A Hybrid Model for Forecasting Realized Volatility Based on Heterogeneous Autoregressive Model and Support Vector Regression
Abstract
:1. Introduction
2. Volatility Estimators
2.1. Realized Volatility
2.2. Realized Semivariance
2.3. Signed Jump
3. Basic Models
3.1. Heterogeneous Autoregressive Model
3.2. HAR-RSV and HAR-SJ Model
3.3. The HARQ Model
3.4. Genetic Algorithms and Support Vector Regression
3.5. Hybrid Model
Algorithm 1 HAR-X-SVR Model for T days forecasting |
|
4. Empirical Analysis
4.1. Data Description
4.2. Out-of-Sample Forecasting
Model Confidence Set
4.3. Results
4.4. Discussion
4.4.1. Summary
4.4.2. Empirical Results
4.4.3. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
1 | |
2 | The results obtained from different datasets with different loss functions, basic model and windowing approach are considered as a case, e.g., in the case of the results with HAR-RV as the basic model, the results of MSE obtained with the TOPIX dataset and under the RW approach are a case. |
References
- Andersen, Torben G., Tim Bollerslev, and Francis X. Diebold. 2007. Roughing it up: Including jump components in the measurement, modeling, and forecasting of return volatility. The Review of Economics and Statistics 89: 701–20. [Google Scholar] [CrossRef]
- Andersen, Torben G., Tim Bollerslev, Francis X. Diebold, and Heiko Ebens. 2001a. The distribution of realized stock return volatility. Journal of Financial Economics 61: 43–76. [Google Scholar] [CrossRef]
- Andersen, Torben G., Tim Bollerslev, Francis X. Diebold, and Paul Labys. 2001b. The distribution of realized exchange rate volatility. Journal of the American Statistical Association 96: 42–55. [Google Scholar] [CrossRef]
- Andersen, Torben G., Tim Bollerslev, Francis X. Diebold, and Paul Labys. 2003. Modeling and forecasting realized volatility. Econometrica 71: 579–625. [Google Scholar] [CrossRef]
- Audrino, Francesco, Chen Huang, and Ostap Okhrin. 2018. Flexible har model for realized volatility. Studies in Nonlinear Dynamics & Econometrics 23: 20170080. [Google Scholar]
- Barndorff-Nielsen, Ole E., and Neil Shephard. 2002. Estimating quadratic variation using realized variance. Journal of Applied Econometrics 17: 457–77. [Google Scholar] [CrossRef]
- Barndorff-Nielsen, Ole E., Silja Kinnebrock, and Neil Shephard. 2008. Measuring Downside Risk-Realised Semivariance. CREATES Research Paper (2008-42). Available online: https://ssrn.com/abstract=1262194 (accessed on 11 January 2024).
- Bennett, Kristin P., and Olvi L. Mangasarian. 1992. Robust linear programming discrimination of two linearly inseparable sets. Optimization Methods and Software 1: 23–34. [Google Scholar] [CrossRef]
- Bollerslev, Tim. 1986. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31: 307–27. [Google Scholar] [CrossRef]
- Bollerslev, Tim, Andrew J. Patton, and Rogier Quaedvlieg. 2016. Exploiting the errors: A simple approach for improved volatility forecasting. Journal of Econometrics 192: 1–18. [Google Scholar] [CrossRef]
- Bollerslev, Tim, Andrew J. Patton, and Rogier Quaedvlieg. 2018. Modeling and forecasting (un) reliable realized covariances for more reliable financial decisions. Journal of Econometrics 207: 71–91. [Google Scholar] [CrossRef]
- Boser, Bernhard E., Isabelle M. Guyon, and Vladimir N. Vapnik. 1992. A training algorithm for optimal margin classifiers. Paper presented at the Fifth Annual Workshop on Computational Learning Theory, Pittsburgh, PA, USA, July 27–29; pp. 144–52. [Google Scholar]
- Carr, Peter, Liuren Wu, and Zhibai Zhang. 2019. Using machine learning to predict realized variance. arXiv arXiv:1909.10035. [Google Scholar]
- Corsi, Fulvio. 2009. A simple approximate long-memory model of realized volatility. Journal of Financial Econometrics 7: 174–96. [Google Scholar] [CrossRef]
- Corsi, Fulvio, and Roberto Renò. 2012. Discrete-Time Volatility Forecasting with Persistent Leverage Effect and the Link With Continuous-Time Volatility Modeling. Journal of Business & Economic Statistics 30: 368–80. [Google Scholar]
- Cortes, Corinna, and Vladimir Vapnik. 1995. Support vector machine. Machine Learning 20: 273–97. [Google Scholar] [CrossRef]
- Demirer, Riza, Rangan Gupta, and Christian Pierdzioch. 2020. Forecasting Realized Stock-Market Volatility: Do Industry Returns Have Predictive Value? Available online: https://ssrn.com/abstract=3744537 (accessed on 8 December 2020).
- Engle, Robert F. 1982. Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation. Econometrica 50: 987–1007. [Google Scholar] [CrossRef]
- Engle, Robert F., and Giampiero M. Gallo. 2006. A multiple indicators model for volatility using intra-daily data. Journal of Econometrics 131: 3–27. [Google Scholar] [CrossRef]
- Erickson, Nick, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and Alexander Smola. 2020. Autogluon-tabular: Robust and accurate automl for structured data. arXiv arXiv:2003.06505. [Google Scholar]
- Guidolin, Massimo, and Manuela Pedio. 2018. Essentials of Time Series for Financial Applications. Cambridge: Academic Press. [Google Scholar]
- Gupta, Rangan, Jacobus Nel, and Christian Pierdzioch. 2023. Investor confidence and forecastability of us stock market realized volatility: Evidence from machine learning. Journal of Behavioral Finance 24: 111–22. [Google Scholar] [CrossRef]
- Hansen, Peter R., Asger Lunde, and James M. Nason. 2011. The model confidence set. Econometrica 79: 453–97. [Google Scholar] [CrossRef]
- Huang, Chien-Feng. 2012. A hybrid stock selection model using genetic algorithms and support vector regression. Applied Soft Computing 12: 807–18. [Google Scholar] [CrossRef]
- Kim, Ha Young, and Chang Hyun Won. 2018. Forecasting the volatility of stock price index: A hybrid model integrating lstm with multiple garch-type models. Expert Systems with Applications 103: 25–37. [Google Scholar] [CrossRef]
- Li, Xuemei, Lixing Ding, Yuyuan Deng, and Lanlan Li. 2010. Hybrid support vector machine and arima model in building cooling prediction. Paper presented at 2010 International Symposium on Computer, Communication, Control and Automation (3CA), Tainan, Taiwan, May 5–7; vol. 1, pp. 533–36. [Google Scholar]
- Lyócsa, Štefan, and Daniel Stašek. 2021. Improving stock market volatility forecasts with complete subset linear and quantile har models. Expert Systems with Applications 183: 115416. [Google Scholar] [CrossRef]
- McAleer, Michael, and Marcelo C. Medeiros. 2008. Realized volatility: A review. Econometric Reviews 27: 10–45. [Google Scholar] [CrossRef]
- Micchelli, Charles A. 1986. Algebraic aspects of interpolation. Paper presented at Symposia in Applied Mathematics, New York, NY, USA, March 29–30; vol. 36, pp. 81–102. [Google Scholar]
- Pai, Ping-Feng, and Chih-Sheng Lin. 2005. A hybrid arima and support vector machines model in stock price forecasting. Omega 33: 497–505. [Google Scholar] [CrossRef]
- Patton, Andrew J. 2011. Volatility forecast comparison using imperfect volatility proxies. Journal of Econometrics 160: 246–56. [Google Scholar] [CrossRef]
- Patton, Andrew J., and Kevin Sheppard. 2015. Good volatility, bad volatility: Signed jumps and the persistence of volatility. Review of Economics and Statistics 97: 683–97. [Google Scholar] [CrossRef]
- Ramos-Pérez, Eduardo, Pablo J. Alonso-González, and José Javier Núñez-Velázquez. 2019. Forecasting volatility with a stacked model based on a hybridized artificial neural network. Expert Systems with Applications 129: 1–9. [Google Scholar] [CrossRef]
- Sezer, Omer Berat, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu. 2020. Financial time series forecasting with deep learning: A systematic literature review: 2005–2019. Applied Soft Computing 90: 106181. [Google Scholar] [CrossRef]
- Smola, Alex J., and Bernhard Schölkopf. 2004. A tutorial on support vector regression. Statistics and Computing 14: 199–222. [Google Scholar] [CrossRef]
- Sun, Hao, and Bo Yu. 2020. Forecasting financial returns volatility: A garch-svr model. Computational Economics 55: 451–71. [Google Scholar] [CrossRef]
- Waring, Jonathan, Charlotta Lindvall, and Renato Umeton. 2020. Automated machine learning: Review of the state-of-the-art and opportunities for healthcare. Artificial Intelligence in Medicine 104: 101822. [Google Scholar] [CrossRef] [PubMed]
- Wen, Fenghua, Xu Gong, and Shenghua Cai. 2016. Forecasting the volatility of crude oil futures using har-type models with structural breaks. Energy Economics 59: 400–13. [Google Scholar] [CrossRef]
- Whitley, Darrell. 1994. A genetic algorithm tutorial. Statistics and Computing 4: 65–85. [Google Scholar] [CrossRef]
- Zhang, Gaoxun, and Gaoxiu Qiao. 2021. Out-of-sample realized volatility forecasting: Does the support vector regression compete combination methods. Applied Economics 53: 2192–205. [Google Scholar] [CrossRef]
- Zhu, Bangzhu, Julien Chevallier, Bangzhu Zhu, and Julien Chevallier. 2017. Carbon price forecasting with a hybrid arima and least squares support vector machines methodology. In Pricing and Forecasting Carbon Markets: Models and Empirical Analyses. Berlin and Heidelberg: Springer, pp. 87–107. [Google Scholar]
Company | Mean | std | min | 5% | 50% | 95% | max |
---|---|---|---|---|---|---|---|
TOPIX | 1.093 | 1.752 | 0.077 | 0.166 | 0.604 | 3.133 | 27.258 |
2914 | 0.644 | 0.909 | 0.070 | 0.162 | 0.405 | 1.798 | 13.090 |
8802 | 1.965 | 3.707 | 0.222 | 0.464 | 1.164 | 4.185 | 51.835 |
8411 | 1.107 | 1.731 | 0.129 | 0.233 | 0.699 | 3.050 | 23.436 |
8316 | 1.077 | 2.152 | 0.101 | 0.219 | 0.653 | 2.497 | 40.756 |
9432 | 1.904 | 4.043 | 0.134 | 0.353 | 0.955 | 5.696 | 56.830 |
Company | Loss Function | RW | IW | ||||
---|---|---|---|---|---|---|---|
HAR-RV | HAR-RV-SVR-1 | HAR-RV-SVR-2 | HAR-RV | HAR-RV-SVR-1 | HAR-RV-SVR-2 | ||
2914 | MSE | 0.012 | 0.012 | 1.000 | 0.656 | 0.656 | 1.000 |
Q-LIKE | 0.100 | 0.100 | 1.000 | 1.000 | 0.189 | 0.189 | |
MSE rank | 2 | 2 | 1 | 2 | 2 | 1 | |
Q-LIKE rank | 2 | 2 | 1 | 1 | 2 | 2 | |
Average rank | 2 | 2 | 1 | 1.5 | 2 | 1.5 | |
8316 | MSE | 0.037 | 0.037 | 1.000 | 0.230 | 0.230 | 1.000 |
Q-LIKE | 0.009 | 0.009 | 1.000 | 0.510 | 0.006 | 1.000 | |
MSE rank | 2 | 2 | 1 | 2 | 2 | 1 | |
Q-LIKE rank | 2 | 2 | 1 | 2 | 3 | 1 | |
Average rank | 2 | 2 | 1 | 2 | 2.5 | 1 | |
8411 | MSE | 0.540 | 1.000 | 0.540 | 0.671 | 0.512 | 1.000 |
Q-LIKE | 0.033 | 0.060 | 1.000 | 0.133 | 0.133 | 1.000 | |
MSE rank | 2 | 1 | 2 | 2 | 3 | 1 | |
Q-LIKE rank | 3 | 2 | 1 | 2 | 2 | 1 | |
Average rank | 2.5 | 1.5 | 1.5 | 2 | 2.5 | 1 | |
8802 | MSE | 1.000 | 0.105 | 0.279 | 1.000 | 0.055 | 0.687 |
Q-LIKE | 1.000 | 0.010 | 0.022 | 1.000 | 0.020 | 0.020 | |
MSE rank | 1 | 3 | 2 | 1 | 3 | 2 | |
Q-LIKE rank | 1 | 3 | 2 | 1 | 2 | 2 | |
Average rank | 1 | 3 | 2 | 1 | 2.5 | 2 | |
9432 | MSE | 1.000 | 0.047 | 0.047 | 1.000 | 0.037 | 0.037 |
Q-LIKE | 1.000 | 0.150 | 0.150 | 1.000 | 0.044 | 0.044 | |
MSE rank | 1 | 2 | 2 | 1 | 2 | 2 | |
Q-LIKE rank | 1 | 2 | 2 | 1 | 2 | 2 | |
Average rank | 1 | 2 | 2 | 1 | 2 | 2 | |
TOPIX | MSE | 1.000 | 0.036 | 0.791 | 1.000 | 0.003 | 0.675 |
Q-LIKE | 0.103 | 0.103 | 1.000 | 0.054 | 0.054 | 1.000 | |
MSE rank | 1 | 3 | 2 | 1 | 3 | 2 | |
Q-LIKE rank | 2 | 2 | 1 | 2 | 2 | 1 | |
Average rank | 1.5 | 2.5 | 1.5 | 1.5 | 2.5 | 1.5 | |
Total average rank | 1.667 | 2.167 | 1.5 | 1.5 | 2.333 | 1.5 |
Company | Loss Function | RW | IW | ||||
---|---|---|---|---|---|---|---|
HAR-SV | HAR-SV-SVR-1 | HAR-SV-SVR-2 | HAR-SV | HAR-SV-SVR-1 | HAR-SV-SVR-2 | ||
2914 | MSE | 0.008 | 0.008 | 1.000 | 0.085 | 0.069 | 1.000 |
Q-LIKE | 0.010 | 0.010 | 1.000 | 1.000 | 0.496 | 0.496 | |
MSE rank | 2 | 2 | 1 | 2 | 3 | 1 | |
Q-LIKE rank | 2 | 2 | 1 | 1 | 2 | 2 | |
Average rank | 2 | 2 | 1 | 1.5 | 2.5 | 1.5 | |
8316 | MSE | 0.057 | 0.055 | 1.000 | 0.083 | 0.039 | 1.000 |
Q-LIKE | 0.245 | 0.245 | 1.000 | 0.085 | 0.085 | 1.000 | |
MSE rank | 2 | 3 | 1 | 2 | 3 | 1 | |
Q-LIKE rank | 2 | 2 | 1 | 2 | 2 | 1 | |
Average rank | 2 | 2.5 | 1 | 2 | 2.5 | 1 | |
8411 | MSE | 0.061 | 0.061 | 1.000 | 0.045 | 0.061 | 1.000 |
Q-LIKE | 0.000 | 0.014 | 1.000 | 0.104 | 0.104 | 1.000 | |
MSE rank | 2 | 2 | 1 | 3 | 2 | 1 | |
Q-LIKE rank | 3 | 2 | 1 | 2 | 2 | 1 | |
Average rank | 2.5 | 2 | 1 | 2.5 | 2 | 1 | |
8802 | MSE | 0.316 | 0.186 | 1.000 | 0.579 | 0.019 | 1.000 |
Q-LIKE | 1.000 | 0.417 | 0.417 | 0.295 | 0.089 | 1.000 | |
MSE rank | 2 | 3 | 1 | 2 | 3 | 1 | |
Q-LIKE rank | 1 | 2 | 2 | 2 | 3 | 1 | |
Average rank | 1.5 | 2.5 | 1.5 | 2 | 3 | 1 | |
9432 | MSE | 0.205 | 0.122 | 1.000 | 0.043 | 0.035 | 1.000 |
Q-LIKE | 0.396 | 0.103 | 1.000 | 1.000 | 0.798 | 0.798 | |
MSE rank | 2 | 3 | 1 | 2 | 3 | 1 | |
Q-LIKE rank | 2 | 3 | 1 | 1 | 2 | 2 | |
Average rank | 2 | 3 | 1 | 1.5 | 2.5 | 1.5 | |
TOPIX | MSE | 0.088 | 0.011 | 1.000 | 0.060 | 0.007 | 1.000 |
Q-LIKE | 0.725 | 0.725 | 1.000 | 0.217 | 0.217 | 1.000 | |
MSE rank | 2 | 3 | 1 | 2 | 3 | 1 | |
Q-LIKE rank | 2 | 2 | 1 | 2 | 2 | 1 | |
Average rank | 2 | 2.5 | 1 | 2 | 2.5 | 1 | |
Total average rank | 2 | 2.417 | 1.083 | 1.917 | 2.5 | 1.167 |
Company | Loss Function | RW | IW | ||||
---|---|---|---|---|---|---|---|
HAR-SJ | HAR-SJ-SVR-1 | HAR-SJ-SVR-2 | HAR-SJ | HAR-SJ-SVR-1 | HAR-SJ-SVR-2 | ||
2914 | MSE | 0.003 | 0.003 | 1.000 | 0.274 | 0.274 | 1.000 |
Q-LIKE | 0.021 | 0.000 | 1.000 | 1.000 | 0.266 | 0.266 | |
MSE rank | 2 | 2 | 1 | 2 | 2 | 1 | |
Q-LIKE rank | 2 | 3 | 1 | 1 | 2 | 2 | |
Average rank | 2 | 2.5 | 1 | 1.5 | 2 | 1.5 | |
8316 | MSE | 0.056 | 0.049 | 1.000 | 0.171 | 0.075 | 1.000 |
Q-LIKE | 0.328 | 0.137 | 1.000 | 0.645 | 0.000 | 1.000 | |
MSE rank | 2 | 3 | 1 | 2 | 3 | 1 | |
Q-LIKE rank | 2 | 3 | 1 | 2 | 3 | 1 | |
Average rank | 2 | 3 | 1 | 2 | 3 | 1 | |
8411 | MSE | 0.048 | 0.333 | 1.000 | 0.363 | 0.363 | 1.000 |
Q-LIKE | 0.013 | 0.034 | 1.000 | 0.144 | 0.144 | 1.000 | |
MSE rank | 3 | 2 | 1 | 2 | 2 | 2 | |
Q-LIKE rank | 3 | 2 | 1 | 2 | 2 | 1 | |
Average rank | 3 | 2 | 1 | 2 | 2 | 1 | |
8802 | MSE | 1.000 | 0.067 | 0.067 | 0.686 | 0.129 | 1.000 |
Q-LIKE | 1.000 | 0.087 | 0.087 | 1.000 | 0.414 | 0.414 | |
MSE rank | 1 | 2 | 2 | 2 | 3 | 1 | |
Q-LIKE rank | 1 | 2 | 2 | 1 | 2 | 2 | |
Average rank | 1 | 2 | 2 | 1.5 | 2.5 | 1.5 | |
9432 | MSE | 0.033 | 0.011 | 1.000 | 1.000 | 0.001 | 0.145 |
Q-LIKE | 0.508 | 0.508 | 1.000 | 1.000 | 0.099 | 0.907 | |
MSE rank | 2 | 3 | 1 | 1 | 3 | 2 | |
Q-LIKE rank | 2 | 2 | 1 | 1 | 3 | 2 | |
Average rank | 2 | 2.5 | 1 | 1 | 3 | 2 | |
TOPIX | MSE | 1.000 | 0.001 | 0.476 | 1.000 | 0.007 | 0.337 |
Q-LIKE | 0.331 | 0.151 | 1.000 | 0.472 | 0.066 | 1.000 | |
MSE rank | 1 | 3 | 2 | 1 | 3 | 2 | |
Q-LIKE rank | 2 | 3 | 1 | 2 | 3 | 1 | |
Average rank | 1.5 | 3 | 1.5 | 1.5 | 3 | 1.5 | |
Total average rank | 1.917 | 2.5 | 1.25 | 1.583 | 2.583 | 1.417 |
Company | Loss Function | RW | IW | ||||
---|---|---|---|---|---|---|---|
HARQ | HARQ-SVR-1 | HARQ-SVR-2 | HARQ | HARQ-SVR-1 | HARQ-SVR-2 | ||
2914 | MSE | 0.031 | 0.031 | 1.000 | 0.560 | 1.000 | 0.977 |
Q-LIKE | 0.042 | 0.042 | 1.000 | 1.000 | 0.601 | 0.202 | |
MSE rank | 2 | 2 | 1 | 3 | 1 | 2 | |
Q-LIKE rank | 2 | 2 | 1 | 1 | 2 | 3 | |
Average rank | 2 | 2 | 1 | 2 | 1.5 | 2.5 | |
8316 | MSE | 0.064 | 0.064 | 1.000 | 0.065 | 0.065 | 1.000 |
Q-LIKE | 0.114 | 0.070 | 1.000 | 0.515 | 0.034 | 1.000 | |
MSE rank | 2 | 2 | 1 | 2 | 2 | 1 | |
Q-LIKE rank | 2 | 3 | 1 | 2 | 3 | 1 | |
Average rank | 2 | 2.5 | 1 | 2 | 2.5 | 1 | |
8411 | MSE | 0.039 | 0.039 | 1.000 | 0.051 | 0.054 | 1.000 |
Q-LIKE | 0.000 | 0.000 | 1.000 | 0.019 | 0.019 | 1.000 | |
MSE rank | 2 | 2 | 1 | 3 | 2 | 1 | |
Q-LIKE rank | 2 | 2 | 1 | 2 | 2 | 1 | |
Average rank | 2 | 2 | 1 | 2.5 | 2 | 1 | |
8802 | MSE | 0.048 | 0.048 | 1.000 | 0.050 | 0.050 | 1.000 |
Q-LIKE | 0.143 | 0.140 | 1.000 | 0.100 | 0.100 | 1.000 | |
MSE rank | 2 | 2 | 1 | 2 | 2 | 1 | |
Q-LIKE rank | 2 | 3 | 1 | 2 | 2 | 1 | |
Average rank | 2 | 2.5 | 1 | 2 | 2 | 1 | |
9432 | MSE | 0.225 | 0.130 | 1.000 | 0.569 | 0.512 | 1.000 |
Q-LIKE | 1.000 | 0.276 | 0.276 | 1.000 | 0.622 | 0.273 | |
MSE rank | 2 | 3 | 1 | 2 | 3 | 1 | |
Q-LIKE rank | 1 | 2 | 2 | 1 | 2 | 3 | |
Average rank | 1.5 | 2.5 | 1.5 | 1.5 | 2.5 | 2 | |
TOPIX | MSE | 0.232 | 0.361 | 1.000 | 0.157 | 0.300 | 1.000 |
Q-LIKE | 0.153 | 0.153 | 1.000 | 0.062 | 0.062 | 1.000 | |
MSE rank | 3 | 2 | 1 | 3 | 2 | 1 | |
Q-LIKE rank | 2 | 2 | 1 | 2 | 2 | 1 | |
Average rank | 2.5 | 2 | 1 | 2.5 | 2 | 1 | |
Total average rank | 2 | 2.25 | 1.083 | 2.083 | 2.083 | 1.417 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuo, Y.; Morimoto, T. A Hybrid Model for Forecasting Realized Volatility Based on Heterogeneous Autoregressive Model and Support Vector Regression. Risks 2024, 12, 12. https://doi.org/10.3390/risks12010012
Zhuo Y, Morimoto T. A Hybrid Model for Forecasting Realized Volatility Based on Heterogeneous Autoregressive Model and Support Vector Regression. Risks. 2024; 12(1):12. https://doi.org/10.3390/risks12010012
Chicago/Turabian StyleZhuo, Yue, and Takayuki Morimoto. 2024. "A Hybrid Model for Forecasting Realized Volatility Based on Heterogeneous Autoregressive Model and Support Vector Regression" Risks 12, no. 1: 12. https://doi.org/10.3390/risks12010012
APA StyleZhuo, Y., & Morimoto, T. (2024). A Hybrid Model for Forecasting Realized Volatility Based on Heterogeneous Autoregressive Model and Support Vector Regression. Risks, 12(1), 12. https://doi.org/10.3390/risks12010012