Zaru, Muntaha Gharaibeh, Nancy R. Reynolds, Patricia M. Davidson, and Dana Nabulsi. 2019. Perspectives of Registered Nurses on refugee healthcare in Lebanon and Jordan (PROfILE): A multi-site cross-sectional study protocol. Journal of Advanced Nursing 76: 328–36. [Google Scholar] [CrossRef]
- El-Chaarani, Hani. 2015. Volatility spillover between Lebanese political shocks and financial market returns. Lebanese Science Journal 16: 95–111. [Google Scholar]
- Elsayed, Ahmed H., and Mohamad Husam Helmi. 2021. Volatility transmission and spillover dynamics across financial markets: The role of geopolitical risk. Annals of Operations Research 305: 1–22. [Google Scholar] [CrossRef]
- Erdem, Orhan, Elvan Ceyhan, and Yusuf Varli. 2014. A new correlation coefficient for bivariate time-series data. Physica A: Statistical Mechanics and Its Applications 414: 274–84. [Google Scholar] [CrossRef]
- Esen, Oğuz, and Ayla Oğuş Binatlı. 2017. The impact of Syrian refugees on the Turkish economy: Regional labour market effects. Social Sciences 6: 129. [Google Scholar] [CrossRef] [Green Version]
- Fakih, Ali, and May Ibrahim. 2016. The impact of Syrian refugees on the labor market in neighboring countries: Empirical evidence from Jordan. Defence and Peace Economics 27: 64–86. [Google Scholar] [CrossRef]
- Fallah, Belal, Caroline Krafft, and Jackline Wahba. 2019. The impact of refugees on employment and wages in Jordan. Journal of Development Economics 139: 203–16. [Google Scholar] [CrossRef]
- Guthrie, Alice. 2015. Decoding Daesh: Why is the new name for ISIS so hard to understand. Free Word 19. Available online: https://www.monabaker.org/2015/02/27/decoding-daesh-why-is-the-new-name-for-isis-so-hard-to-understand/ (accessed on 13 June 2023).
- Harris, Michael. 2019. The Economic Impact of the Regional Instability and the Syrian Civil War on Jordan: An Economic Performance Index Analysis. Journal of World Economic Research 7: 105. [Google Scholar]
- Hosten, Edouard, Mandana Mehta, Emmanuel Andre, Khaled Abu Rumman, and Dimitri Van der Linden. 2018. Tuberculosis contact-tracing among Syrian refugee populations: Lessons from Jordan. Conflict and Health 12: 25. [Google Scholar] [CrossRef] [Green Version]
- Ianchovichina, Elena, and Maros Ivanic. 2014. Economic Effects of the Syrian War and the Spread of the Islamic State on the Levant. The World Economy 39: 1584–627. [Google Scholar] [CrossRef] [Green Version]
- Kheirallah, Khalid A., Caroline O. Cobb, Jomana W. Alsulaiman, Abdallah Alzoubi, Cosima Hoetger, Wendy Kliewer, and Fawaz Mzayek. 2019. Trauma exposure, mental health and tobacco use among vulnerable Syrian refugee youth in Jordan. Journal of Public Health 42: e343–51. [Google Scholar] [CrossRef] [Green Version]
- Krafft, Caroline, Maia Sieverding, Colette Salemi, and Caitlyn Keo. 2018. Syrian refugees in Jordan: Demographics, livelihoods, education, and health. In Economic Research Forum Working Paper Series. vol. 1184. [Google Scholar]
- Landis, Joshua. 2011. Free Syrian Army founded by seven officers to fight the Syrian Army. Syria Comment 29. [Google Scholar]
- La Porta, Rafael, Florencio Lopez-de-Silanes, Andrei Shleifer, and Robert W. Vishny. 1998. Law and Finance. Journal of Political Economy 106: 1113–55. [Google Scholar] [CrossRef]
- Lesch, David W. 2019. Syria: A Modern History. Hoboken: John Wiley & Sons. [Google Scholar]
- Lozi, Basem M. 2013. The effect of refugees on host country economy: Evidence from Jordan. Interdisciplinary Journal of Contemporary Research in Business 5: 114–26. [Google Scholar]
- Mazzetti, Mark, Adam Goldman, and Michael S. Schmidt. 2017. Behind the sudden death of a $1 billion secret CIA war in Syria. New York Times, August 2. [Google Scholar]
- Olwan, Mohamed Y., and Ahmad Shiyab. 2012. Forced Migration of Syrians to Jordan: An Exploratory Study. Fiesole: European University Institute, Florence Robert Schuman Centre For Advanced Studies Migration Policy Centre (MPC), pp. 1–28. [Google Scholar]
- Omri, Mohamed-Salah. 2012. A Revolution of Dignity and Poetry. Boundary 2 39: 137–65. [Google Scholar] [CrossRef]
- Paternoster, Raymond, Robert Brame, Paul Mazerolle, and Alex Piquero. 1998. Using the correct statistical test for the equality of regression coefficients. Criminology 36: 859–66. [Google Scholar] [CrossRef]
- Rawlings, John O., Sastry G. Pantula, and David A. Dickey, eds. 2001. Applied Regression Analysis: A Research Tool. Berlin: Springer Science & Business Media, pp. 1–7. [Google Scholar]
- Rother, Björn, Gaëlle Pierre, David Lombardo, Risto Herrala, Priscilla Toffano, Erik Roos, Greg Auclair, and Karina Manasseh. 2016. The Economic Impact of Conflicts and the Refugee Crisis in the Middle East and North Africa. Washington, DC: International Monetary Fund. [Google Scholar]
- Sab, MissRanda. 2014. Economic Impact of Selected Conflicts in the Middle East: What Can We Learn from the Past? No. 14-100. Washington, DC: International Monetary Fund. [Google Scholar]
- Schwartz, Felicia. 2014. One more name for Islamic State: Daesh. The Wall Street Journal 23. [Google Scholar]
- Schwert, G. William. 1989. Why Does Stock Market Volatility Change Over Time? Journal of Finance 44: 1115–53. [Google Scholar] [CrossRef]
- Stave, Svein Erik, and Solveig Hillesund. 2015. Impact of Syrian Refugees on the Jordanian Labour Market. Geneva: ILO. [Google Scholar]
- Suleman, Muhammad Tahir. 2012. Stock market reaction to good and bad political news. Asian Journal of Finance & Accounting 4: 299–312. [Google Scholar]
- Tucker, Ernest. 2019. The Middle East in Modern World History. Abingdon: Routledge. [Google Scholar]
- Tümen, Semih. 2016. The Economic Impact of Syrian Refugees on Host Countries: Quasi-Experimental Evidence from Turkey. The American Economic Review: Papers and Proceedings 106: 456–60. [Google Scholar] [CrossRef] [Green Version]
- Wagner, Ann-Christin Birgit. 2019. Transnational Mobilities during the Syrian War: An Ethnography of Rural Refugees and Evangelical Humanitarians in Mafraq, Jordan. Edinburgh: The University of Edinburgh. [Google Scholar]
- Wells, Ruth, Mohammed Abo-Hilal, Zachary Steel, Caroline Hunt, Barbara Plested, Manar Hassan, and Catalina Lawsin. 2019. Community readiness in the Syrian refugee community in Jordan: A rapid ecological assessment tool to build psychosocial service capacity. American Journal of Orthopsychiatry 90: 2012. [Google Scholar] [CrossRef]
- Younes, M., and L. Morrice. 2019. Summary of Challenges Relevant to Refugees’ Education in Jordan. Brighton: Centre for International Education and Development, University of Sussex. [Google Scholar]
- Zetter, Roger. 2012. Are refugees an economic burden or benefit? Forced Migration Review 41: 50–52. [Google Scholar]
Metrics | Financials | Services | Industries | General Index |
---|---|---|---|---|
Mean | 3024.462 | 1793.193 | 2344.509 | 2337.213 |
Median | 2881.000 | 1659.900 | 2133.000 | 2139.700 |
Mode | 2875.800 | 1625.300 | 2116.600 | 2129.000 |
Standard Deviation | 706.7279 | 386.5841 | 671.2242 | 581.6383 |
Sample Variance | 499,464.3 | 149,447.3 | 450,541.9 | 338,303.1 |
Kurtosis | 5.162510 | 5.455794 | 8.493455 | 6.487163 |
Skewness | 2.353500 | 2.232712 | 2.732706 | 2.618843 |
Range | 3520.300 | 2430.900 | 4250.400 | 3242.700 |
Minimum | 2277.300 | 1241.300 | 1644.300 | 1801.000 |
Maximum | 5797.600 | 3672.200 | 5894.700 | 5043.700 |
Sum | 8,241,659 | 4,886,451 | 6,388,788 | 6,368,905 |
Count | 2725.000 | 2725.000 | 2725.000 | 2725.000 |
Variables | Descriptions |
---|---|
V1 | Protests and Intifada (March–July 2011) |
V2 | Early armed rebellion (July 2011–April 2012) |
V3 | Phase III: Escalation of the fighting (2012–2013) |
V4 | The Rise of Islamic Groups (January–September 2014) |
V5 | US Intervention, Rebel Group Attacks (September 2014–September 2015) |
V6 | The Syrian–American conflict, areas of de-escalation, breaking the siege of Deir Ezzor (April–December 2017) |
V7 | Army advance in northern Hama and Ghouta, Turkish intervention in Afrin (January–March 2018) |
Army advance in the south, US-led airstrikes (April–August 2018) |
Index | Variables | Day | Month | Year | V1 | V2 | V3 | V4 | V5 | V6 | V7 |
---|---|---|---|---|---|---|---|---|---|---|---|
General | Correlation | −0.011 | −0.124 | −0.602 | −0.165 | −0.058 | −0.180 | −0.072 | −0.114 | −0.089 | −0.090 |
Sig | 0.555 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
Financials | Correlation | −0.009 | −0.131 | −0.483 | −0.214 | −0.09 | −0.242 | −0.031 | −0.064 | −0.041 | −0.046 |
Sig | 0.620 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.111 | 0.001 | 0.031 | 0.017 | |
Services | Correlation | −0.015 | −0.141 | −0.732 | −0.107 | −0.020 | −0.127 | −0.089 | −0.041 | −0.191 | −0.231 |
Sig | 0.438 | 0.000 | 0.000 | 0.000 | 0.293 | 0.000 | 0.000 | 0.034 | 0.000 | 0.000 | |
Industries | Correlation | −0.011 | −0.086 | −0.656 | −0.083 | −0.009 | −0.083 | −0.138 | −0.247 | −0.089 | −0.056 |
Sig | 0.551 | 0.000 | 0.000 | 0.000 | 0.629 | 0.000 | 0.000 | 0.000 | 0.000 | 0.003 |
Model | Predictors | R2 | Error |
---|---|---|---|
1 | Year | 0.948 | 709 |
2 | year, V3 | 0.951 | 688 |
3 | year, V3, V1 | 0.953 | 676 |
4 | year, V3, V1, month | 0.954 | 667 |
5 | year, V3, V1, month, V7 | 0.954 | 663 |
6 | year, V3, V1, month, V7, V5 | 0.955 | 659 |
7 | year, V3, V1, month, V7, V5, V2 | 0.956 | 654 |
8 | year, V3, V1, month, V7, V5, V2, V6 | 0.956 | 651 |
9 | year, V3, V1, month, V7, V5, V2, V6, V4 | 0.956 | 650 |
Model | Sum of Squares | df | Mean Square | F | Sig. | |
---|---|---|---|---|---|---|
1 | Regression | 24,917,684,462 | 1 | 24,917,684,462 | 49,565 | 0.000 |
Residual | 1,369,440,861 | 2724 | 502,732 | |||
Total | 26,287,125,323 | 2725 | ||||
2 | Regression | 24,997,255,967 | 2 | 12,498,627,984 | 26,385 | 0.000 |
Residual | 1,289,869,355 | 2723 | 473,694 | |||
Total | 26,287,125,323 | 2725 | ||||
3 | Regression | 25,042,388,130 | 3 | 8,347,462,710 | 18,254 | 0.000 |
Residual | 1,244,737,193 | 2722 | 457,288 | |||
Total | 26,287,125,323 | 2725 | ||||
4 | Regression | 25,075,285,098 | 4 | 6,268,821,275 | 14,076 | 0.000 |
Residual | 1,211,840,225 | 2721 | 445,366 | |||
Total | 26,287,125,323 | 2725 | ||||
5 | Regression | 25,090,177,279 | 5 | 5,018,035,456 | 11,403 | 0.000 |
Residual | 1,196,948,044 | 2720 | 440,054 | |||
Total | 26,287,125,323 | 2725 | ||||
6 | Regression | 25,107,000,416 | 6 | 4,184,500,069 | 9641 | 0.000 |
Residual | 1,180,124,907 | 2719 | 434,029 | |||
Total | 26,287,125,323 | 2725 | ||||
7 | Regression | 25,125,448,461 | 7 | 3,589,349,780 | 8398 | 0.000 |
Residual | 1,161,676,862 | 2718 | 427,401 | |||
Total | 26,287,125,323 | 2725 | ||||
8 | Regression | 25,134,985,140 | 8 | 3,141,873,142 | 7409 | 0.000 |
Residual | 1,152,140,183 | 2717 | 424,049 | |||
Total | 26,287,125,323 | 2725 | ||||
9 | Regression | 25,139,598,566 | 9 | 2,793,288,730 | 6611 | 0.000 |
Residual | 1,147,526,757 | 2716 | 422,506 | |||
Total | 26,287,125,323 | 2725 |
Model | Predictors | R2 | Error |
---|---|---|---|
1 | Year | 0.955 | 389 |
2 | year, V7 | 0.958 | 378 |
3 | year, V7, V6 | 0.96 | 369 |
4 | year, V7, V6, V3 | 0.961 | 364 |
5 | year, V7, V6, V3, month | 0.962 | 358 |
6 | year, V7, V6, V3, month, V4 | 0.963 | 355 |
7 | year, V7, V6, V3, month, V4, V1 | 0.963 | 351 |
8 | year, V7, V6, V3, month, V4, V1, V5 | 0.964 | 349 |
9 | year, V7, V6, V3, month, V4, V1, V5, V2 | 0.964 | 348 |
Model | Sum of Squares | df | Mean Square | F | Sig. | |
---|---|---|---|---|---|---|
1 | Regression | 8,757,985,951 | 1 | 8,757,985,951 | 57,981 | 0.000 |
Residual | 411,459,725 | 2724 | 151,050 | |||
Total | 9,169,445,676 | 2725 | ||||
2 | Regression | 8,780,150,515 | 2 | 4,390,075,257 | 30,707 | 0.000 |
Residual | 389,295,161 | 2723 | 142,966 | |||
Total | 9,169,445,676 | 2725 | ||||
3 | Regression | 8,798,090,695 | 3 | 2,932,696,898 | 21,496 | 0.000 |
Residual | 371,354,980 | 2722 | 136,427 | |||
Total | 9,169,445,676 | 2725 | ||||
4 | Regression | 8,808,883,466 | 4 | 2,202,220,866 | 16,619 | 0.000 |
Residual | 360,562,210 | 2721 | 132,511 | |||
Total | 9,169,445,676 | 2725 | ||||
5 | Regression | 8,821,426,194 | 5 | 1,764,285,239 | 13,789 | 0.000 |
Residual | 348,019,482 | 2720 | 127,948 | |||
Total | 9,169,445,676 | 2725 | ||||
6 | Regression | 8,827,277,416 | 6 | 1,471,212,903 | 11,691 | 0.000 |
Residual | 342,168,260 | 2719 | 125,843 | |||
Total | 9,169,445,676 | 2725 | ||||
7 | Regression | 8,833,657,446 | 7 | 1,261,951,064 | 10,215 | 0.000 |
Residual | 335,788,230 | 2718 | 123,542 | |||
Total | 9,169,445,676 | 2725 | ||||
8 | Regression | 8,837,981,656 | 8 | 1,104,747,707 | 9056 | 0.000 |
Residual | 331,464,020 | 2717 | 121,996 | |||
Total | 9,169,445,676 | 2725 | ||||
9 | Regression | 8,840,246,675 | 9 | 982,249,631 | 8104 | 0.000 |
Residual | 329,199,001 | 2716 | 121,207 | |||
Total | 9,169,445,676 | 2725 |
Model | Predictors | R2 | Error |
---|---|---|---|
1 | Year | 0.924 | 674 |
2 | year, V5 | 0.928 | 653 |
3 | year, V5, V4 | 0.929 | 648 |
4 | year, V5, V4, V6 | 0.931 | 643 |
5 | year, V5, V4, V6, V3 | 0.932 | 638 |
6 | year, V5, V4, V6, V3, V1 | 0.933 | 634 |
7 | year, V5, V4, V6, V3, V1, V7 | 0.934 | 629 |
8 | year, V5, V4, V6, V3, V1, V7, month | 0.934 | 627 |
9 | year, V5, V4, V6, V3, V1, V7, month, V2 | 0.934 | 626 |
Model | Sum of Squares | df | Mean Square | F | Sig. | |
---|---|---|---|---|---|---|
1 | Regression | 14,969,703,006 | 1 | 14,969,703,006 | 32,988 | 0.000 |
Residual | 1,236,147,815 | 2724 | 453,799 | |||
Total | 16,205,850,822 | 2725 | ||||
2 | Regression | 15,044,843,439 | 2 | 7,522,421,720 | 17,643 | 0.000 |
Residual | 1,161,007,382 | 2723 | 426,371 | |||
Total | 16,205,850,822 | 2725 | ||||
3 | Regression | 15,062,478,270 | 3 | 5,020,826,090 | 11,953 | 0.000 |
Residual | 1,143,372,552 | 2722 | 420,049 | |||
Total | 16,205,850,822 | 2725 | ||||
4 | Regression | 15,079,825,697 | 4 | 3,769,956,424 | 9110 | 0.000 |
Residual | 1,126,025,124 | 2721 | 413,828 | |||
Total | 16,205,850,822 | 2725 | ||||
5 | Regression | 15,098,938,956 | 5 | 3,019,787,791 | 7420 | 0.000 |
Residual | 1,106,911,866 | 2720 | 406,953 | |||
Total | 16,205,850,822 | 2725 | ||||
6 | Regression | 15,113,503,063 | 6 | 2,518,917,177 | 6270 | 0.000 |
Residual | 1,092,347,758 | 2719 | 401,746 | |||
Total | 16,205,850,822 | 2725 | ||||
7 | Regression | 15,130,051,808 | 7 | 2,161,435,973 | 5461 | 0.000 |
Residual | 1,075,799,013 | 2718 | 395,805 | |||
Total | 16,205,850,822 | 2725 | ||||
8 | Regression | 15,139,103,570 | 8 | 1,892,387,946 | 4820 | 0.000 |
Residual | 1,066,747,251 | 2717 | 392,620 | |||
Total | 16,205,850,822 | 2725 | ||||
9 | Regression | 15,142,525,768 | 9 | 1,682,502,863 | 4298 | 0.000 |
Residual | 1,063,325,053 | 2716 | 391,504 | |||
Total | 16,205,850,822 | 2725 |
Model | Predictors | R2 | Error |
---|---|---|---|
1 | year | 0.941 | 584 |
2 | year, V3 | 0.943 | 575 |
3 | year, V3, month | 0.944 | 568 |
4 | year, V3, month, V1 | 0.945 | 563 |
5 | year, V3, month, V1, V5 | 0.947 | 557 |
6 | year, V3, month, V1, V5, V7 | 0.948 | 550 |
7 | year, V3, month, V1, V5, V7, V6 | 0.949 | 545 |
8 | year, V3, month, V1, V5, V7, V6, V2 | 0.949 | 542 |
9 | year, V3, month, V1, V5, V7, V6, V2, V4 | 0.950 | 539 |
Model | Sum of Squares | df | Mean Square | F | Sig. | |
---|---|---|---|---|---|---|
1 | Regression | 14,878,448,762 | 1 | 14,878,448,762 | 43,646 | 0.000 |
Residual | 928,575,972 | 2724 | 340,887 | |||
Total | 15,807,024,734 | 2725 | ||||
2 | Regression | 14,907,967,316 | 2 | 7,453,983,658 | 22,576 | 0.000 |
Residual | 899,057,418 | 2723 | 330,172 | |||
Total | 15,807,024,734 | 2725 | ||||
3 | Regression | 14,927,501,554 | 3 | 4,975,833,851 | 15,400 | 0.000 |
Residual | 879,523,179 | 2722 | 323,117 | |||
Total | 15,807,024,734 | 2725 | ||||
4 | Regression | 14,944,983,308 | 4 | 3,736,245,827 | 11,793 | 0.000 |
Residual | 862,041,426 | 2721 | 316,811 | |||
Total | 15,807,024,734 | 2725 | ||||
5 | Regression | 14,963,641,414 | 5 | 2,992,728,283 | 9652 | 0.000 |
Residual | 843,383,320 | 2720 | 310,067 | |||
Total | 15,807,024,734 | 2725 | ||||
6 | Regression | 14,985,457,489 | 6 | 2,497,576,248 | 8266 | 0.000 |
Residual | 821,567,244 | 2719 | 302,158 | |||
Total | 15,807,024,734 | 2725 | ||||
7 | Regression | 15,000,263,665 | 7 | 2,142,894,809 | 7219 | 0.000 |
Residual | 806,761,068 | 2718 | 296,822 | |||
Total | 15,807,024,734 | 2725 | ||||
8 | Regression | 15,008,754,979 | 8 | 1,876,094,372 | 6385 | 0.000 |
Residual | 798,269,755 | 2717 | 293,806 | |||
Total | 15,807,024,734 | 2725 | ||||
9 | Regression | 15,017,287,334 | 9 | 1,668,587,482 | 5738 | 0.000 |
Residual | 789,737,400 | 2716 | 290,772 | |||
Total | 15,807,024,734 | 2725 | 14,878,448,762 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Rousan, N.; Al-Najjar, D.; Al-Najjar, H. Assessing the Impact of Syrian Refugee Influx on the Jordanian Stock Exchange Market. Risks 2023, 11, 114. https://doi.org/10.3390/risks11070114
Al-Rousan N, Al-Najjar D, Al-Najjar H. Assessing the Impact of Syrian Refugee Influx on the Jordanian Stock Exchange Market. Risks. 2023; 11(7):114. https://doi.org/10.3390/risks11070114
Chicago/Turabian StyleAl-Rousan, Nadia, Dana Al-Najjar, and Hazem Al-Najjar. 2023. "Assessing the Impact of Syrian Refugee Influx on the Jordanian Stock Exchange Market" Risks 11, no. 7: 114. https://doi.org/10.3390/risks11070114
APA StyleAl-Rousan, N., Al-Najjar, D., & Al-Najjar, H. (2023). Assessing the Impact of Syrian Refugee Influx on the Jordanian Stock Exchange Market. Risks, 11(7), 114. https://doi.org/10.3390/risks11070114