Influencing Mechanism of Signal Design Elements in Complex Human–Machine System: Evidence from Eye Movement Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experiment Tasks and Materials
2.3. Independent Variables
2.4. Dependent Variables
2.5. Experiment Procedures
2.6. Brief Introduction to the Accuracy of the Tasks
3. Results
3.1. Analysis of the Proportion of Total Fixation Duration in the AOI
3.2. Analysis of Average Pupil Diameter
3.2.1. One-Way Analysis of the Main Effects of Average Pupil Diameter
3.2.2. Analysis of the Interaction Effects of Average Pupil Diameter
3.3. Analysis of Average Blink Rate
3.3.1. One-Way Analysis of the Main Effects of Average Blink Rate
3.3.2. Analysis of the Interaction Effects of Average Blink Rate
4. Discussion
4.1. In-Depth Analysis of the Experiments and Results
4.2. Limitations and Future Directions
4.3. Practical Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, A.; Ma, X.; Guo, J.; Zhang, J.; Wang, J.; Zhao, K.; Li, Y. Driver fatigue detection and human-machine cooperative decision-making for road scenarios. Multimed. Tools Appl. 2023, 83, 12487–12518. [Google Scholar] [CrossRef]
- Sadiku, M.N.O.; Gupta, N.; Patel, K.K.; Musa, S.M. An Overview of Intelligent Transportation Systems in the Context of Internet of Vehicles. In Internet of Vehicles and Its Applications in Autonomous Driving; Springer: Cham, Switzerland, 2021; pp. 3–11. [Google Scholar]
- Zou, Y.; Pang, M. Application and Prospect of Human-Machine Interaction in Power System. J. Phys. Conf. Ser. 2019, 1345, 032094. [Google Scholar] [CrossRef]
- Hou, W.; Ning, Z.; Hu, X.; Guo, L.; Deng, X.; Yang, Y.; Kwok, R.Y.K. On-Chip Hardware Accelerator for Automated Diagnosis Through Human–Machine Interactions in Healthcare Delivery. IEEE Trans. Autom. Sci. Eng. 2019, 16, 206–217. [Google Scholar] [CrossRef]
- Zou, S.; Tao, L.-Q.; Wang, G.; Zhu, C.; Peng, Z.; Sun, H.; Li, Y.; Wei, Y.; Ren, T.-L. Humidity-Based Human–Machine Interaction System for Healthcare Applications. ACS Appl. Mater. Interfaces 2022, 14, 12606–12616. [Google Scholar] [CrossRef]
- Kumar, N.; Lee, S.C. Human-machine interface in smart factory: A systematic literature review. Technol. Forecast. Soc. Change 2022, 174, 121284. [Google Scholar] [CrossRef]
- Salvine, P.; Nicolescu, M.; Ishiguro, H. Benefits of Human—Robot Interaction [TC Spotlight]. IEEE Robot. Autom. Mag. 2011, 18, 98–99. [Google Scholar] [CrossRef]
- Nardo, M.; Forino, D.; Murino, T. The evolution of man–machine interaction: The role of human in Industry 4.0 paradigm. Prod. Manuf. Res. 2020, 8, 20–34. [Google Scholar] [CrossRef]
- Lundberg, J.; Johansson, B.J.E. A framework for describing interaction between human operators and autonomous, automated, and manual control systems. Cogn. Technol. Work 2021, 23, 381–401. [Google Scholar] [CrossRef]
- Tsang, S.N.H.; Chan, A.H.S.; Pan, X.; Man, S.S. Auditory versus visual spatial stimulus-response mappings in tracking and discrete dual task performance: Implications for human-machine interface design. Ergonomics 2021, 64, 485–501. [Google Scholar] [CrossRef]
- Kang, S.X.; Man, S.S.; Chan, A.H.S. Investigation on the effects of presentation modality for spatial signals on human performance using a dual task paradigm. Appl. Ergon. 2023, 106, 103898. [Google Scholar] [CrossRef]
- Mahmud, S.; Lin, X.; Kim, J.-H. Interface for Human Machine Interaction for assistant devices: A Review. In Proceedings of the 2020 10th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 6–8 January 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 0768–0773. [Google Scholar]
- Zhang, T.; Liu, X.; Zeng, W.; Tao, D.; Li, G.; Qu, X. Input modality matters: A comparison of touch, speech, and gesture based in-vehicle interaction. Appl. Ergon. 2023, 108, 103958. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Aydin, M.; Akyuz, E.; Arslan, O.; Uflaz, E.; Kurt, R.E.; Turan, O. Prediction of human–machine interface (HMI) operational errors for maritime autonomous surface ships (MASS). J. Mar. Sci. Technol. 2022, 27, 293–306. [Google Scholar] [CrossRef]
- Pacaux-Lemoine, M.-P.; Trentesaux, D.; Zambrano Rey, G.; Millot, P. Designing intelligent manufacturing systems through Human-Machine Cooperation principles: A human-centered approach. Comput. Ind. Eng. 2017, 111, 581–595. [Google Scholar] [CrossRef]
- Tan, Z.; Dai, N.; Su, Y.; Zhang, R.; Li, Y.; Wu, D.; Li, S. Human–Machine Interaction in Intelligent and Connected Vehicles: A Review of Status Quo, Issues, and Opportunities. IEEE Trans. Intell. Transp. Syst. 2022, 23, 13954–13975. [Google Scholar] [CrossRef]
- Inga, J.; Ruess, M.; Robens, J.H.; Nelius, T.; Rothfuß, S.; Kille, S.; Dahlinger, P.; Lindenmann, A.; Thomaschke, R.; Neumann, G.; et al. Human-machine symbiosis: A multivariate perspective for physically coupled human-machine systems. Int. J. Hum. Comput. Stud. 2023, 170, 102926. [Google Scholar] [CrossRef]
- Peterka, R.J.; Murchison, C.F.; Parrington, L.; Fino, P.C.; King, L.A. Implementation of a Central Sensorimotor Integration Test for Characterization of Human Balance Control During Stance. Front. Neurol. 2018, 9, 1045. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.H.S.; Man, S.S.; Zhang, T.; Chan, W.; Alabdulkarim, S.A. An Overview of Spatial Stimulus-Response (S-R) Compatibility Studies for Further Human Machine Interface Studies. In Human Factors and Systems Interaction, Proceedings of the 13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022), New York, NY, USA, 24–28 July 2022; Nunes, I.L., Ed.; AHFE International: New York, NY, USA, 2022; Volume 52. [Google Scholar] [CrossRef]
- Yin, R.; Wang, D.; Zhao, S.; Lou, Z.; Shen, G. Wearable Sensors-Enabled Human–Machine Interaction Systems: From Design to Application. Adv. Funct. Mater. 2021, 31, 2008936. [Google Scholar] [CrossRef]
- Fitts, P.M.; Seeger, C.M. S-R compatibility: Spatial characteristics of stimulus and response codes. J. Exp. Psychol. 1953, 46, 199–210. [Google Scholar] [CrossRef]
- Chan, K.W.L.; Chan, A.H.S. Spatial stimulus–response compatibility for hand and foot controls with vertical plane visual signals. Displays 2011, 32, 237–243. [Google Scholar] [CrossRef]
- Masaki, H.; Takasawa, N.; Yamazaki, K. An electrophysiological study of the locus of the interference effect in a stimulus-response compatibility paradigm. Psychophysiology 2000, 37, 464–472. [Google Scholar] [CrossRef]
- Tsang, S.N.H.; Chan, A.H.S. Tracking and discrete dual task performance with different spatial stimulus–response mappings. Ergonomics 2015, 58, 368–382. [Google Scholar] [CrossRef] [PubMed]
- Tsang, S.N.H.; Chan, A.H.S. Tracking and discrete dual task performance for different visual spatial stimulus-response mappings with focal and ambient vision. Appl. Ergon. 2018, 67, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zhang, B.; Niu, R.; Li, Y.; Liu, Y. The Relationship between Biological Motion-Based Visual Consciousness and Attention: An Electroencephalograph Study. Neuroscience 2019, 415, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Talamonti, W.; Tijerina, L.; Blommer, M.; Swaminathan, R.; Curry, R.; Ellis, R.D. Mirage events & driver haptic steering alerts in a motion-base driving simulator: A method for selecting an optimal HMI. Appl. Ergon. 2017, 65, 90–104. [Google Scholar] [CrossRef] [PubMed]
- Reeves, A. The Psychometric Function for Focusing Attention on Pitch. Information 2023, 14, 279. [Google Scholar] [CrossRef]
- Bugg, J.M.; Smallwood, A. The next trial will be conflicting! Effects of explicit congruency pre-cues on cognitive control. Psychol. Res. 2016, 80, 16–33. [Google Scholar] [CrossRef]
- Martín-Arévalo, E.; Funes, M.J.; Lupiáñez, J. On the time course of spatial cueing: Dissociating between a set for fast reorienting and a set for cue-target segregation. Acta Psychol. 2020, 203, 103004. [Google Scholar] [CrossRef]
- Allen, P.A.; Smith, A.F.; Vires-Collins, H.; Sperry, S. The psychological refractory period: Evidence for age differences in attentional time-sharing. Psychol. Aging 1998, 13, 218–229. [Google Scholar] [CrossRef]
- Pütz, S.; Mertens, A.; Chuang, L.; Nitsch, V. Physiological measures of operators’ mental state in supervisory process control tasks: A scoping review. Ergonomics 2023, 67, 801–830. [Google Scholar] [CrossRef]
- Critchley, H.D.; Garfinkel, S.N. The influence of physiological signals on cognition. Curr. Opin. Behav. Sci. 2018, 19, 13–18. [Google Scholar] [CrossRef]
- Gegenfurtner, K.R. The Interaction Between Vision and Eye Movements. Perception 2016, 45, 1333–1357. [Google Scholar] [CrossRef] [PubMed]
- Krauzlis, R.J.; Goffart, L.; Hafed, Z.M. Neuronal control of fixation and fixational eye movements. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160205. [Google Scholar] [CrossRef] [PubMed]
- Kang, H. Sample size determination and power analysis using the G*Power software. J. Educ. Eval. Health Prof. 2021, 18, 17. [Google Scholar] [CrossRef] [PubMed]
- Rezae, M.; Chen, N.; McMeekin, D.; Tan, T.; Krishna, A.; Lee, H. The evaluation of a mobile user interface for people on the autism spectrum: An eye movement study. Int. J. Hum. Comput. Stud. 2020, 142, 102462. [Google Scholar] [CrossRef]
- Nenna, F.; Zanardi, D.; Gamberini, L. Enhanced Interactivity in VR-based Telerobotics: An Eye-tracking Investigation of Human Performance and Workload. Int. J. Hum. Comput. Stud. 2023, 177, 103079. [Google Scholar] [CrossRef]
- Pires, R.A.; Neves, A.G.M. Asymptotic behavior of mean fixation times in the Moran process with frequency-independent fitnesses. J. Math. Biol. 2024, 88, 12. [Google Scholar] [CrossRef]
- Fletcher, K.; Neal, A.; Yeo, G. The effect of motor task precision on pupil diameter. Appl. Ergon. 2017, 65, 309–315. [Google Scholar] [CrossRef]
- Rodriguez, J.D.; Lane, K.J.; Ousler, G.W.; Angjeli, E.; Smith, L.M.; Abelson, M.B. Blink: Characteristics, Controls, and Relation to Dry Eyes. Curr. Eye Res. 2018, 43, 52–66. [Google Scholar] [CrossRef]
- Palinko, O.; Kun, A.L. Exploring the effects of visual cognitive load and illumination on pupil diameter in driving simulators. In Proceedings of the Symposium on Eye Tracking Research and Applications; ACM: New York, NY, USA, 2012; pp. 413–416. [Google Scholar]
- Knapen, T.; de Gee, J.W.; Brascamp, J.; Nuiten, S.; Hoppenbrouwers, S.; Theeuwes, J. Cognitive and Ocular Factors Jointly Determine Pupil Responses under Equiluminance. PLoS ONE 2016, 11, e0155574. [Google Scholar] [CrossRef]
- Mathôt, S.; Van der Stigchel, S. New Light on the Mind’s Eye. Curr. Dir. Psychol. Sci. 2015, 24, 374–378. [Google Scholar] [CrossRef]
- Franssen, L.; Tabernero, J.; Coppens, J.E.; van den Berg, T.J.T.P. Pupil Size and Retinal Straylight in the Normal Eye. Investig. Opthalmology Vis. Sci. 2007, 48, 2375. [Google Scholar] [CrossRef] [PubMed]
- Ebitz, R.B.; Moore, T. Both a Gauge and a Filter: Cognitive Modulations of Pupil Size. Front. Neurol. 2019, 9, 1190. [Google Scholar] [CrossRef]
- Brych, M.; Händel, B. Disentangling top-down and bottom-up influences on blinks in the visual and auditory domain. Int. J. Psychophysiol. 2020, 158, 400–410. [Google Scholar] [CrossRef] [PubMed]
- Callara, A.L.; Greco, A.; Scilingo, E.P.; Bonfiglio, L. Neuronal correlates of eyeblinks are an expression of primary consciousness phenomena. Sci. Rep. 2023, 13, 12617. [Google Scholar] [CrossRef] [PubMed]
- Maaß, S.C.; Riemer, M.; Wolbers, T.; van Rijn, H. Timing deficiencies in amnestic Mild Cognitive Impairment: Disentangling clock and memory processes. Behav. Brain Res. 2019, 373, 112110. [Google Scholar] [CrossRef]
- Radvansky, G.A.; Doolen, A.C.; Pettijohn, K.A.; Ritchey, M. A new look at memory retention and forgetting. J. Exp. Psychol. Learn. Mem. Cogn. 2022, 48, 1698–1723. [Google Scholar] [CrossRef]
- Li, Y.; Huang, Y.; Li, X.; Ma, J.; Zhang, J.; Li, J. The influence of brightness combinations and background colour on legibility and subjective preference under negative polarity. Ergonomics 2022, 65, 1046–1056. [Google Scholar] [CrossRef]
- Tonn, S.; van Duijn, A.; Schaaf, M.; Kunde, W. Gaze-Controlled Instructions for Manual Assembly Tasks—A Usability Evaluation Study. In Proceedings of the Mensch und Computer 2022; ACM: New York, NY, USA, 2022; pp. 343–348. [Google Scholar]
- Zhou, Y.; Li, N.; Zhang, B.; Zhou, T.; Yin, K.; Shi, J. Study on the Interactive Mode of Eye Control Mode in Human–Computer Interface. In Human Systems Engineering and Design II: Proceedings of the 2nd International Conference on Human Systems Engineering and Design (IHSED2019): Future Trends and Applications, 16–18 September 2019, Universität der Bundeswehr München, Munich, Germany; Springer: Cham, Switzerland, 2020; pp. 1090–1094. [Google Scholar]
Groups | Independent Variables | Levels | |||
---|---|---|---|---|---|
Within-group variable | Stimulus modes | Visual | Auditory | Tactile | |
Pre-cue modes | Visual | Auditory | Tactile | ||
SOA | 200 ms | 600 ms | |||
Between-group variable | Compatible mapping modes | BC | TC | LC | BI |
Type | Independent Variables | Df | Sum Sq | Mean Sq | F | p |
---|---|---|---|---|---|---|
One-way analysis | Stimulus modes | 2 | 0.184 | 0.09 | 15.720 | <0.001 |
Pre-cue modes | 2 | 0.085 | 0.04 | 17.820 | <0.001 | |
Compatible mapping modes | 3 | 0.231 | 0.08 | 0.556 | 0.646 | |
SOA | 1 | 0.000 | 0.00 | 0.001 | 0.981 |
Type | Independent Variables | Df | Sum Sq | Mean Sq | F | p |
---|---|---|---|---|---|---|
Interaction effects | Stimulus modes × Compatible mapping modes | 6 | 0.039 | 0.007 | 1.117 | 0.356 |
Stimulus modes × Pre-cue modes | 4 | 0.015 | 0.004 | 1.281 | 0.278 | |
Stimulus modes × SOA | 2 | 0.003 | 0.002 | 0.238 | 0.788 | |
Pre-cue modes × SOA | 2 | 0.002 | 0.001 | 0.419 | 0.659 |
Type | Independent Variables | Df | Sum Sq | Mean Sq | F | p |
---|---|---|---|---|---|---|
One-way analysis | Stimulus modes | 2 | 0.030 | 0.015 | 1.117 | 0.330 |
Pre-cue modes | 2 | 0.000 | 0.000 | 0.023 | 0.977 | |
Compatible mapping modes | 3 | 0.755 | 0.252 | 2.139 | 0.103 | |
SOA | 1 | 0.120 | 0.120 | 6.058 | 0.016 |
Type | Independent Variables | Df | Sum Sq | Mean Sq | F | p |
---|---|---|---|---|---|---|
Interaction effects | Stimulus modes × Compatible mapping modes | 6 | 0.038 | 0.006 | 0.464 | 0.834 |
Stimulus modes × Pre-cue modes | 4 | 0.075 | 0.019 | 1.923 | 0.107 | |
Stimulus modes × SOA | 2 | 0.004 | 0.002 | 0.143 | 0.867 | |
Pre-cue modes × SOA | 2 | 0.003 | 0.002 | 0.270 | 0.763 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Man, S.S.; Hu, W.; Zhou, H.; Zhang, T.; Chan, A.H.S. Influencing Mechanism of Signal Design Elements in Complex Human–Machine System: Evidence from Eye Movement Data. Informatics 2024, 11, 88. https://doi.org/10.3390/informatics11040088
Man SS, Hu W, Zhou H, Zhang T, Chan AHS. Influencing Mechanism of Signal Design Elements in Complex Human–Machine System: Evidence from Eye Movement Data. Informatics. 2024; 11(4):88. https://doi.org/10.3390/informatics11040088
Chicago/Turabian StyleMan, Siu Shing, Wenbo Hu, Hanxing Zhou, Tingru Zhang, and Alan Hoi Shou Chan. 2024. "Influencing Mechanism of Signal Design Elements in Complex Human–Machine System: Evidence from Eye Movement Data" Informatics 11, no. 4: 88. https://doi.org/10.3390/informatics11040088
APA StyleMan, S. S., Hu, W., Zhou, H., Zhang, T., & Chan, A. H. S. (2024). Influencing Mechanism of Signal Design Elements in Complex Human–Machine System: Evidence from Eye Movement Data. Informatics, 11(4), 88. https://doi.org/10.3390/informatics11040088