Polynomial Moving Regression Band Stocks Trading System
Abstract
:1. Introduction
2. Literature Review
3. Methodologies and Results
3.1. Data and Methodologies
3.2. Results
4. Summary and Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aloud, Monira Essa, and Nora Alkhamees. 2021. Intelligent Algorithmic Trading Strategy Using Reinforcement Learning and Directional Change. IEEE Access 9: 114659–71. [Google Scholar] [CrossRef]
- Ayyıldız, Nazif. 2023. Prediction of Stock Market Index Movements with Machine Learning. Gaziantep: Ozgur Press. [Google Scholar]
- Benos, Evangelos, and Satchit Sagade. 2016. Price discovery and the cross-section of high-frequency trading. Journal of Financial Markets 30: 54–77. [Google Scholar] [CrossRef]
- Burgess, Nicholas. 2022. Machine Learning Algorithmic Trading Strategies for Superior Growth, Outperformance and Competitive Advantage. International Journal of Artificial Intelligence and Machine Learning 2: 38–60. [Google Scholar] [CrossRef]
- Chavarnakul, Thira, and David Enke. 2008. Intelligent technical analysis based equivolume charting for stock trading using neural networks. Expert Systems with Applications 34: 1004–17. [Google Scholar] [CrossRef]
- Cliff, Dave. 2018. An Open-Source Limit-Order-Book Exchange for Teaching and Research. Paper presented at 2018 IEEE Symposium Series on Computational Intelligence (SSCI), Bangalore, India, November 18–21; pp. 1853–60. [Google Scholar]
- Cooper, Ricky, Wendy Currie, Jonathan Seddon, and Ben Van Vliet. 2022. Competitive advantage in algorithmic trading: A behavioral innovation economics approach. Review of Behavioral Finance 15: 371–95. [Google Scholar] [CrossRef]
- Currie, Wendy L., and Jonathan J. M. Seddon. 2017. The Regulatory, Technology and Market ‘Dark Arts Trilogy’ of High Frequency Trading: A Research Agenda. Journal of Information Technology 32: 111–26. [Google Scholar] [CrossRef]
- De Luna, Xavier. 1998. Projected polynomial autoregression for prediction of stationary time series. Journal of Applied Statistics 25: 763–75. [Google Scholar] [CrossRef]
- Frino, Alex, Dionigi Gerace, and Masud Behnia. 2021. The impact of algorithmic trading on liquidity in futures markets: New insights into the resiliency of spreads and depth. The Journal of Future Markets 41: 1301–14. [Google Scholar] [CrossRef]
- Hendershott, Terrence, and Ryan Riordan. 2011. Algorithmic Trading and the Market for Liquidity. Journal of Financial and Quantitative Analysis 48: 1001–24. [Google Scholar] [CrossRef]
- Huang, Boming, Yuziang Huan, and Li Da Xu. 2019. Automated Trading Systems Statistical and Machine Learning Methods and Hardware Implementation: A Survey. Enterprise Information Systems 13: 132–44. Available online: https://digitalcommons.odu.edu/cgi/viewcontent.cgi?article=1027&context=itds_facpubs (accessed on 28 September 2024). [CrossRef]
- Huang, Wei, Yoshiteru Nakamori, and Shou-Yang Wang. 2005. Forecasting stock market movement direction with support vector machine. Computers & Operations Research 32: 2513–22. [Google Scholar]
- Islam, Sharmin, Md. Shakil Sikder, Md. Farhad Hossain, and Partha Chakraborty. 2021. Predicting the daily closing price of selected shares on the Dhaka stock exchange using machine learning techniques. SN Business & Economics 1: 58. [Google Scholar]
- Kambeu, Edson. 2019. Trading Volume as a Predictor of Market Movement An Application of Logistic Regression in the R environment. International Journal of Finance and Banking Studies 8: 57–69. [Google Scholar]
- Kara, Yakup, Melek Acar Boyacioglu, and Ömer Kaan Baykan. 2011. Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the Istanbul stock exchange. Expert Systems with Applications 38: 5311–19. [Google Scholar] [CrossRef]
- Kim, Ha Young, and Chang Hyun Won. 2018. Forecasting the Volatility of Stock Price Index: A Hybrid Model Integrating LSTM with Multiple GARCH-Type Models. Expert Systems with Applications 103: 25–37. [Google Scholar] [CrossRef]
- Maroto, Michelle. 2018. Sharing or limiting the wealth? Coresidence, parental support, and wealth outcomes in Canada. Journal of Family and Economic Issues 40: 102–16. [Google Scholar] [CrossRef]
- McMillan, David G. 2019. Cross-asset relations, correlations and economic implications. Global Finance Journal 41: 60–78. [Google Scholar] [CrossRef]
- Ozturk, Murat, Ismail Hakki Toroslu, and Guven Fidan. 2016. Heuristic based trading system on Forex data using technical indicator rules. Applied Soft Computing 43: 170–86. [Google Scholar] [CrossRef]
- Rather, Akhter Mohiuddin. 2014. A hybrid intelligent method of predicting stock returns. Advances in Artificial Neural Systems 2014: 246487. [Google Scholar] [CrossRef]
- Sen, Jaydip, and Sidra Mehtab. 2021. A robust predictive model for stock price prediction using deep learning and natural language processing. TechRxiv. [Google Scholar] [CrossRef]
- Srijiranon, Krittakom, Yoskorn Lertratanakham, and Tanatorn Tanantong. 2022. A hybrid framework using pca, emd and lstm methods for stock market price prediction with sentiment analysis. Applied Sciences 12: 10823. [Google Scholar] [CrossRef]
- Treleaven, Philip, Michal Galas, and Vidhi Lalchand. 2013. Algorithmic Trading Review. Communication of the ACM 56: 76–85. [Google Scholar] [CrossRef]
- Zhang, Zezheng, and Matloob Khushi. 2020. GA-MSSR: Genetic Algorithm Maximizing Sharpe and Sterling Ratio Method for Robo Trading. Ithaca: Cornell University. [Google Scholar]
- Zhao, Yang, and Zhonglu Chen. 2021. Forecasting stock price movement: New evidence from a novel hybrid deep learning model. Journal of Asian Business and Economic Studies 29: 91–104. [Google Scholar] [CrossRef]
- Zhu, Hengyue. 2022. Research advanced in financial trading systems based on reinforcement learning. Paper presented at 2nd International Conference on Artificial Intelligence Automation and High Performance (AIAHPC), Zhuhai, China, February 25–27. [Google Scholar]
Ticker | NP | PP (%) | PF | TCT | ADT | |
---|---|---|---|---|---|---|
1 | AAPL | 110.1 | 64.29 | 3.48 | 28 | 31 |
2 | ABNB | −59.28 | 42.86 | 0.56 | 14 | 27 |
3 | ADBE | −15.41 | 43.33 | 0.96 | 30 | 26 |
4 | ADI | 39.81 | 63.33 | 1.39 | 30 | 31 |
5 | ADP | 173.58 | 55.17 | 2.53 | 29 | 34 |
6 | ADSK | 178.10 | 50.00 | 2.11 | 26 | 31 |
7 | AEP | 69.29 | 73.08 | 3.53 | 26 | 35 |
8 | AMAT | 2.18 | 40.63 | 1.02 | 32 | 29 |
9 | AMD | 64.23 | 53.33 | 1.59 | 30 | 31 |
10 | AMGN | 86.39 | 55.17 | 1.48 | 29 | 29 |
11 | AMZN | 67.70 | 55.56 | 1.90 | 27 | 40 |
12 | ANSS | 69.88 | 58.62 | 1.29 | 29 | 31 |
13 | ASML | 183.05 | 57.14 | 1.33 | 28 | 31 |
14 | AVGO | 139.03 | 56.67 | 1.28 | 30 | 29 |
15 | AZN | 39.06 | 59.26 | 2.36 | 27 | 36 |
16 | BIIB | −269.62 | 36.67 | 0.46 | 30 | 30 |
17 | BKNG | −45.20 | 38.89 | 0.98 | 36 | 26 |
18 | BKR | 16.55 | 57.69 | 1.53 | 26 | 35 |
19 | CCEP | 24.18 | 51.72 | 1.78 | 29 | 34 |
20 | CDNS | 75.91 | 59.38 | 2.14 | 32 | 28 |
21 | CDW | 91.25 | 61.29 | 1.84 | 31 | 28 |
22 | CEG | 70.37 | 62.50 | 4.42 | 15 | 36 |
23 | CHTR | −4.43 | 42.86 | 0.99 | 29 | 31 |
24 | CMCSA | −7.62 | 37.04 | 0.78 | 27 | 29 |
25 | COST | 323.67 | 60.00 | 2.70 | 25 | 41 |
26 | CPRT | 19.52 | 62.5 | 1.79 | 32 | 30 |
27 | CRWD | 130.48 | 50.00 | 1.92 | 18 | 32 |
28 | CSCO | 19.42 | 70.37 | 1.60 | 27 | 35 |
29 | CSGP | −0.86 | 51.85 | 0.98 | 27 | 29 |
30 | CSX | 27.58 | 67.86 | 2.90 | 28 | 31 |
31 | CTAS | 252.56 | 59.29 | 2.88 | 27 | 32 |
32 | CTSH | 46.39 | 65.38 | 2.32 | 26 | 39 |
33 | DASH | −80.72 | 41.67 | 0.44 | 12 | 29 |
34 | DDOG | 26.95 | 42.861 | 1.31 | 14 | 31 |
35 | DLTR | 99.20 | 55.56 | 2.25 | 27 | 35 |
36 | DXCM | 63.23 | 51.85 | 1.82 | 27 | 31 |
37 | EA | 5.46 | 51.72 | 1.05 | 29 | 27 |
38 | EXC | 7.44 | 53.33 | 1.34 | 30 | 31 |
39 | FANG | −75.79 | 37.50 | 0.64 | 32 | 25 |
40 | FAST | 47.00 | 68.97 | 3.54 | 29 | 31 |
41 | FTNT | 6.19 | 50.00 | 1.13 | 28 | 29 |
42 | GEHC | −8.83 | 20.00 | 0.41 | 5 | 25 |
43 | GILD | −17.62 | 34.48 | 0.76 | 29 | 27 |
44 | GOOG | 40.52 | 55.56 | 1.95 | 27 | 23 |
45 | GOOGL | 48.77 | 64.00 | 2.17 | 25 | 36 |
46 | HON | 65.61 | 45.16 | 1.51 | 31 | 29 |
47 | IDXX | 279.48 | 50.00 | 1.78 | 30 | 29 |
48 | ILMN | 38.37 | 48.15 | 1.09 | 27 | 35 |
49 | INTC | −13.48 | 38.71 | 0.80 | 31 | 30 |
50 | INTU | 324.90 | 53.33 | 2.31 | 30 | 34 |
51 | ISRG | 182.64 | 66.67 | 1.95 | 27 | 33 |
52 | KDP | 15.57 | 45.83 | 2.41 | 24 | 41 |
53 | KHC | −22.75 | 41.94 | 0.62 | 31 | 31 |
54 | KLAC | 191.63 | 42.42 | 1.57 | 33 | 28 |
55 | LIN | 235.42 | 62.07 | 3.11 | 29 | 29 |
56 | LRCX | 184.44 | 44.83 | 1.32 | 29 | 30 |
57 | LULU | 307.57 | 60.71 | 2.55 | 28 | 35 |
58 | MAR | 124.16 | 60.00 | 2.60 | 30 | 32 |
59 | MCHP | 19.86 | 55.17 | 1.33 | 29 | 31 |
60 | MDB | 75.85 | 58.33 | 1.18 | 24 | 34 |
61 | MDLZ | 15.38 | 48.39 | 1.45 | 31 | 30 |
62 | MELI | 258.84 | 50.00 | 1.16 | 32 | 26 |
63 | META | 228.30 | 48.28 | 1.93 | 29 | 32 |
64 | MNST | 32.25 | 61.54 | 2.78 | 26 | 33 |
65 | MRNA | 72.20 | 38.89 | 1.22 | 18 | 41 |
66 | MRVL | −27.51 | 36.36 | 0.68 | 33 | 27 |
67 | MSFT | 86.64 | 47.06 | 1.55 | 34 | 31 |
68 | MU | −10.77 | 51.72 | 0.88 | 29 | 29 |
69 | NFLX | 224.49 | 58.62 | 1.57 | 29 | 31 |
70 | NVDA | 390.65 | 64.00 | 3.13 | 25 | 38 |
71 | NXPI | −6.29 | 48.57 | 0.96 | 35 | 27 |
72 | ODFL | 150.43 | 70.37 | 4.80 | 27 | 35 |
73 | ON | 26.62 | 51.85 | 1.62 | 27 | 31 |
74 | ORLY | 553.29 | 55.56 | 3.13 | 27 | 38 |
75 | PANW | 178.34 | 62.07 | 2.86 | 29 | 33 |
76 | PAYX | 33.41 | 58.06 | 1.50 | 31 | 28 |
77 | PCAR | 65.90 | 53.33 | 2.77 | 30 | 35 |
78 | PDD | −21.28 | 52.38 | 0.85 | 21 | 33 |
79 | PEP | 86.77 | 59.26 | 2.58 | 27 | 33 |
80 | PYPL | 5.64 | 46.15 | 1.04 | 26 | 39 |
81 | QCOM | 12.61 | 50.00 | 1.10 | 28 | 31 |
82 | REGN | 273.00 | 50.00 | 1.69 | 28 | 33 |
83 | ROP | 281.21 | 65.38 | 2.31 | 26 | 33 |
84 | ROST | 112.74 | 58.62 | 4.13 | 29 | 33 |
85 | SBUX | 44.83 | 64.29 | 1.74 | 28 | 32 |
86 | SIRI | 4.03 | 53.85 | 1.96 | 26 | 33 |
87 | SNPS | 181.38 | 61.29 | 2.44 | 31 | 31 |
88 | TEAM | −77.63 | 62.07 | 0.79 | 29 | 32 |
89 | TMUS | 12.53 | 38.71 | 1.15 | 31 | 29 |
90 | TSLA | 321.38 | 57.69 | 2.28 | 26 | 36 |
91 | TTD | 1.60 | 51.72 | 1.02 | 29 | 29 |
92 | TTWO | 16.55 | 46.67 | 1.09 | 30 | 31 |
93 | TXN | −13.30 | 48.39 | 0.90 | 31 | 30 |
94 | VRSK | 113.47 | 50.00 | 2.38 | 28 | 28 |
95 | VRTX | 32.30 | 51.52 | 1.13 | 33 | 27 |
96 | WBA | −53.22 | 33.33 | 0.37 | 30 | 31 |
97 | WBD | 19.40 | 41.38 | 1.54 | 29 | 27 |
98 | WDAY | 100.50 | 51.85 | 1.68 | 27 | 32 |
99 | XEL | 42.86 | 73.08 | 2.55 | 26 | 38 |
100 | ZS | 108.86 | 52.38 | 1.69 | 21 | 35 |
AV | 79.67 | 52.89 | 1.76 | 27.59 | 31.59 | |
ST.D | 117.73 | 9.75 | 0.89 | 4.70 | 3.72 | |
Max | 553.29 | 73.08 | 4.80 | 36 | 41 | |
Min | −269.62 | 20.00 | 0.37 | 5 | 23 |
Ticker | NP | PP (%) | PF | TCT | ADT | |
---|---|---|---|---|---|---|
1 | AAPL | 83.74 | 58.97 | 1.86 | 40 | 23 |
2 | ABNB | 3.11 | 64.29 | 1.03 | 14 | 25 |
3 | ADBE | 394.32 | 60.98 | 1.96 | 38 | 22 |
4 | ADI | 40.07 | 58.54 | 1.31 | 42 | 24 |
5 | ADP | 42.33 | 57.14 | 1.28 | 38 | 22 |
6 | ADSK | 42.33 | 57.14 | 1.28 | 40 | 22 |
7 | AEP | −20.12 | 46.67 | 0.80 | 45 | 19 |
8 | AMAT | 72.79 | 59.53 | 1.60 | 41 | 21 |
9 | AMD | 77.95 | 62.50 | 1.59 | 37 | 25 |
10 | AMGN | 172.48 | 50.80 | 2.14 | 39 | 23 |
11 | AMZN | 98.20 | 52.38 | 1.87 | 42 | 21 |
12 | ANSS | 186.47 | 62.16 | 1.88 | 37 | 22 |
13 | ASML | 456.63 | 66.67 | 1.77 | 42 | 21 |
14 | AVGO | 396.21 | 60.98 | 2.16 | 41 | 24 |
15 | AZN | 13.45 | 44.45 | 1.26 | 36 | 25 |
16 | BIIB | −218.23 | 39.47 | 0.57 | 38 | 19 |
17 | BKNG | 1501.25 | 68.42 | 1.62 | 38 | 24 |
18 | BKR | 11.94 | 46.15 | 1.27 | 39 | 22 |
19 | CCEP | 25.98 | 64.86 | 1.74 | 37 | 24 |
20 | CDNS | 141.49 | 62.5 | 2.17 | 40 | 22 |
21 | CDW | 114.47 | 69.44 | 1.97 | 36 | 27 |
22 | CEG | 57.60 | 60.00 | 7.45 | 25 | 26 |
23 | CHTR | 85.42 | 53.66 | 1.17 | 41 | 21 |
24 | CMCSA | −2.80 | 55.00 | 0.94 | 40 | 21 |
25 | COST | 381.09 | 64.86 | 2.47 | 37 | 23 |
26 | CPRT | 30.14 | 66.67 | 2.37 | 39 | 23 |
27 | CRWD | 4.45 | 45.83 | 1.02 | 37 | 21 |
28 | CSCO | 17.19 | 56.41 | 1.47 | 39 | 24 |
29 | CSGP | 5.12 | 55.00 | 1.08 | 40 | 23 |
30 | CSX | 25.72 | 54.05 | 2.36 | 37 | 23 |
31 | CTAS | 209.04 | 65.12 | 1.92 | 43 | 21 |
32 | CTSH | 52.28 | 57.5 | 1.88 | 40 | 24 |
33 | DASH | 12.02 | 60.00 | 1.17 | 15 | 24 |
34 | DDOG | 75.82 | 63.64 | 1.82 | 22 | 21 |
35 | DLTR | 28.98 | 55.26 | 1.24 | 38 | 23 |
36 | DXCM | 88.51 | 60.00 | 1.68 | 40 | 24 |
37 | EA | 13.11 | 50.00 | 1.08 | 42 | 22 |
38 | EXC | 11.31 | 55.26 | 1.48 | 38 | 23 |
39 | FANG | 114.94 | 56.41 | 1.76 | 39 | 25 |
40 | FAST | 19.68 | 57.14 | 1.41 | 42 | 21 |
41 | FTNT | 10.90 | 50.00 | 1.24 | 42 | 22 |
42 | GEHC | 11.33 | 60.00 | 5.00 | 5 | 30 |
43 | GILD | −35.59 | 43.18 | 0.62 | 44 | 22 |
44 | GOOG | 61.38 | 54.05 | 1.85 | 37 | 22 |
45 | GOOGL | 37.91 | 55.26 | 1.49 | 38 | 22 |
46 | HON | 95.71 | 60.00 | 1.67 | 40 | 22 |
47 | IDXX | 362.30 | 52.38 | 1.97 | 42 | 20 |
48 | ILMN | 72.76 | 62.16 | 1.18 | 37 | 24 |
49 | INTC | −3.24 | 46.15 | 0.95 | 39 | 25 |
50 | INTU | 119.06 | 58.54 | 1.38 | 41 | 23 |
51 | ISRG | 208.73 | 68.57 | 2.07 | 35 | 30 |
52 | KDP | 6.59 | 47.22 | 1.30 | 36 | 23 |
53 | KHC | −13.06 | 50.00 | 0.75 | 34 | 27 |
54 | KLAC | 403.95 | 60.00 | 2.70 | 40 | 23 |
55 | LIN | 153.83 | 52.50 | 1.99 | 40 | 24 |
56 | LRCX | 356.22 | 64.86 | 1.70 | 37 | 22 |
57 | LULU | 211.36 | 61.54 | 1.72 | 39 | 22 |
58 | MAR | 60.55 | 51.16 | 1.38 | 43 | 22 |
59 | MCHP | 81.17 | 63.89 | 2.64 | 36 | 26 |
60 | MDB | −11.01 | 57.58 | 0.98 | 33 | 24 |
61 | MDLZ | 15.25 | 51.28 | 1.38 | 39 | 22 |
62 | MELI | 506.95 | 59.52 | 1.38 | 42 | 21 |
63 | META | 13.17 | 47.62 | 1.03 | 42 | 22 |
64 | MNST | 37.12 | 56.41 | 2.48 | 39 | 24 |
65 | MRNA | 33.14 | 44.44 | 1.08 | 27 | 23 |
66 | MRVL | 3.95 | 48.65 | 1.06 | 37 | 23 |
67 | MSFT | 123.68 | 55.00 | 1.72 | 40 | 24 |
68 | MU | 24.09 | 47.50 | 1.26 | 40 | 24 |
69 | NFLX | 156.09 | 54.29 | 1.28 | 35 | 26 |
70 | NVDA | 261.28 | 51.16 | 1.77 | 43 | 21 |
71 | NXPI | 153.02 | 60.00 | 2.02 | 40 | 22 |
72 | ODFL | 44.31 | 63.89 | 1.43 | 36 | 22 |
73 | ON | 71.67 | 62.16 | 2.52 | 37 | 26 |
74 | ORLY | 605.68 | 57.50 | 2.80 | 40 | 23 |
75 | PANW | 105.63 | 52.63 | 1.67 | 38 | 22 |
76 | PAYX | 50.69 | 58.33 | 2.16 | 36 | 25 |
77 | PCAR | 72.99 | 70.27 | 3.46 | 37 | 27 |
78 | PDD | −22.37 | 43.75 | 0.89 | 32 | 21 |
79 | PEP | 51.99 | 58.54 | 1.52 | 41 | 22 |
80 | PYPL | 49.47 | 52.38 | 1.38 | 42 | 22 |
81 | QCOM | 75.43 | 59.52 | 1.50 | 42 | 22 |
82 | REGN | 136.45 | 48.65 | 1.25 | 37 | 23 |
83 | ROP | 217.64 | 58.97 | 1.83 | 39 | 24 |
84 | ROST | 60.77 | 48.65 | 1.73 | 37 | 24 |
85 | SBUX | −45.13 | 37.78 | 0.64 | 45 | 21 |
86 | SIRI | 0.12 | 38.46 | 1.02 | 39 | 25 |
87 | SNPS | 318.56 | 65.85 | 2.38 | 41 | 21 |
88 | TEAM | −58.21 | 52.50 | 0.85 | 40 | 24 |
89 | TMUS | 65.63 | 65.79 | 1.93 | 38 | 24 |
90 | TSLA | 263.05 | 61.11 | 2.17 | 36 | 23 |
91 | TTD | 32.16 | 55.00 | 1.31 | 40 | 23 |
92 | TTWO | −63.93 | 46.67 | 0.75 | 45 | 21 |
93 | TXN | 108.53 | 63.16 | 2.10 | 38 | 27 |
94 | VRSK | 70.26 | 58.97 | 1.59 | 39 | 24 |
95 | VRTX | 302.25 | 60.53 | 3.03 | 38 | 25 |
96 | WBA | −47.12 | 37.50 | 0.48 | 40 | 21 |
97 | WBD | 10.30 | 43.90 | 1.17 | 41 | 24 |
98 | WDAY | 58.09 | 62.86 | 1.25 | 35 | 24 |
99 | XEL | 14.37 | 43.59 | 1.25 | 39 | 21 |
100 | ZS | 99.09 | 54.84 | 1.35 | 31 | 23 |
AV | 110.33 | 55.85 | 1.67 | 37.75 | 23.11 | |
ST.D | 193.95 | 7.53 | 0.85 | 5.95 | 1.96 | |
Max | 1501.25 | 70.27 | 7.45 | 45 | 30 | |
Min | −218.23 | 37.50 | 0.48 | 5 | 19 |
Ticker | NP | PP (%) | PF | TCT | ADT | |
---|---|---|---|---|---|---|
1 | AAPL | 72.35 | 59.51 | 1.70 | 49 | 17 |
2 | ABNB | 25.08 | 62.50 | 1.26 | 16 | 21 |
3 | ADBE | 364.71 | 61.54 | 1.71 | 52 | 19 |
4 | ADI | 34.82 | 54.55 | 1.20 | 55 | 15 |
5 | ADP | 43.83 | 52.83 | 1.23 | 53 | 16 |
6 | ADSK | 144.40 | 58.33 | 1.54 | 48 | 20 |
7 | AEP | −31.20 | 47.37 | 0.71 | 57 | 16 |
8 | AMAT | 103.23 | 60.78 | 2.00 | 51 | 18 |
9 | AMD | 120.39 | 58.00 | 1.96 | 50 | 19 |
10 | AMGN | 98.68 | 51.02 | 1.44 | 49 | 19 |
11 | AMZN | 148.37 | 59.62 | 2.30 | 52 | 18 |
12 | ANSS | 243.07 | 67.31 | 1.87 | 52 | 18 |
13 | ASML | 681.73 | 64.81 | 2.25 | 54 | 17 |
14 | AVGO | 354.64 | 51.72 | 1.57 | 58 | 17 |
15 | AZN | 3.77 | 53.06 | 1.08 | 49 | 18 |
16 | BIIB | 4.54 | 46.67 | 1.01 | 45 | 18 |
17 | BKNG | 2166.95 | 62.00 | 2.36 | 50 | 19 |
18 | BKR | 2166.95 | 62.00 | 2.36 | 50 | 19 |
19 | CCEP | 9.91 | 46.3 | 1.17 | 54 | 19 |
20 | CDNS | 208.69 | 63.27 | 3.45 | 49 | 18 |
21 | CDW | 93.38 | 53.85 | 1.70 | 52 | 18 |
22 | CEG | 47.43 | 58.33 | 3.19 | 12 | 19 |
23 | CHTR | 357.22 | 57.14 | 1.63 | 49 | 19 |
24 | CMCSA | 9.19 | 57.69 | 1.22 | 52 | 18 |
25 | COST | 111.56 | 52.83 | 1.32 | 53 | 18 |
26 | CPRT | 32.23 | 63.27 | 2.87 | 49 | 19 |
27 | CRWD | 136.56 | 52.94 | 1.59 | 34 | 16 |
28 | CSCO | 20.84 | 61.22 | 1.38 | 49 | 19 |
29 | CSGP | 54.09 | 56.60 | 1.72 | 53 | 19 |
30 | CSX | 7.12 | 52.00 | 1.24 | 50 | 17 |
31 | CTAS | 196.94 | 57.70 | 1.69 | 52 | 18 |
32 | CTSH | 10.67 | 56.25 | 1.15 | 48 | 20 |
33 | DASH | −52.38 | 42.86 | 0.55 | 21 | 19 |
34 | DDOG | 88.90 | 58.62 | 1.83 | 29 | 17 |
35 | DLTR | −30.26 | 53.19 | 0.86 | 47 | 19 |
36 | DXCM | 48.95 | 53.70 | 1.34 | 54 | 16 |
37 | EA | −3.04 | 47.06 | 0.98 | 51 | 17 |
38 | EXC | 0.13 | 48.08 | 1.00 | 52 | 17 |
39 | FANG | 146.99 | 65.31 | 2.01 | 49 | 20 |
40 | FAST | 14.45 | 49.06 | 1.27 | 53 | 17 |
41 | FTNT | 36.08 | 60.00 | 1.64 | 55 | 19 |
42 | GEHC | 10.81 | 80.00 | 3.82 | 5 | 19 |
43 | GILD | −5.37 | 43.64 | 0.94 | 55 | 17 |
44 | GOOG | 76.25 | 60.00 | 1.98 | 55 | 18 |
45 | GOOGL | 61.96 | 56.14 | 1.72 | 57 | 17 |
46 | HON | −37.96 | 49.06 | 0.84 | 53 | 17 |
47 | IDXX | 255.39 | 59.62 | 1.59 | 52 | 18 |
48 | ILMN | −27.64 | 47.27 | 0.96 | 55 | 16 |
49 | INTC | −3.54 | 46.15 | 0.95 | 52 | 16 |
50 | INTU | 219.32 | 63.16 | 1.46 | 57 | 17 |
51 | ISRG | 322.09 | 63.46 | 2.19 | 52 | 20 |
52 | KDP | 21.87 | 60.00 | 1.98 | 50 | 19 |
53 | KHC | 19.08 | 54.55 | 1.56 | 44 | 19 |
54 | KLAC | 357.10 | 57.89 | 2.12 | 57 | 16 |
55 | LIN | 81.02 | 56.14 | 1.30 | 57 | 18 |
56 | LRCX | 457.32 | 55.36 | 1.72 | 56 | 16 |
57 | LULU | 247.89 | 52.94 | 1.71 | 51 | 18 |
58 | MAR | 7.64 | 48.15 | 1.05 | 54 | 17 |
59 | MCHP | 59.81 | 61.22 | 1.97 | 49 | 18 |
60 | MDB | 448.01 | 57.14 | 2.22 | 42 | 18 |
61 | MDLZ | 16.74 | 54.00 | 1.33 | 50 | 17 |
62 | MELI | 1393.09 | 60.34 | 1.86 | 58 | 18 |
63 | META | −66.33 | 45.1 | 0.83 | 51 | 17 |
64 | MNST | 9.24 | 54.24 | 1.17 | 59 | 17 |
65 | MRNA | −52.53 | 51.35 | 0.87 | 37 | 17 |
66 | MRVL | 34.07 | 61.82 | 1.54 | 55 | 17 |
67 | MSFT | 269.15 | 67.31 | 2.93 | 52 | 19 |
68 | MU | 55.86 | 63.83 | 1.56 | 47 | 19 |
69 | NFLX | 531.29 | 66.67 | 2.20 | 45 | 20 |
70 | NVDA | 457.86 | 56.36 | 2.60 | 55 | 17 |
71 | NXPI | 65.88 | 62.00 | 1.35 | 50 | 17 |
72 | ODFL | 14.84 | 46.43 | 1.13 | 56 | 16 |
73 | ON | 77.41 | 64.00 | 2.86 | 50 | 18 |
74 | ORLY | 441.78 | 56.36 | 2.28 | 55 | 16 |
75 | PANW | 99.64 | 51.92 | 1.51 | 52 | 18 |
76 | PAYX | 14.63 | 45.45 | 1.12 | 55 | 16 |
77 | PCAR | 11.13 | 46.31 | 1.15 | 54 | 17 |
78 | PDD | −95.52 | 51.28 | 0.59 | 39 | 16 |
79 | PEP | 4.50 | 51.72 | 1.03 | 58 | 16 |
80 | PYPL | 90.86 | 58.49 | 1.45 | 53 | 18 |
81 | QCOM | 32.46 | 45.61 | 1.16 | 57 | 15 |
82 | REGN | 286.82 | 53.19 | 1.44 | 47 | 19 |
83 | ROP | 37.01 | 55.36 | 1.08 | 56 | 18 |
84 | ROST | 13.29 | 55.32 | 1.11 | 47 | 20 |
85 | SBUX | −6.45 | 46.03 | 0.94 | 54 | 17 |
86 | SIRI | 2.38 | 53.06 | 1.49 | 49 | 19 |
87 | SNPS | 460.68 | 64.91 | 3.80 | 57 | 15 |
88 | TEAM | 208.49 | 56.60 | 1.64 | 53 | 18 |
89 | TMUS | 59.12 | 56.36 | 1.60 | 55 | 17 |
90 | TSLA | 235.78 | 59.57 | 1.66 | 47 | 18 |
91 | TTD | 92.20 | 53.06 | 1.99 | 49 | 19 |
92 | TTWO | 54.94 | 53.70 | 1.34 | 54 | 19 |
93 | TXN | 35.64 | 48.08 | 1.26 | 52 | 17 |
94 | VRSK | 64.95 | 52.94 | 1.39 | 51 | 18 |
95 | VRTX | 126.86 | 55.77 | 1.45 | 52 | 18 |
96 | WBA | −20.07 | 41.51 | 0.77 | 53 | 17 |
97 | WBD | 3.48 | 44.44 | 1.06 | 54 | 17 |
98 | WDAY | 199.89 | 61.22 | 1.764 | 49 | 19 |
99 | XEL | 4.04 | 41.82 | 1.06 | 55 | 18 |
100 | ZS | 147.06 | 58.97 | 1.79 | 39 | 18 |
AV | 162.75 | 55.45 | 1.60 | 49.71 | 17.78 | |
ST.D | 348 | 54.40 | 0.64 | 9.01 | 1.12 | |
Max | 2166.95 | 80.00 | 3.82 | 59 | 21 | |
Min | −95.52 | 41.51 | 0.55 | 5 | 15 |
NP | PP (%) | PF | Days | ||
---|---|---|---|---|---|
Model 1 | AV | 79.67 | 52.89 | 1.76 | 871.56 |
Min | −269.62 | 20.00 | 0.37 | 115 | |
Model 2 | AV | 110.33 | 55.85 | 1.67 | 872.4 |
Min | −218.23 | 37.50 | 0.48 | 95 | |
Model 3 | AV | 162.73 | 55.45 | 1.60 | 883.8 |
Min | −95.52 | 41.51 | 0.55 | 75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cohen, G. Polynomial Moving Regression Band Stocks Trading System. Risks 2024, 12, 166. https://doi.org/10.3390/risks12100166
Cohen G. Polynomial Moving Regression Band Stocks Trading System. Risks. 2024; 12(10):166. https://doi.org/10.3390/risks12100166
Chicago/Turabian StyleCohen, Gil. 2024. "Polynomial Moving Regression Band Stocks Trading System" Risks 12, no. 10: 166. https://doi.org/10.3390/risks12100166
APA StyleCohen, G. (2024). Polynomial Moving Regression Band Stocks Trading System. Risks, 12(10), 166. https://doi.org/10.3390/risks12100166