Exploring How Healthcare Organizations Use Twitter: A Discourse Analysis
Abstract
:1. Introduction
1.1. Background and Literature Review
1.2. Objective
1.2.1. Research Question 1: What Are the Significant Text Patterns That Shape the Content of Tweets by Health Agencies and Pharmaceutical Companies in the US and Canada, and How Do They Compare with the WHO?
1.2.2. Research Question 2: How Can We Analyze and Evaluate the Impact of Word Patterns on the Content Shared by Healthcare Organizations on Twitter?
2. Materials and Methods
2.1. Dataset
2.2. Content Analysis
2.2.1. Topic Modeling
2.2.2. Heatmaps
2.2.3. Hashtags and Mentions
2.3. Association Rule Mining
2.3.1. Graphical Visualizations
2.3.2. Quantitative Analysis
2.4. Causality Analysis
2.5. Computational Resources
- Central processing unit (CPU): 2x Intel E5-2683 v4 [email protected] GHz
- Memory (RAM): 30 GB
3. Results
3.1. Content Analysis
3.2. Association Rule Mining
3.3. Causality Analysis
4. Discussion
4.1. RQ1: What Are the Significant Text Patterns that Shape the Content of Tweets by Health Agencies and Pharmaceutical Companies in the US and Canada, and How Do They Compare with the WHO?
4.2. RQ2: How Can We Analyze and Evaluate the Impact of Word Patterns on the Content Shared by Healthcare Organizations on Twitter?
4.3. Limitations and Future Research Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mitchell, A.; Shearer, E.; Stocking, G. News on Twitter: Consumed by Most Users and Trusted by Many; Pew Research Center: Washington, DC, USA, 2021. [Google Scholar]
- Pershad, Y.; Hangge, P.T.; Albadawi, H.; Oklu, R. Social medicine: Twitter in healthcare. J. Clin. Med. 2018, 7, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, L.; Zhang, D.; Yang, C.C.; Wang, Y. Harnessing social media for health information management. Electron. Commer. Res. Appl. 2018, 27, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Colditz, J.B.; Chu, K.H.; Emery, S.L.; Larkin, C.R.; James, A.E.; Welling, J.; Primack, B.A. Toward real-time infoveillance of Twitter health messages. Am. J. Public Health 2018, 108, 1009–1014. [Google Scholar] [CrossRef] [PubMed]
- Mendhe, C.H.; Henderson, N.; Srivastava, G.; Mago, V. A scalable platform to collect, store, visualize, and analyze big data in real time. IEEE Trans. Comput. Soc. Syst. 2020, 8, 260–269. [Google Scholar] [CrossRef]
- Grover, P.; Kar, A.K.; Davies, G. “Technology enabled Health”—Insights from twitter analytics with a socio-technical perspective. Int. J. Inf. Manag. 2018, 43, 85–97. [Google Scholar] [CrossRef]
- Broniatowski, D.A.; Jamison, A.M.; Qi, S.; AlKulaib, L.; Chen, T.; Benton, A.; Quinn, S.C.; Dredze, M. Weaponized health communication: Twitter bots and Russian trolls amplify the vaccine debate. Am. J. Public Health 2018, 108, 1378–1384. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, F.; Zhou, H. Understanding health food messages on Twitter for health literacy promotion. Perspect. Public Health 2018, 138, 173–179. [Google Scholar] [CrossRef]
- Doan, S.; Yang, E.W.; Tilak, S.S.; Li, P.W.; Zisook, D.S.; Torii, M. Extracting health-related causality from twitter messages using natural language processing. BMC Med. Inform. Decis. Mak. 2019, 19, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Li, Y.; Hutch, M.; Naidech, A.; Luo, Y. Using tweets to understand how COVID-19–Related health beliefs are affected in the age of social media: Twitter data analysis study. J. Med. Internet Res. 2021, 23, e26302. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wu, Y.; Liu, J.; Li, J.; Zhang, P. Understanding health care social media use from different stakeholder perspectives: A content analysis of an online health community. J. Med. Internet Res. 2017, 19, e109. [Google Scholar] [CrossRef]
- Tyrawski, J.; DeAndrea, D.C. Pharmaceutical companies and their drugs on social media: A content analysis of drug information on popular social media sites. J. Med. Internet Res. 2015, 17, e130. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, R.; Mehta, V.; Valkunde, T.; Moustakas, E. Topics, trends, and sentiments of tweets about the COVID-19 pandemic: Temporal infoveillance study. J. Med. Internet Res. 2020, 22, e22624. [Google Scholar] [CrossRef]
- Poddar, S.; Mondal, M.; Misra, J.; Ganguly, N.; Ghosh, S. Winds of Change: Impact of COVID-19 on Vaccine-related Opinions of Twitter users. In Proceedings of the International AAAI Conference on Web and Social Media, Limassol, Cyprus, 5–8 June 2022; Volume 16, pp. 782–793. [Google Scholar]
- Raihan, M.; Islam, M.T.; Ghosh, P.; Hassan, M.M.; Angon, J.H.; Kabiraj, S. Human behavior analysis using association rule mining techniques. In Proceedings of the IEEE 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kharagpur, India, 1–3 July 2020; pp. 1–5. [Google Scholar]
- Meesala, S.R.; Subramanian, S. Feature based opinion analysis on social media tweets with association rule mining and multi-objective evolutionary algorithms. Concurr. Comput. Pract. Exp. 2022, 34, e6586. [Google Scholar] [CrossRef]
- Singhal, A.; Baxi, M.K.; Mago, V. Synergy Between Public and Private Health Care Organizations During COVID-19 on Twitter: Sentiment and Engagement Analysis Using Forecasting Models. JMIR Med. Inform. 2022, 10, e37829. [Google Scholar] [CrossRef]
- Koukaras, P.; Tjortjis, C.; Rousidis, D. Mining association rules from COVID-19 related twitter data to discover word patterns, topics and inferences. Inf. Syst. 2022, 109, 102054. [Google Scholar] [CrossRef] [PubMed]
- Agouti, T. Graph-based modeling using association rule mining to detect influential users in social networks. Expert Syst. Appl. 2022, 202, 117436. [Google Scholar] [CrossRef]
- Ma, L.; Wang, Y. Constructing a semantic graph with depression symptoms extraction from twitter. In Proceedings of the 2019 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), Siena, Italy, 9–11 July 2019; pp. 1–5. [Google Scholar]
- Tassone, J.; Yan, P.; Simpson, M.; Mendhe, C.; Mago, V.; Choudhury, S. Utilizing deep learning and graph mining to identify drug use on Twitter data. BMC Med. Inform. Decis. Mak. 2020, 20, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Wibowo, W.; Sari, N.P.; Wilantari, R.N.; Abdul-Rahman, S. Association rule mining method for the identification of internet use. In Proceedings of the Journal of Physics: Conference Series, Thessaloniki, Greece, 16–19 June 2021; IOP Publishing: Bristol, UK, 2021; Volume 1874, p. 012009. [Google Scholar]
- Jiang, K.; Feng, S.; Calix, R.A.; Bernard, G.R. Assessment of word embedding techniques for identification of personal experience tweets pertaining to medication uses. In International Workshop on Health Intelligence; Springer: Cham, Switzerland, 2019; pp. 45–55. [Google Scholar]
- Gilbert, J.P.; Niu, J.; de Montigny, S.; Ng, V.; Rees, E. Machine learning identification of self-reported COVID-19 symptoms from Tweets in Canada. In International Workshop on Health Intelligence; Springer: Cham, Switzerland, 2021; pp. 101–111. [Google Scholar]
- George, G.; Osinga, E.C.; Lavie, D.; Scott, B.A. Big data and data science methods for management research. Acad. Manag. J. 2016, 59, 1493–1507. [Google Scholar] [CrossRef] [Green Version]
- Gil de Zúñiga, H.; Molyneux, L.; Zheng, P. Social media, political expression, and political participation: Panel analysis of lagged and concurrent relationships. J. Commun. 2014, 64, 612–634. [Google Scholar] [CrossRef]
- Chen, S.; Geldsetzer, P.; Bärnighausen, T. The causal effect of retirement on stress in older adults in China: A regression discontinuity study. SSM-Popul. Health 2020, 10, 100462. [Google Scholar] [CrossRef]
- Lilleberg, J.; Zhu, Y.; Zhang, Y. Support vector machines and word2vec for text classification with semantic features. In Proceedings of the 2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC), Beijing, China, 6–8 July 2015; pp. 136–140. [Google Scholar]
- Newman, D.; Lau, J.H.; Grieser, K.; Baldwin, T. Automatic evaluation of topic coherence. In Proceedings of the Human Language Technologies: The 2010 annual Conference of the North American Chapter of the Association for Computational Linguistics, Los Angeles, CA, USA, 2–4 June 2010; pp. 100–108. [Google Scholar]
- Röder, M.; Both, A.; Hinneburg, A. Exploring the space of topic coherence measures. In Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, Shanghai, China, 2–6 February 2015; pp. 399–408. [Google Scholar]
- Agrawal, R.; Imielinski, T.; Swami, A. Mining associations between sets of items in large databases. In Proceedings of the ACM SIGMOD International Conference on Management of Data, Washington, DC, USA, 25–28 May 1993; pp. 207–216. [Google Scholar]
- Agrawal, R.; Srikant, R. Fast algorithms for mining association rules. In Proceedings of the 20th International Conference on Very Large Data Bases, Santiago, Chile, 12–15 September 1994; Volume 1215, pp. 487–499. [Google Scholar]
- Tan, P.N.; Steinbach, M.; Kumar, V. Introduction to Data Mining; Pearson Education: Noida, India, 2016. [Google Scholar]
- Mahdikhani, M. Predicting the popularity of tweets by analyzing public opinion and emotions in different stages of COVID-19 pandemic. Int. J. Inf. Manag. Data Insights 2022, 2, 100053. [Google Scholar] [CrossRef]
- Nogueira, A.R.; Pugnana, A.; Ruggieri, S.; Pedreschi, D.; Gama, J. Methods and tools for causal discovery and causal inference. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2022, 12, e1449. [Google Scholar] [CrossRef]
- Galgoczy, M.C.; Phatak, A.; Vinson, D.; Mago, V.K.; Giabbanelli, P.J. (Re) shaping online narratives: When bots promote the message of President Trump during his first impeachment. PeerJ Comput. Sci. 2022, 8, e947. [Google Scholar] [CrossRef] [PubMed]
Organization (Twitter Account) | Number of Tweets | |
Public Health Agencies | ||
Centers for Disease Control and Prevention (@CDCgov) | 8629 | |
Indian Health Service (@IHSgov) | 1832 | |
Health Canada and PHAC (@GovCanHealth) | 52,518 | |
Government of Canada for Indigenous (@GCIndigenous) | 3833 | |
Total | 66,812 | |
Pharmaceutical Companies | ||
Pfizer (@pfizer) | 2813 | |
Johnson & Johnson (@JNJNews) | 2538 | |
Eli Lilly and Company (@LillyPad) | 2078 | |
Merck (@Merck) | 2204 | |
AbbVie (@abbvie) | 1913 | |
Total | 11,546 | |
Non-governmental Organization | ||
World Health Organization (@WHO) | 25,989 |
Clustering Algorithm | Epochs | Chunk Size | A-Priori Belief on Doc-Topic Distribution | A-Priori Belief on Topic-Word Distribution | Gradient Descent Step Size |
---|---|---|---|---|---|
LDA | 50 | 1000 | 0.01 | 0.9 | NA |
LSI | NA | 1000 | NA | NA | NA |
NMF | 50 | 1000 | NA | NA | 1 |
HDP | NA | 1000 | 0.01 | NA | 1 |
Twitter Group | Support Value | Confidence Value | Final Support Threshold | Final Confidence Threshold | Number of Rules | ||||
---|---|---|---|---|---|---|---|---|---|
Start | End | Step Size | Start | End | Step Size | ||||
Public Health Agencies | 0.0095 | 0.105 | 0.001 | 0.5 | 1 | 0.1 | 0.1 | 0.9 | 980 |
Pharmaceutical Companies | 0.03 | 0.04 | 0.001 | 0.5 | 1 | 0.1 | 0.034 | 0.5 | 278 |
World Health Organization | 0.01 | 0.02 | 0.001 | 0.5 | 1 | 0.1 | 0.015 | 0.8 | 451 |
Clustering Algorithm | Public Health Agencies | Pharmaceutical Companies | World Health Organization | |||
---|---|---|---|---|---|---|
cv | cumass | cv | cumass | cv | cumass | |
LDA | 0.4240202647 | −4.494327319 | 0.4937176966 | −4.736215923 | 0.383932226 | −4.571343897 |
NMF | 0.5105442417 | −3.58084239 | 0.5955689283 | −4.569011046 | 0.4195732471 | −4.223622355 |
LSI | 0.4274006726 | −4.217779619 | 0.450525174 | −4.790466135 | 0.3155738006 | −4.245038402 |
HDP | 0.6681490255 | −18.13566144 | 0.7406355945 | −19.83139046 | 0.7215923057 | −19.2754207 |
Public Health Agencies | Pharmaceutical Companies | World Health Organization | |||
---|---|---|---|---|---|
Topic | Topic Keywords | Topic | Topic Keywords | Topic | Topic Keywords |
Communication | [‘receive’,‘inform’, ‘reply’,‘offer’] | Communication | [‘shortage’,‘misinformation’] | Leadership | [‘drtedro’,‘meet’,‘report’, ‘remark’] |
COVID-19 | [‘covid’,‘pandemic’, ‘death’,‘vaccine’,‘coronavirus’] | COVID-19 | [‘covid’,‘omicron’,‘vaccine’, ‘virus’,‘coronavirus’] | COVID-19 | [‘covid’,‘pandemic’,‘death’, ‘vaccine’,‘coronavirus’] |
Community Healthcare | [‘support’,‘resource’, ‘family’,‘opportunity’,‘help’] | Community Healthcare | [‘cancer’,‘heart’,‘pregnancy’, ‘myeloma’,‘gene’,‘haemophilia’] | Community Healthcare | [‘support’,‘people’,‘live’, ‘protect’,‘safe’,‘risk’,‘care’] |
General health | [‘disease’,‘mental’, ‘health’,‘stigma’] | Health announcements | [‘market’,‘field’,‘campaign’] | General Health | [‘health’,‘disease’, ‘emergency’] |
Youth health | [‘youth’,‘active’,‘profession’] | World Regions | [‘europe’,‘usa’,‘canada’] | World Regions | [‘europe’,‘afro’,‘africa’, ‘country’,‘countries’] |
Topics | |||||
---|---|---|---|---|---|
Organization | Communication | COVID-19 | Community Health | General Health | Youth Health |
CDCgov | 719 | 2306 | 2067 | 1850 | 195 |
IHSgov | 148 | 329 | 438 | 602 | 103 |
GovCanHealth | 17,989 | 18,170 | 27,937 | 13,353 | 4112 |
GCIndigenous | 338 | 381 | 956 | 376 | 156 |
Topics | |||||
Organization | Communication | COVID-19 | Community Health | Health announcements | World Regions |
pfizer | 8 | 551 | 450 | 17 | 27 |
JNJNews | 3 | 393 | 162 | 42 | 23 |
Merck | 3 | 145 | 450 | 14 | 8 |
LillyPad | 8 | 36 | 73 | 5 | 14 |
abbvie | 2 | 70 | 188 | 23 | 13 |
Topics | |||||
Organization | Leadership | COVID-19 | Community Health | General Health | World Regions |
WHO | 1646 | 7165 | 11,486 | 8473 | 4097 |
Twitter Group | Antecedents | Consequents | Antecedent Support |
Consequent Support |
Overall Support | Confidence | Lift | Leverage | Conviction |
---|---|---|---|---|---|---|---|---|---|
Public Health Agencies | covid | vaccine | 0.11 | 0.11 | 0.10 | 0.99 | 8.61 | 0.10 | 6851.90 |
Pharmaceutical Companies | test | research | 0.03 | 0.03 | 0.03 | 0.99 | 28.72 | 0.03 | 388.03 |
World Health Organization | public | health | 0.038 | 0.23 | 0.03 | 0.80 | 3.42 | 0.02 | 3.85 |
Twitter Group | Hypothesis 1: Increase in Tweet Popularity Using Hashtags and Mentions | Hypothesis 2: Increase in Tweet Popularity Using Association Rules | |
Public Health Agencies | 14.90% | 45.50% | |
Pharmaceutical Companies | 25.70% | 50.05% | |
World Health Organization | 14.55% | 15.70% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singhal, A.; Mago, V. Exploring How Healthcare Organizations Use Twitter: A Discourse Analysis. Informatics 2023, 10, 65. https://doi.org/10.3390/informatics10030065
Singhal A, Mago V. Exploring How Healthcare Organizations Use Twitter: A Discourse Analysis. Informatics. 2023; 10(3):65. https://doi.org/10.3390/informatics10030065
Chicago/Turabian StyleSinghal, Aditya, and Vijay Mago. 2023. "Exploring How Healthcare Organizations Use Twitter: A Discourse Analysis" Informatics 10, no. 3: 65. https://doi.org/10.3390/informatics10030065
APA StyleSinghal, A., & Mago, V. (2023). Exploring How Healthcare Organizations Use Twitter: A Discourse Analysis. Informatics, 10(3), 65. https://doi.org/10.3390/informatics10030065