De Finetti’s Control Problem with Parisian Ruin for Spectrally Negative Lévy Processes
Abstract
:1. Introduction and Main Result
1.1. Problem Formulation
1.2. Main Result and Organization of the Paper
2. More on the Value Function
3. Horizontal Barrier Strategies
3.1. Second Family of Scale Functions
3.2. Value Function of a Barrier Strategy
3.3. Optimal Barrier Level
- (a)
- and ;
- (b)
- and ;
- (c)
- , and
4. Verification Lemma and Proof of the MainResult
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Proof of Proposition 1
Appendix B. Proof of Proposition 2
References
- Albrecher, Hansjörg, and Jevgenijs Ivanovs. 2014. Power identities for Lévy risk models under taxation and capital injections. Stochastic Systems 4: 157–72. [Google Scholar] [CrossRef]
- Albrecher, Hansjörg, Eric C. K. Cheung, and Stefan Thonhauser. 2011. Randomized observation periods for the compound Poisson risk model dividends. ASTIN Bulletin 41: 645–72. [Google Scholar]
- Albrecher, Hansjörg, Jevgenijs Ivanovs, and Xiaowen Zhou. 2016. Exit identities for Lévy processes observed at Poisson arrival times. Bernoulli 22: 1364–82. [Google Scholar] [CrossRef]
- Avram, Florin, and Andreea Minca. 2017. On the central management of risk networks. Advances in Applied Probability 49: 221–37. [Google Scholar] [CrossRef]
- Avram, Florin, and Xiaowen Zhou. 2016. On fluctuation theory for spectrally negative Lévy processes with Parisian reflection below, and applications. Theory of Probability and Mathematical Statistics 95: 17–40. [Google Scholar] [CrossRef]
- Avram, Florin, Zbigniew Palmowski, and Martijn R. Pistorius. 2007. On the optimal dividend problem for a spectrally negative Lévy process. The Annals of Applied Probability 17: 156–80. [Google Scholar] [CrossRef]
- Avram, Florin, Zbigniew Palmowski, and Martijn R. Pistorius. 2015. On Gerber-Shiu functions and optimal dividend distribution for a Lévy risk process in the presence of a penalty function. The Annals of Applied Probability 25: 1868–935. [Google Scholar] [CrossRef]
- Baurdoux, Erik J., Juan Carlos Pardo, José Luis Pérez, and Jean-François Renaud. 2016. Gerber-Shiu distribution at Parisian ruin for Lévy insurance risk processes. Journal of Applied Probability 53: 572–84. [Google Scholar] [CrossRef]
- Biffis, Enrico, and Andreas E. Kyprianou. 2010. A note on scale functions and the time value of ruin for Lévy insurance risk processes. Insurance: Mathematics and Economics 46: 85–91. [Google Scholar] [CrossRef]
- Czarna, Irmina, and Zbigniew Palmowski. 2014. Dividend problem with Parisian delay for a spectrally negative Lévy risk process. Journal of Optimization Theory and Applications 161: 239–56. [Google Scholar] [CrossRef]
- Dassios, Angelos, and Shanle Wu. 2009. On barrier strategy dividends with Parisian implementation delay for classical surplus processes. Insurance: Mathematics and Economics 45: 195–202. [Google Scholar] [CrossRef]
- De Finetti, Bruno. 1957. Su un’ impostazione alternativa dell teoria collettiva del rischio. Transactions of the XVth International Congress of Actuaries 2: 433–43. [Google Scholar]
- Ivanovs, Jevgenijs, and Zbigniew Palmowski. 2012. Occupation densities in solving exit problems for Markov additive processes and their reflections. Stochastic Processes and Their Applications 122: 3342–60. [Google Scholar] [CrossRef]
- Kuznetsov, Alexey, Andreas E. Kyprianou, and Victor Rivero. 2012. The Theory of Scale Functions for Spectrally Negative Lévy Processes. Lévy Matters. Berlin/Heidelberg: Springer. [Google Scholar]
- Kyprianou, Andreas E. 2014. Fluctuations of Lévy Processes with Applications—Introductory Lectures, 2nd ed. Heidelberg: Springer. [Google Scholar]
- Kyprianou, Andreas E., Ronnie Loeffen, and José-Luis Pérez. 2012. Optimal control with absolutely continuous strategies for spectrally negative Lévy processes. Journal of Applied Probability 49: 150–66. [Google Scholar] [CrossRef]
- Landriault, David, Jean-François Renaud, and Xiaowen Zhou. 2011. Occupation times of spectrally negative Lévy processes with applications. Stochastic Processes and Their Applications 121: 2629–41. [Google Scholar] [CrossRef]
- Lkabous, Mohamed Amine, and Jean-François Renaud. 2019. A unified approach to ruin probabilities with delays for spectrally negative Lévy processes. Scandinavian Actuarial Journal. [Google Scholar] [CrossRef]
- Loeffen, Ronnie L. 2008. On optimality of the barrier strategy in de Finetti’s dividend problem for spectrally negative Lévy processes. The Annals of Applied Probability 18: 1669–80. [Google Scholar] [CrossRef]
- Loeffen, Ronnie L., and Jean-François Renaud. 2010. De Finetti’s optimal dividends problem with an affine penalty function at ruin. Insurance: Mathematics and Economics 46: 98–108. [Google Scholar] [CrossRef]
- Loeffen, Ronnie, Irmina Czarna, and Zbigniew Palmowski. 2013. Parisian ruin probability for spectrally negative Lévy processes. Bernoulli 19: 599–609. [Google Scholar] [CrossRef]
- Renaud, Jean-François, and Xiaowen Zhou. 2007. Distribution of the present value of dividend payments in a Lévy risk model. Journal of Applied Probability 44: 420–27. [Google Scholar] [CrossRef]
- Roberts, A. W., and D. E. Varberg. 1973. Convex functions. In Pure and Applied Mathematics. New York and London: Academic Press, vol. 57. [Google Scholar]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renaud, J.-F. De Finetti’s Control Problem with Parisian Ruin for Spectrally Negative Lévy Processes. Risks 2019, 7, 73. https://doi.org/10.3390/risks7030073
Renaud J-F. De Finetti’s Control Problem with Parisian Ruin for Spectrally Negative Lévy Processes. Risks. 2019; 7(3):73. https://doi.org/10.3390/risks7030073
Chicago/Turabian StyleRenaud, Jean-François. 2019. "De Finetti’s Control Problem with Parisian Ruin for Spectrally Negative Lévy Processes" Risks 7, no. 3: 73. https://doi.org/10.3390/risks7030073
APA StyleRenaud, J. -F. (2019). De Finetti’s Control Problem with Parisian Ruin for Spectrally Negative Lévy Processes. Risks, 7(3), 73. https://doi.org/10.3390/risks7030073