Fashion Recommendation Systems, Models and Methods: A Review
Abstract
:1. Introduction
2. History and Overview of Recommendation System
2.1. Recommendation System
2.1.1. Information Collection Phase
2.1.2. Learning Phase
2.1.3. Recommendation Phase
3. Channels of Scholarly Dissemination Related to Fashion Recommendation System (FRS)
4. Metrics Used in Fashion Recommendation System Evaluation
5. Fashion Recommendation System (FRS), Algorithmic Models and Filtering Techniques
5.1. Classification of Fashion Recommendation System (FRS)
5.2. Algorithmic Models Used in Fashion Recommendation Systems
5.2.1. Convolutional Neural Network (CNN)
5.2.2. Recurrent Neural Network (RNN)
5.2.3. Multilayer Perceptron (MLP)
5.2.4. Generative Adversarial Network (GAN)
5.2.5. k-Nearest Neighbor (kNN)
5.2.6. Autoencoder (AE)
5.2.7. Bayesian Networks
5.2.8. Other Methodologies
5.3. Recommendation Filtering Techniques
5.3.1. Content-Based Filtering (CBF) Technique
5.3.2. Collaborative Filtering (CF) Technique
Model-Based Collaborative Filtering Technique
Memory-Based Collaborative Filtering Technique
Hybrid Collaborative Filtering Technique
5.3.3. Hybrid Filtering Technique
5.3.4. Hyperpersonalization Filtering Technique
5.4. Strengths and Weakness of Filtering Techniques
6. Prospects, Challenges and Recommendations for Future Research
6.1. Potential Algorithmic Models for the Future
6.1.1. Multi View Deep Neural Network
6.1.2. Neural Collaborative Filtering
6.1.3. Neural Autoregressive-Based Recommendation
6.1.4. Neural Graph Filtering
6.1.5. Hybrid Model
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barnard, M. Fashion as Communication, 2nd ed.; Routledge: London, UK, 2008. [Google Scholar]
- Chakraborty, S.; Hoque, S.M.A.; Kabir, S.M.F. Predicting fashion trend using runway images: Application of logistic regression in trend forecasting. Int. J. Fash. Des. Technol. Educ. 2020, 13, 376–386. [Google Scholar] [CrossRef]
- Karmaker Santu, S.K.; Sondhi, P.; Zhai, C. On application of learning to rank for e-commerce search. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Shinjuku, Tokyo, Japan, 7–11 August 2017; pp. 475–484. [Google Scholar] [CrossRef] [Green Version]
- Garude, D.; Khopkar, A.; Dhake, M.; Laghane, S.; Maktum, T. Skin-tone and occasion oriented outfit recommendation system. SSRN Electron. J. 2019. [Google Scholar] [CrossRef]
- Kang, W.-C.; Fang, C.; Wang, Z.; McAuley, J. Visually-aware fashion recommendation and design with generative image models. In Proceedings of the 2017 IEEE International Conference on Data Mining (ICDM), New Orleans, LA, USA, 18–21 November 2017; pp. 207–216. [Google Scholar] [CrossRef] [Green Version]
- Sachdeva, H.; Pandey, S. Interactive Systems for Fashion Clothing Recommendation. In Emerging Technology in Modelling and Graphics; Mandal, J.K., Bhattacharya, D., Eds.; Springer: Singapore, 2020; Volume 937, pp. 287–294. [Google Scholar] [CrossRef]
- Sun, G.-L.; Wu, X.; Peng, Q. Part-based clothing image annotation by visual neighbor retrieval. Neurocomputing 2016, 213, 115–124. [Google Scholar] [CrossRef]
- Zhang, Y.; Caverlee, J. Instagrammers, Fashionistas, and Me: Recurrent Fashion Recommendation with Implicit Visual Influence. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, China, 3–7 November 2019; pp. 1583–1592. [Google Scholar] [CrossRef] [Green Version]
- Matzen, K.; Bala, K.; Snavely, N. StreetStyle: Exploring world-wide clothing styles from millions of photos. arXiv 2017, arXiv:1706.01869. [Google Scholar]
- Guan, C.; Qin, S.; Ling, W.; Ding, G. Apparel recommendation system evolution: An empirical review. Int. J. Cloth. Sci. Technol. 2016, 28, 854–879. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Manikonda, L.; Kambhampati, S. What We Instagram: A First Analysis of Instagram Photo Content and User Types. Available online: http://www.aaai.org (accessed on 1 May 2014).
- Gao, G.; Liu, L.; Wang, L.; Zhang, Y. Fashion clothes matching scheme based on Siamese Network and AutoEncoder. Multimed. Syst. 2019, 25, 593–602. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, Y.; Feng, S.; Li, Z. Weather-to-garment: Weather-oriented clothing recommendation. In Proceedings of the 2017 IEEE International Conference on Multimedia and Expo. (ICME), Hong Kong, China, 31 August 2017; pp. 181–186. [Google Scholar] [CrossRef]
- Chakraborty, S.; Hoque, M.S.; Surid, S.M. A comprehensive review on image based style prediction and online fashion recommendation. J. Mod. Tech. Eng. 2020, 5, 212–233. [Google Scholar]
- Chen, W.; Huang, P.; Xu, J.; Guo, X.; Guo, C.; Sun, F.; Li, C.; Pfadler, A.; Zhao, H.; Zhao, B. POG: Personalized outfit generation for fashion recommendation at Alibaba iFashion. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 2662–2670. [Google Scholar] [CrossRef] [Green Version]
- Street Style Fashion. Available online: http://www.chictopia.com/browse/people (accessed on 12 July 2021).
- Lindig, S. Outfit Recommendation Algorithm for Better Instagram Photos—Fashion Algorithm for Instagram. Available online: https://www.harpersbazaar.com/fashion/trends/a11271/fashion-algorithm-suggests-outfits-for-better-instagram-photos/ (accessed on 13 July 2021).
- Lookbook. Available online: https://lookbook.nu/ (accessed on 13 July 2021).
- Park, J.; Ciampaglia, G.L.; Ferrara, E. Style in the age of Instagram: Predicting success within the fashion industry using social media. In Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing—CSCW ’16, San Francisco, CA, USA, 27 February–2 March 2016; pp. 64–73. [Google Scholar] [CrossRef] [Green Version]
- Shopstyle: Search and Find the Latest in Fashion. Available online: https://www.shopstyle.com/ (accessed on 13 July 2021).
- Spiller, L.; Tuten, T. Integrating Metrics Across the Marketing Curriculum: The digital and social media opportunity. J. Mark. Educ. 2015, 37, 114–126. [Google Scholar] [CrossRef]
- Tsujita, H.; Tsukada, K.; Kambara, K.; Siio, I. Complete fashion coordinator: A support system for capturing and selecting daily clothes with social networks. In Proceedings of the International Conference on Advanced Visual Interfaces—AVI ’10, Rome, Italy, 26–28 May 2010; p. 127. [Google Scholar] [CrossRef]
- Lakkaraju, H.; Ajmera, J. Attention prediction on social media brand pages. In Proceedings of the 20th ACM International Conference on Information and Knowledge Management–CIKM ’11, Glasgow, UK, 24–28 October 2011; p. 2157. [Google Scholar] [CrossRef]
- Stieglitz, S.; Dang-Xuan, L. Emotions and Information Diffusion in Social Media—Sentiment of Microblogs and Sharing Behavior. J. Manag. Inf. Syst. 2013, 29, 217–248. [Google Scholar] [CrossRef]
- Jagadeesh, V.; Piramuthu, R.; Bhardwaj, A.; Di, W.; Sundaresan, N. Large scale visual recommendations from street fashion images. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining—KDD ’14, New York, NY, USA, 24–27 August 2014; pp. 1925–1934. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Yang, X.; Liao, L.; Cao, Y.; Chua, T.-S. Who, where, and what to wear?: Extracting Fashion knowledge from social media. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 257–265. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, K.; Kiapour, M.H.; Ortiz, L.E.; Berg, T.L. Parsing clothing in fashion photographs. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 3570–3577. [Google Scholar] [CrossRef]
- An, H.; Kwon, S.; Park, M. A case study on the recommendation services for customized fashion styles based on artificial intelligence. J. Korean Soc. Cloth. Text. 2019, 43, 349–360. [Google Scholar] [CrossRef]
- Jain, G.; Rakesh, S.; Nabi, M.K.; Chaturvedi, K. Hyper-personalization–fashion sustainability through digital clienteling. Res. J. Text. Appar. 2018, 22, 320–334. [Google Scholar] [CrossRef] [Green Version]
- Yin, R.; Li, K.; Lu, J.; Zhang, G. Enhancing Fashion Recommendation with Visual Compatibility Relationship. In Proceedings of the The World Wide Web Conference on—WWW ’19, San Francisco, CA, USA, 13–17 May 2019; pp. 3434–3440. [Google Scholar] [CrossRef]
- Jo, J.; Lee, S.; Lee, C.; Lee, D.; Lim, H. Development of fashion product retrieval and recommendations model based on deep learning. Electronics 2020, 9, 508. [Google Scholar] [CrossRef] [Green Version]
- Cui, P.; Wang, F.; Liu, S.; Ou, M.; Yang, S.; Sun, L. Who should share what?: Item-level social influence prediction for users and posts ranking. In Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information-SIGIR ’11, Beijing, China, 24–28 July 2011; p. 185. [Google Scholar] [CrossRef]
- Lu, H.; Chen, Y.; Dai, H.Q. Clothing recommendation based on fuzzy mathematics. Int. J. Adv. Oper. Manag. 2013, 5, 14. [Google Scholar] [CrossRef]
- Mohammed Abdulla, G.; Singh, S.; Borar, S. Shop your right size: A system for recommending sizes for fashion products. In Proceedings of the Companion Proceedings of the 2019 World Wide Web Conference on—WWW ’19, San Francisco, CA, USA, 13–17 May 2019; pp. 327–334. [Google Scholar] [CrossRef]
- Polania, L.F.; Gupte, S. Learning Fashion Compatibility Across Apparel Categories for Outfit Recommendation. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 4489–4493. [Google Scholar] [CrossRef] [Green Version]
- Sonie, O.; Chelliah, M.; Sural, S. Concept to code: Deep learning for fashion recommendation. In Proceedings of the Companion Proceedings of The 2019 World Wide Web Conference on—WWW ’19, San Francisco, CA, USA, 13–17 May 2019; pp. 1319–1320. [Google Scholar] [CrossRef]
- Stefani, M.A.; Stefanis, V.; Garofalakis, J. CFRS: A trends-driven collaborative fashion recommendation system. In Proceedings of the 2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA), Patras, Greece, 15–17 July 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Sun, G.-L.; Cheng, Z.-Q.; Wu, X.; Peng, Q. Personalized clothing recommendation combining user social circle and fashion style consistency. Multimed. Tools Appl. 2017, 77, 17731–17754. [Google Scholar] [CrossRef]
- Kwon, Y.-B.; Ogier, J.-M. (Eds.) Graphics recognition. new trends and challenges: 9th international workshop. In GREC 2011, Seoul, Korea, 15–16 September 2011; Revised Selected Papers; Springer: Berlin/Heidelberg, Germany, 2011; Volume 7423. [Google Scholar] [CrossRef]
- Lakshmi Pavani, M.; Bhanu Prakash, A.V.; Shwetha Koushik, M.S.; Amudha, J.; Jyotsna, C. Navigation through eye-tracking for human–computer interface. In Information and Communication Technology for Intelligent Systems; Satapathy, S.C., Joshi, A., Eds.; Springer: Singapore, 2019; Volume 107, pp. 575–586. [Google Scholar] [CrossRef]
- Li, J.; Li, Y. Cognitive model based fashion style decision making. Expert Syst. Appl. 2012, 39, 4972–4977. [Google Scholar] [CrossRef]
- Li, J.; Zhong, X.; Li, Y. A Psychological Decision Making Model Based Personal Fashion Style Recommendation System. In Proceedings of the International Conference on Human-centric Computing 2011 and Embedded and Multimedia Computing 2011; Park, J.J., Jin, H., Liao, X., Zheng, R., Eds.; Springer: Dordrecht, The Netherlands, 2011; Volume 102, pp. 57–64. [Google Scholar] [CrossRef]
- Li, R.; Zhou, Y.; Mok, P.Y.; Zhu, S. Intelligent clothing size and fit recommendations based on human model customisation technology. In Proceedings of the WSCG ’2017: Short Communications Proceedings: The 25th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2016 in Co-Operation with EUROGRAPHICS, Plzen, Czech Republic, 29 May–2 June 2017; pp. 25–32. [Google Scholar]
- Lin, Y.; Ren, P.; Chen, Z.; Ren, Z.; Ma, J.; de Rijke, M. Improving Outfit Recommendation with Co-supervision of Fashion Generation. In Proceedings of the The World Wide Web Conference on—WWW ’19, San Francisco, CA, USA, 13–17 May 2019; pp. 1095–1105. [Google Scholar] [CrossRef] [Green Version]
- Akabane, T.; Kosugi, S.; Kimura, S.; Arai, M. Method to consider familiarity in clothing coordination recommender systems. In Proceedings of the 2011 3rd International Conference on Computer Research and Development, Shanghai, China, 11–13 March 2011; Volume 1, pp. 22–26. [Google Scholar]
- Chae, Y.; Xu, J.; Stenger, B.; Masuko, S. Color navigation by qualitative attributes for fashion recommendation. In Proceedings of the 2018 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 12–15 January 2018; pp. 1–3. [Google Scholar] [CrossRef]
- Chung, W.; Shin, C.S. (Eds.) Advances in affective and pleasurable design. In Proceedings of the AHFE 2017 International Conference on Affective and Pleasurable Design, Los Angeles, CA, USA, 17–21 July 2017; Springer International Publishing: New York, NY, USA, 2018; Volume 585. [Google Scholar] [CrossRef]
- Faria, A.P.; Cunha, J.; Providência, B. Fashion communication in the digital age: Findings from interviews with industry professionals and design recommendations. Procedia CIRP 2019, 84, 930–935. [Google Scholar] [CrossRef]
- Gu, X.; Wong, Y.; Peng, P.; Shou, L.; Chen, G.; Kankanhalli, M.S. Understanding fashion trends from street photos via neighbor-constrained embedding learning. In Proceedings of the MM 2017-Proceedings of the 2017 ACM Multimedia Conference, Mountain View, CA, USA, 23–27 October 2017; pp. 190–198. [Google Scholar] [CrossRef]
- Heinz, X.S.; Bracher, C.; Vollgraf, R. An LSTM-Based Dynamic Customer Model for Fashion Recommendation. Available online: https://arxiv.org/abs/1708.07347v1 (accessed on 12 July 2021).
- Hu, Z.-H.; Li, X.; Wei, C.; Zhou, H.-L. Examining collaborative filtering algorithms for clothing recommendation in e-commerce. Text. Res. J. 2018, 89, 2821–2835. [Google Scholar] [CrossRef]
- Suganeshwari, G.; Syed Ibrahim, S.P.A. Survey on collaborative filtering based recommendation system. In Proceedings of the 3rd International Symposium on Big Data and Cloud Computing Challenges (ISBCC–16’); Vijayakumar, V., Neelanarayanan, V., Eds.; Springer International Publishing: New York, NY, USA, 2016; Volume 49, pp. 503–518. [Google Scholar] [CrossRef]
- Rana, M.K.C. Survey paper on recommendation system. Int. J. Comput. Sci. Inf. Technol. 2012, 3, 3460–3462. [Google Scholar]
- Alag, S. Collective Intelligence in Action; Manning: Greenwich, CT, USA, 2009. [Google Scholar]
- Bhatnagar, V. (Ed.) Collaborative Filtering Using Data Mining and Analysis; IGI Global: Hershey, PE, USA, 2016. [Google Scholar] [CrossRef]
- Bobadilla, J.; Ortega, F.; Hernando, A.; Gutiérrez, A. Recommender systems survey. Knowl. Based Syst. 2013, 46, 109–132. [Google Scholar] [CrossRef]
- Isinkaye, F.; Folajimi, Y.; Ojokoh, B. Recommendation systems: Principles, methods and evaluation. Egypt. Inform. J. 2015, 16, 261–273. [Google Scholar] [CrossRef] [Green Version]
- Plumbaum, T.; Kille, B. Personalized Fashion Advice. In Smart Information Systems; Hopfgartner, F., Ed.; Springer International Publishing: New York, NY, USA, 2015; pp. 213–237. [Google Scholar] [CrossRef]
- Schafer, J.B.; Konstan, J.; Riedl, J. (Eds.) Recommender Systems in E-Commerce. In Proceedings of the ACM Conference on Electronic Commerce, Denver, CO, USA, 3–5 November 1999; ACM Press: New York, NY, USA, 1999. [Google Scholar]
- Dalgleish, A.R. An Item Recommendation System. U.S. Patent No. US20110184831A1, 28 July 2011. [Google Scholar]
- Rashid, A.M.; Albert, I.; Cosley, D.; Lam, S.K.; McNee, S.M.; Konstan, J.A.; Riedl, J. Getting to know you: Learning new user preferences in recommender systems. In Proceedings of the 7th International Conference on Intelligent User Interfaces—IUI ’02, San Francisco, CA, USA, 13–16 January 2002; p. 127. [Google Scholar]
- Geuens, S. Factorization machines for hybrid recommendation systems based on behavioral, product, and customer data. In Proceedings of the 9th ACM Conference on Recommender Systems, Vienna, Austria, 16–20 September 2015; pp. 379–382. [Google Scholar]
- Sharifi, Z.; Rezghi, M.; Nasiri, M. New algorithm for recommender systems based on singular value decomposition method. In Proceedings of the ICCKE 2013, Mashhad, Iran, 31 October–1 November 2013; pp. 86–91. [Google Scholar] [CrossRef]
- Jawaheer, G.; Weller, P.; Kostkova, P. Modeling user preferences in recommender systems: A classification framework for explicit and implicit user feedback. ACM Trans. Interact. Intell. Syst. 2014, 4, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Kardan, A.A.; Ebrahimi, M. A novel approach to hybrid recommendation systems based on association rules mining for content recommendation in asynchronous discussion groups. Inf. Sci. 2013, 219, 93–110. [Google Scholar] [CrossRef]
- Bauer, J.; Nanopoulos, A. Recommender systems based on quantitative implicit customer feedback. Decis. Support Syst. 2014, 68, 77–88. [Google Scholar] [CrossRef]
- Wan, S.; Niu, Z. A Hybrid E-Learning recommendation approach based on learners’ influence propagation. IEEE Trans. Knowl. Data Eng. 2019, 32, 827–840. [Google Scholar] [CrossRef]
- Ji, Z.; Pi, H.; Wei, W.; Xiong, B.; Woźniak, M.; Damasevicius, R. Recommendation based on review texts and social communities: A hybrid model. IEEE Access 2019, 7, 40416–40427. [Google Scholar] [CrossRef]
- Wei, Z.; Yan, Y.; Huang, L.; Nie, J. Inferring intrinsic correlation between clothing style and wearers’ personality. Multimed. Tools Appl. 2017, 76, 20273–20285. [Google Scholar] [CrossRef]
- Rosebrock, A. Intersection over Union (IoU) for Object Detection; Pyimagesearch, 2016. Available online: https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/ (accessed on 13 July 2021).
- Cremonesi, P.; Koren, Y.; Turrin, R. Performance of recommender algorithms on top-n recommendation tasks. In Proceedings of the Fourth ACM Conference on Recommender Systems, Barcelona, Spain, 26–30 September 2010; Association for Computing Machinery: New York, NY, USA, 2010; pp. 39–46. [Google Scholar]
- Taifi, M. MRR vs MAP vs NDCG: Rank-Aware Evaluation Metrics and when to Use Them. 2019. Available online: https://medium.com/swlh/rank-aware-recsys-evaluation-metrics-5191bba1683221 (accessed on 13 July 2021).
- Valcarce, D.; Bellogín, A.; Parapar, J.; Castells, P. Assessing ranking metrics in top-N recommendation. Inf. Retr. 2020, 23, 411–448. [Google Scholar] [CrossRef]
- Guan, C.; Qin, S.; Long, Y. Apparel-based deep learning system design for apparel style recommendation. Int. J. Cloth. Sci. Technol. 2019, 31, 376–389. [Google Scholar] [CrossRef] [Green Version]
- Zempo, K.; Sumita, U. Identifying Colors of Products and Associated Personalized Recommendation Engine in e-Fashion Business. In Proceedings of the International Conference on Social Modeling and Simulation, Plus Econophysics Colloquium 2014; Takayasu, H., Ito, N., Noda, I., Takayasu, M., Eds.; Springer International Publishing: New York, NY, USA, 2015; pp. 335–346. [Google Scholar] [CrossRef] [Green Version]
- Hidayati, S.C.; Hsu, C.-C.; Chang, Y.-T.; Hua, K.-L.; Fu, J.; Cheng, W.-H. What dress fits me best?: Fashion recommendation on the clothing style for personal body shape. In Proceedings of the 2018 ACM Multimedia Conference on Multimedia Conference—MM ’18, Yokohama, Japan, 11–14 June 2018; pp. 438–446. [Google Scholar] [CrossRef]
- Piazza, A.; Kröckel, P.; Bodendorf, F. Emotions and fashion recommendations: Evaluating the predictive power of affective information for the prediction of fashion product preferences in cold-start scenarios. In Proceedings of the International Conference on Web Intelligence, Amantea, Italy, 19–22 June 2017; pp. 1234–1240. [Google Scholar] [CrossRef]
- Vecchi, A. (Ed.) Advanced Fashion Technology and Operations Management; IGI Global: Hershey, PE, USA, 2017. [Google Scholar] [CrossRef]
- Sharma, S.; Koehl, L.; Bruniaux, P.; Zeng, X. Garment fashion recommendation system for customized garment. In Proceedings of the 2019 International Conference on Industrial Engineering and Systems Management (IESM), Shanghai, China, 25–27 September 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Guigourès, R.; Ho, Y.K.; Koriagin, E.; Sheikh, A.-S.; Bergmann, U.; Shirvany, R. A hierarchical bayesian model for size recommendation in fashion. In Proceedings of the 12th ACM Conference on Recommender Systems, Columbia, BC, Canada, 2 October 2018; pp. 392–396. [Google Scholar] [CrossRef] [Green Version]
- Hou, M.; Wu, L.; Chen, E.; Li, Z.; Zheng, V.W.; Liu, Q. Explainable fashion recommendation: A semantic attribute region guided approach. arXiv 2019, arXiv:1905.12862. [Google Scholar]
- Tuinhof, H.; Pirker, C.; Haltmeier, M. Image-based fashion product recommendation with deep learning. In Machine Learning, Optimization, and Data Scienc; Nicosia, G., Pardalos, P., Giuffrida, G., Umeton, R., Sciacca, V., Eds.; Springer International Publishing: New York, NY, USA, 2019; Volume 11331, pp. 472–481. [Google Scholar] [CrossRef] [Green Version]
- Verma, S.; Anand, S.; Arora, C.; Rai, A. Diversity in Fashion Recommendation Using Semantic Parsing. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 500–504. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, Â.; Daolio, F.; Vargas, S. Product characterisation towards personalisation: Learning attributes from unstructured data to recommend fashion products. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 80–89. [Google Scholar] [CrossRef]
- Corbiere, C.; Ben-Younes, H.; Rame, A.; Ollion, C. Leveraging weakly annotated data for fashion image retrieval and label prediction. In Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), Venice, Italy, 22–29 October 2017; pp. 2268–2274. [Google Scholar] [CrossRef] [Green Version]
- Xiang, J.; Zhang, N.; Pan, R.; Gao, W. Fabric Image Retrieval System Using Hierarchical Search Based on Deep Convolutional Neural Network. IEEE Access 2019, 7, 35405–35417. [Google Scholar] [CrossRef]
- Agrawal, P.; Dayama, P.S.; Saha, A.; Tamilselvam, S.G. Coordinated Event Based Wardrobe Recommendation. U.S. Patent 15/832,351, 6 June 2019. [Google Scholar]
- Dong, A.H.; Shan, D.; Ruan, Z.; Zhou, L.Y.; Zuo, F. The design and implementation of an intelligent apparel recommend expert system. Math. Probl. Eng. 2013, 2013, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Stan, C.; Mocanu, I. An intelligent personalized fashion recommendation system. In Proceedings of the 2019 22nd International Conference on Control. Systems and Computer Science (CSCS), Bucharest, Romania, 28–30 May 2019; pp. 210–215. [Google Scholar] [CrossRef]
- Tangseng, P.; Okatani, T. Toward explainable fashion recommendation. I. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Snowmass Village, CO, USA, 1–5 March 2020; pp. 2153–2162. [Google Scholar]
- Kalantidis, Y.; Kennedy, L.; Li, L.-J. Getting the look: Clothing recognition and segmentation for automatic product suggestions in everyday photos. In Proceedings of the 3rd ACM Conference on International Conference on Multimedia Retrieval–ICMR ’13, Dallas, TX, USA, 16–20 April 2013; p. 105. [Google Scholar] [CrossRef]
- Li, Y.; Liu, T.; Jiang, J.; Zhang, L. Hashtag recommendation with topical attention-based LSTM. In Proceedings of the COLING 2016, Osaka, Japan, 11–16 December 2016; pp. 3019–3029. [Google Scholar]
- Liu, S.; Feng, J.; Song, Z.; Zhang, T.; Lu, H.; Xu, C.; Yan, S. Hi, magic closet, tell me what to wear! In Proceedings of the 20th ACM International Conference on Multimedia—MM ’12, Nara, Japan, 29 October–2 November 2012; p. 619. [Google Scholar] [CrossRef]
- Sekozawa, T.; Mitsuhashi, H.; Ozawa, Y. One-to-one recommendation system in apparel online shopping. Electron. Commun. Jpn. 2010, 94, 51–60. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhou, J.; Zhang, L. Demand-adaptive Clothing Image Retrieval Using Hybrid Topic Model. In Proceedings of the 2016 ACM on Multimedia Conference—MM ’16, Amsterdam, The Netherlands, 15–19 October 2016; pp. 496–500. [Google Scholar] [CrossRef]
- Li, Z.; Li, Y.; Tian, W.; Pang, Y.; Liu, Y. Cross-scenario clothing retrieval and fine-grained style recognition. In Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016; pp. 2912–2917. [Google Scholar] [CrossRef]
- Huang, J.; Feris, R.S.; Chen, Q.; Yan, S. Cross-domain image retrieval with a dual attribute-aware ranking network. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1062–1070. [Google Scholar]
- Jiang, S.; Wu, Y.; Fu, Y. Deep bi-directional cross-triplet embedding for cross-domain clothing retrieval. In Proceedings of the 2016 ACM on Multimedia Conference—MM ’16, Amsterdam, The Netherlands, 15–19 October 2016; pp. 52–56. [Google Scholar] [CrossRef]
- Jung, J.; Matsuba, Y.; Mallipeddi, R.; Funaya, H.; Ikeda, K.; Lee, M. Evolutionary programming based recommendation system for online shopping. In Proceedings of the 2013 Asia-Pacific Signal. and Information Processing Association Annual Summit and Conference, Kaohsiung, Taiwan, 29 October–1 November 2013; pp. 1–4. [Google Scholar] [CrossRef]
- Liu, S.; Liu, L.; Yan, S. Magic mirror: An intelligent fashion recommendation system. In Proceedings of the 2013 2nd IAPR Asian Conference on Pattern Recognition, Washington, DC, USA, 5–8 November 2013; pp. 11–15. [Google Scholar] [CrossRef]
- Peifeng, H.; Yuzhe, C.; Jingping, S.; Zhaomu, H. Smart wardrobe system based on Android platform. In Proceedings of the 2016 IEEE International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), Chengdu, China, 5–7 July 2016; pp. 279–285. [Google Scholar] [CrossRef]
- Yamada, T.; Takami, K. Configuration of the system for a fashion coordination service based on clothes life logs. In Proceedings of the TENCON 2012 IEEE Region. 10 Conference, Cebu, Philippines, 19–22 November 2012; pp. 1–6. [Google Scholar] [CrossRef]
- Yu-Chu, L.; Kawakita, Y.; Suzuki, E.; Ichikawa, H. Personalized Clothing-Recommendation System Based on a Modified Bayesian Network. In Proceedings of the 2012 IEEE/IPSJ 12th International Symposium on Applications and the Internet, Izmir, Turkey, 16–20 July 2012; pp. 414–417. [Google Scholar] [CrossRef]
- Dai, J.-Y. Overall Design of Intelligent Wardrobe System. In Proceedings of the DEStech Transactions on Social Science, Education and Human Science, 2018 3rd Annual International Conference on Education Science and Education Management (ESEM 2018), Wuhan, China, 20–22 April 2018. [Google Scholar] [CrossRef]
- Dumeljic, B.; Larson, M.; Bozzon, A. Moody closet: Exploring intriguing new views on wardrobe recommendation. In Proceedings of the First International Workshop on Gamification for Information Retrieval, Amsterdam, The Netherlands, 13 April 2014; pp. 61–62. [Google Scholar]
- Khan, N.S.; Tumpa, S.N.; Shwapnil, S.S. Proposed blueprint of an automated smart wardrobe using digital image processing. In Proceedings of the 2019 5th International Conference on Advances in Electrical Engineering (ICAEE), Dhaka, Bangladesh, 26–28 September 2019; pp. 32–37. [Google Scholar] [CrossRef]
- Liew, J.S.Y.; Kaziunas, E.; Liu, J.; Zhuo, S. Socially-interactive dressing room: An iterative evaluation on interface design. In Proceedings of the 2011 Annual Conference Extended Abstracts on Human Factors in Computing Systems—CHI EA ’11, Vancouver, BC, Canada, 7–12 May 2011; p. 2023. [Google Scholar] [CrossRef]
- Limaksornkul, C.; Nakorn, D.N.; Rakmanee, O.; Viriyasitavat, W. Smart closet: Statistical-based apparel recommendation system. In Proceedings of the Student Project Conference (ICT-ISPC), IEEE Third ICT International, Nakhon Pathom, Thailand, 26–27 March 2014. [Google Scholar]
- Gu, S.; Liu, X.; Cai, L.; Shen, J. Fashion coordinates recommendation based on user behavior and visual clothing style. In Proceedings of the 3rd International Conference on Communication and Information Processing—ICCIP ’17, Tokyo, Japan, 24–26 November 2017; pp. 185–189. [Google Scholar] [CrossRef]
- Guan, C.; Qin, S.; Ling, W.; Long, Y. Enhancing apparel data based on fashion theory for developing a novel apparel style recommendation system. In Trends and Advances in Information Systems and Technologies; Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S., Eds.; Springer International Publishing: New York, NY, USA, 2018; Volume 747, pp. 31–40. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Wang, M.; Li, X. Application of an improved Apriori algorithm in a mobile e-commerce recommendation system. Ind. Manag. Data Syst. 2017, 117, 287–303. [Google Scholar] [CrossRef]
- Hong, Y.; Zeng, X.; Bruniaux, P.; Chen, Y.; Zhang, X. Development of a new knowledge-based fabric recommendation system by integrating the collaborative design process and multi-criteria decision support. Text. Res. J. 2018, 88, 2682–2698. [Google Scholar] [CrossRef]
- Iliukovich-Strakovskaia, A.; Tsvetkova, V.; Dral, E.; Dral, A. Non-personalized Fashion Outfit Recommendations. In Trends and Advances in Information Systems and Technologies; Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S., Eds.; Springer International Publishing: New York, NY, USA, 2018; Volume 747, pp. 41–52. [Google Scholar] [CrossRef]
- Iwata, T.; Watanabe, S.; Sawada, H. Fashion coordinates recommender system using photographs from fashion magazines. In Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, Barcelona, Spain, 16–22 July 2011. [Google Scholar]
- Joyse Barbosa Rocha, H.; de Barros Costa, E.; Tuane Silva, E.; Caroline Lima, N.; Cavalcanti, J. A Knowledge-based approach for personalised clothing recommendation for women. In Proceedings of the 19th International Conference on Enterprise Information Systems, Porto, Portugal, 26–29 April 2017; pp. 610–617. [Google Scholar] [CrossRef] [Green Version]
- Lei, J.L.; Wang, J.; Lu, G.D.; Fei, S.M. Applying collaborative filtering techniques for individual fashion recommendation. Adv. Mater. Res. 2010, 102–104, 31–35. [Google Scholar] [CrossRef]
- Masuko, S.; Hayashi, Y. KiTeMiROOM: A fashion-coordination system for mobile devices. In Proceedings of the CHI ’13 Extended Abstracts on Human Factors in Computing Systems on—CHI EA ’13, Paris, France, 27 April–2 May 2013; p. 601. [Google Scholar] [CrossRef]
- Miura, S.; Yamasaki, T.; Aizawa, K. SNAPPER: Fashion Coordinate Image Retrieval System. In Proceedings of the 2013 International Conference on Signal—Image Technology & Internet-Based Systems, Kyoto, Japan, 2–5 December 2013; pp. 784–789. [Google Scholar] [CrossRef]
- Na, Y.; Agnhage, T. Relationship between the preference styles of music and fashion and the similarity of their sensibility. Int. J. Cloth. Sci. Technol. 2013, 25, 109–118. [Google Scholar] [CrossRef]
- Nguyen, H.T.H.; Wistuba, M.; Grabocka, J.; Drumond, L.R.; Schmidt-Thieme, L. Personalized deep learning for tag recommendation. In Proceedings of the Advances in Knowledge Discovery and Data Mining; Kim, J., Shim, K., Cao, L., Lee, J.-G., Lin, X., Moon, Y.-S., Eds.; Springer International Publishing: New York, NY, USA, 2017; Volume 10234, pp. 186–197. [Google Scholar] [CrossRef]
- Otsuki, A. Community Analysis of Fashion Coordination Using a Distance of Categorical Data Sets. Int. J. Eng. Res. Appl. 2017, 7, 60–72. [Google Scholar] [CrossRef]
- Sonie, O.; Chelliah, M.; Sural, S. Personalised fashion recommendation using deep learning. In Proceedings of the ACM India Joint International Conference on Data Science and Management of Data—CoDS-COMAD ’19, Goa, India, 11–13 January 2019; p. 368. [Google Scholar] [CrossRef]
- Vuruskan, A.; Ince, T.; Bulgun, E.Y.; Guzelis, C. Intelligent fashion styling using genetic search and neural classification. Int. J. Cloth. Sci. Technol. 2015, 27, 283–301. [Google Scholar] [CrossRef]
- Wen, Y.; Liu, X.; Xu, B. Personalized Clothing Recommendation Based on Knowledge Graph. In Proceedings of the 2018 International Conference on Audio, Language and Image Processing (ICALIP), Shanghai, China, 23–24 June 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Bagwari, S.; Singh, R.; Gehlot, A. Internet of things based intelligent wardrobe. SSRN Electron. J. 2019. [Google Scholar] [CrossRef]
- Chakraverty, S.; Mithal, A. IoT based weather and location aware recommender system. In Proceedings of the 2018 8th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India, 11–12 January 2018; pp. 636–643. [Google Scholar] [CrossRef]
- Chen, W.-Y.; Chen, J.-L.; Chen, L.-G. On-the-fly fashion photograph recommendation system with robust face shape features. In Proceedings of the 2014 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 10–13 January 2014; pp. 502–503. [Google Scholar] [CrossRef]
- Chen, X.; Chen, H.; Xu, H.; Zhang, Y.; Cao, Y.; Qin, Z.; Zha, H. Personalized fashion recommendation with visual explanations based on multimodal attention network: Towards visually explainable recommendation. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, France, 21–25 July 2019; pp. 765–774. [Google Scholar] [CrossRef]
- Mao, Q.; Dong, A.; Miao, Q.; Pan, L. Intelligent costume recommendation system based on expert system. J. Shanghai Jiaotong Univ. Sci. 2018, 23, 227–234. [Google Scholar] [CrossRef]
- Tu, Q.; Dong, L. An intelligent personalized fashion recommendation system. In Proceedings of the 2010 International Conference on Communications, Circuits and Systems (ICCCAS), Chengdu, China, 28–30 July 2010; pp. 479–485. [Google Scholar] [CrossRef]
- Vogiatzis, D.; Pierrakos, D.; Paliouras, G.; Jenkyn-Jones, S.; Possen, B. Expert and community based style advice. Expert Syst. Appl. 2012, 39, 10647–10655. [Google Scholar] [CrossRef]
- Wang, L.C.; Zeng, X.Y.; Koehl, L.; Chen, Y. Intelligent Fashion Recommender System: Fuzzy Logic in Personalized Garment Design. IEEE Trans. Human-Mach. Syst. 2014, 45, 95–109. [Google Scholar] [CrossRef]
- Yang, Z.; Su, Z.; Yang, Y.; Lin, G. From Recommendation to Generation: A Novel Fashion Clothing Advising Framework. In Proceedings of the 2018 7th International Conference on Digital Home (ICDH), Guilin, China, 30 November–1 December 2018; pp. 180–186. [Google Scholar] [CrossRef]
- Yinggang, X.; Zhiliang, W.; Qing, Z. Humanized Clothing Recommendation System Based on Fuzzy Set Theory. In Proceedings of the 2007 Chinese Control Conference, Zhangjiajie, China, 26–31 July 2007; pp. 380–385. [Google Scholar] [CrossRef]
- Zeng, X.; Koehl, L.; Wang, L.; Chen, Y. An intelligent recommender system for personalized fashion design. In Proceedings of the 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Edmonton, AB, Canada, 24–28 June 2013; pp. 760–765. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Shi, Y.; Guo, Y.; Xu, C.; Zhang, E.; Tang, J.; Fang, Z. Fashion Evaluation Method for Clothing Recommendation Based on Weak Appearance Feature. Sci. Program. 2017, 2017, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Jia, J.; Gao, K.; Zhang, Y.; Zhang, D.; Li, J. Trip Outfits advisor: Location-oriented clothing recommendation. IEEE Trans. Multimed. 2017, 19, 2533–2544. [Google Scholar] [CrossRef]
- Anandhan, A.; Shuib, L.; Ismail, M.A.; Mujtaba, G. Social media recommender systems: Review and open research issues. IEEE Access 2018, 6, 15608–15628. [Google Scholar] [CrossRef]
- Hsieh, C.-Y.; Li, Y.-M. Fashion Recommendation with Social Intelligence on Personality and Trends. In Proceedings of the 2019 8th International Congress on Advanced Applied Informatics (IIAI-AAI), Toyama, Japan, 7–11 July 2019; pp. 85–90. [Google Scholar] [CrossRef]
- Lu, Z.; Hu, Y.; Jiang, Y.; Chen, Y.; Zeng, B. Learning binary code for personalized fashion recommendation. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 10554–10562. [Google Scholar] [CrossRef]
- Jaradat, S. Deep Cross-Domain Fashion Recommendation. In Proceedings of the Eleventh ACM Conference on Recommender Systems, Como, Italy, 27–31 August 2017; pp. 407–410. [Google Scholar] [CrossRef]
- Jiang, M.; Cui, P.; Liu, R.; Yang, Q.; Wang, F.; Zhu, W.; Yang, S. Social contextual recommendation. In Proceedings of the 21st ACM International Conference on Information and Knowledge Management—CIKM ’12, Maui, HI, USA, 29 October–2 November 2012; p. 45. [Google Scholar] [CrossRef]
- Qian, Y.; Giaccone, P.; Sasdelli, M.; Vasquez, E.; Sengupta, B. Algorithmic clothing: Hybrid recommendation, from street-style-to-shop. arXiv 2017, arXiv:1705.09451. [Google Scholar]
- Sanchez-Riera, J.; Lin, J.-M.; Hua, K.-L.; Cheng, W.-H.; Tsui, A.W. i-Stylist: Finding the right dress through your social networks. In MultiMedia Modeling; Amsaleg, L., Guðmundsson, G.P., Gurrin, C., Jónsson, G.P., Satoh, S., Eds.; Springer International Publishing: New York, NY, USA, 2017; Volume 10132, pp. 662–673. [Google Scholar] [CrossRef]
- Schall, D. Social Network-Based Recommender Systems; Springer International Publishing: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Zhan, H.; Shi, B.; Chen, J.; Zheng, Q.; Duan, L.-Y.; Kot, A.C. Fashion Recommendation on Street Images. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 280–284. [Google Scholar] [CrossRef]
- Zhou, W.; Mok, P.; Zhou, Y.; Zhou, Y.; Shen, J.; Qu, Q.; Chau, K. Fashion recommendations through cross-media information retrieval. J. Vis. Commun. Image Represent. 2019, 61, 112–120. [Google Scholar] [CrossRef]
- Li, T.; Liu, A.; Huang, C. A similarity scenario-based recommendation model with small disturbances for unknown items in social networks. IEEE Access 2016, 4, 9251–9272. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Luo, Y.; Huang, Z. Fashion recommendation with multi-relational representation learning. In Advances in Knowledge Discovery and Data Mining; Lauw, H.W., Wong, R.C.-W., Ntoulas, A., Lim, E.-P., Ng, S.-K., Pan, S.J., Eds.; Springer International Publishing: New York, NY, USA, 2020; Volume 12084, pp. 3–15. [Google Scholar] [CrossRef]
- Margaris, D.; Vassilakis, C.; Georgiadis, P. Recommendation information diffusion in social networks considering user influence and semantics. Soc. Netw. Anal. Min. 2016, 6, 108. [Google Scholar] [CrossRef]
- Murakami, T.; Kurosawa, Y.; Kurashita, Y.; Mera, K.; Takezawa, T. Extracting characteristics of fashion models from magazines for item recommendation. In Text, Speech, and Dialogue; Král, P., Matoušek, V., Eds.; Springer International Publishing: New York, NY, USA, 2015; Volume 9302, pp. 51–60. [Google Scholar] [CrossRef]
- Qian, X.; Feng, H.; Zhao, G.; Mei, T. Personalized recommendation combining user interest and social circle. IEEE Trans. Knowl. Data Eng. 2014, 26, 1763–1777. [Google Scholar] [CrossRef]
- Wu, Q.; Zhao, P.; Cui, Z. Visual and Textual Jointly Enhanced Interpretable Fashion Recommendation. IEEE Access 2020, 8, 68736–68746. [Google Scholar] [CrossRef]
- Wu, S.; Ren, W.; Yu, C.; Chen, G.; Zhang, D.; Zhu, J. Personal recommendation using deep recurrent neural networks in NetEase. In Proceedings of the 2016 IEEE 32nd International Conference on Data Engineering (ICDE), Helsinki, Finland, 16–20 May 2016; pp. 1218–1229. [Google Scholar] [CrossRef]
- Jaradat, S.; Dokoohaki, N.; Hammar, K.; Wara, U.; Matskin, M. Dynamic CNN Models for Fashion Recommendation in Instagram. In Proceedings of the 2018 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Ubiquitous Computing & Communications, Big Data & Cloud Computing, Social Computing & Networking, Sustainable Computing & Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom), Melbourne, VIC, Australia, 11–13 December 2018; pp. 1144–1151. [Google Scholar] [CrossRef]
- Ono, C.; Kurokawa, M.; Motomura, Y.; Asoh, H. A context-aware movie preference model using a bayesian network for recommendation and promotion. In User Modeling 2007; Conati, C., McCoy, K., Paliouras, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4511, pp. 247–257. [Google Scholar] [CrossRef]
- Raffiee, A.H.; Sollami, M. GarmentGAN: Photo-realistic adversarial fashion transfer. arXiv 2020, arXiv:2003.01894. [Google Scholar]
- Viriato de Melo, E.; Nogueira, E.A.; Guliato, D. Content-Based Filtering Enhanced by Human Visual Attention Applied to Clothing Recommendation. In Proceedings of the 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI), Vietri sul Mare, Italy, 9–11 November 2015; pp. 644–651. [Google Scholar] [CrossRef]
- Yu, W.; Zhang, H.; He, X.; Chen, X.; Xiong, L.; Qin, Z. Aesthetic-based Clothing Recommendation. In Proceedings of the 2018 World Wide Web Conference on World Wide Web—WWW ’18, Lyon, France, 23–27 April 2018; pp. 649–658. [Google Scholar] [CrossRef] [Green Version]
- Quadrana, M.; Karatzoglou, A.; Hidasi, B.; Cremonesi, P. Personalizing session-based recommendations with hierarchical recurrent neural networks. In Proceedings of the Eleventh ACM Conference on Recommender Systems, Como, Italy, 27–31 August 2017; pp. 130–137. [Google Scholar] [CrossRef] [Green Version]
- Smirnova, E.; Vasile, F. Contextual sequence modeling for recommendation with recurrent neural networks. In Proceedings of the 2nd Workshop on Deep Learning for Recommender Systems—DLRS 2017, Como, Italy, 27 August 2017; pp. 2–9. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Wu, Z.; Jiang, Y.G.; Davis, L.S. Learning fashion compatibility with bidirectional lstms. In Proceedings of the 25th ACM International Conference on Multimedia, Mountain View, CA, USA, 23–27 October 2017; pp. 1078–1086. [Google Scholar]
- Bracher, C.; Heinz, S.; Vollgraf, R. Fashion DNA: Merging content and sales data for recommendation and article mapping. arXiv 2016, arXiv:1609.02489. [Google Scholar]
- Alashkar, T.; Jiang, S.; Wang, S.; Fu, Y. Examples-rules guided deep neural network for makeup recommendation. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17), San Francisco, CA, USA, 4–9 February 2017; pp. 941–947. [Google Scholar]
- Cheng, H.-T.; Ispir, M.; Anil, R.; Haque, Z.; Hong, L.; Jain, V.; Liu, X.; Shah, H.; Koc, L.; Harmsen, J.; et al. Wide & deep learning for recommender systems. In Proceedings of the 1st Workshop on Deep Learning for Recommender Systems–DLRS 2016, New York, NY, USA, 15 September 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 7–10. [Google Scholar] [CrossRef] [Green Version]
- Ismail, A.R.; Fanani, A.Z.; Shidik, G.F. Implementation of naive bayes algorithm with particle swarm optimization in classification of dress recommendation. In Proceedings of the 2020 International Seminar on Application for Technology of Information and Communication (iSemantic), Dian Nuswantoro, Indonesia, 19–20 September 2020; pp. 174–178. [Google Scholar]
- Wei, W.; Wang, Z.; Fu, C.; Damaševičius, R.; Scherer, R.; Wožniak, M. Intelligent recommendation of related items based on naive bayes and collaborative filtering combination model. J. Physics: Conf. Ser. 2020, 1682, 012043. [Google Scholar] [CrossRef]
- Liu, Y.; Nie, J.; Xu, L.; Chen, Y.; Xu, B. Clothing recommendation system based on advanced user-based collaborative filtering algorithm. In Signal and Information Processing, Networking and Computers; Sun, S., Chen, N., Tian, T., Eds.; Springer: Singapore, 2018; Volume 473, pp. 436–443. [Google Scholar] [CrossRef]
- Leininger, L.; Gipson, J.; Patterson, K.; Blanchard, B. Advancing performance of retail recommendation systems. SMU Data Sci. Rev. 2020, 3, 1–16. [Google Scholar]
- Zhang, J.; Liu, K.; Dong, M.; Yuan, H.; Zhu, C.; Zeng, X. An intelligent garment recommendation system based on fuzzy techniques. J. Text. Inst. 2019, 111, 1324–1330. [Google Scholar] [CrossRef]
- Adewumi, A.; Taiwo, A.; Misra, S.; Maskeliunas, R.; Damasevicius, R.; Ahuja, R.; Ayeni, F. A Unified Framework for Outfit Design and Advice. In Data Management, Analytics and Innovation; Springer: Singapore, 2020; pp. 31–41. [Google Scholar]
- Wakita, Y.; Oku, K.; Huang, H.H.; Kawagoe, K. A fashion-brand recommender system using brand association rules and features. In Proceedings of the 2015 IIAI 4th International Congress on Advanced Applied Informatics (IIAI-AAI), Okayama, Japan, 12–16 July 2015; pp. 719–720. [Google Scholar]
- Wang, Y.; Li, S.; Kot, A.C. Joint learning for image-based handbag recommendation. In Proceedings of the 2015 IEEE International Conference on Multimedia and Expo. (ICME), Turin, Italy, 29 June–3 July 2015; pp. 1–6. [Google Scholar]
- Zeng, M.X. Development of an Intelligent Recommendation System to Garment Designers for Designing New Personalized Products. Ph.D. Thesis, Ecole Nationale d’Ingénieurs de Saint-Etienne, Saint-Étienne, France, 3 April 2017. [Google Scholar]
- Ajmani, S.; Ghosh, H.; Mallik, A.; Chaudhury, S.; Mallik, A. An Ontology Based Personalized Garment Recommendation System. In Proceedings of the 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), Atlanta, GA, USA, 20 November 2013; Institute of Electrical and Electronics Engineers (IEEE): Atlanta, GA, USA, 2013; Volume 3, pp. 17–20. [Google Scholar]
- Boutemedjet, S.; Ziou, D. Predictive approach for user long-term needs in content-based image suggestion. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 1242–1253. [Google Scholar] [CrossRef] [PubMed]
- Deldjoo, Y.; Schedl, M.; Cremonesi, P.; Pasi, G.; Cremonesi, P. Content-based multimedia recommendation systems: Definition and application domains. Res. Publ. Politecnico di Milano 2018, 1–12. [Google Scholar]
- Zhao, Y.; Araki, K. What to Wear in Different Situations?: A Content-based Recommendation System for Fashion Coordination. In Proceedings of the Japanese Forum on Information Technology (FIT2011), Tokyo, Japan, 12–14 September 2011; pp. 619–628. [Google Scholar]
- Tao, X.; Chen, X.; Zeng, X.; Koehl, L. A customized garment collaborative design process by using virtual reality and sensory evaluation on garment fit. Comput. Ind. Eng. 2018, 115, 683–695. [Google Scholar] [CrossRef]
- Kumar, I.P.; Sambangi, S. Content based apparel recommendation system for fashion industry. Int. J. Eng. Adv. Technol. 2019, 8, 509–516. [Google Scholar] [CrossRef]
- Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Ekstrand, M.D. Collaborative Filtering Recommender Systems. Found. Trends in Hum. Comput. Interact. 2011, 4, 81–173. [Google Scholar] [CrossRef]
- Pujahari, A.; Sisodia, D.S. Model-based collaborative filtering for recommender systems: An empirical survey. In Proceedings of the 2020 First International Conference on Power, Control and Computing Technologies (ICPC2T), Raipur, India, 3–5 January 2020; pp. 443–447. [Google Scholar] [CrossRef]
- Gai, S.; Zhao, F.; Kang, Y.; Chen, Z.; Wang, D.; Tang, A. Deep Transfer Collaborative Filtering for Recommender Systems. In PRICAI 2019: Trends in Artificial Intelligence; Nayak, A.C., Sharma, A., Eds.; Springer International Publishing: New York, NY, USA, 2019; Volume 11672, pp. 515–528. [Google Scholar] [CrossRef]
- Halder, K.; Poddar, L.; Kan, M.Y. Cold start thread recommendation as extreme multi-label classification. In Proceedings of the The Web Conference 2018, Lyon, France, 23–27 April 2018; pp. 1911–1918. [Google Scholar]
- Kurama, V. A Simple Introduction to Collaborative Filtering. 2019. Available online: https://builtin.com/data-science/collaborative-filtering-recommender-system (accessed on 23 June 2021).
- Liu, Y.J.; Gao, Y.B.; Bian, L.Y.; Wang, W.Y.; Li, Z.M. How to wear beautifully? Clothing pair recommendation. J. Comput. Sci. Technol. 2018, 33, 522–530. [Google Scholar] [CrossRef]
- Raghuwanshi, S.K.; Pateriya, R.K. Collaborative Filtering Techniques in Recommendation Systems. In Data, Engineering and Applications; Springer: Singapore, 2019; pp. 11–21. [Google Scholar]
- Song, X.; Han, X.; Li, Y.; Chen, J.; Xu, X.S.; Nie, L. GP-BPR: Personalized compatibility modeling for clothing matching. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 320–328. [Google Scholar]
- De Divitiis, L.; Becattini, F.; Baecchi, C.; Del Bimbo, A. Garment Recommendation with Memory Augmented Neural Networks. arXiv 2020, arXiv:2012.06200. [Google Scholar]
- Sagar, D.; Garg, J.; Kansal, P.; Bhalla, S.; Shah, R.R.; Yu, Y. PAI-BPR: Personalized Outfit Recommendation Scheme with Attribute-wise Interpretability. In Proceedings of the 2020 IEEE Sixth International Conference on Multimedia Big Data (BigMM) September 2020, New Delhi, India, 24–26 September 2020; pp. 221–230. [Google Scholar]
- Hwangbo, H.; Kim, Y. An empirical study on the effect of data sparsity and data overlap on cross domain collaborative filtering performance. Expert Syst. Appl. 2017, 89, 254–265. [Google Scholar] [CrossRef]
- Chelliah, M.; Biswas, S.; Dhakad, L. Principle-to-program: Neural Fashion Recommendation with Multi-modal Input. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 2706–2708. [Google Scholar] [CrossRef]
- Shin, Y.-G.; Yeo, Y.-J.; Sagong, M.-C.; Ji, S.-W.; Ko, S.-J. Deep fashion recommendation system with style feature decomposition. In Proceedings of the 2019 IEEE 9th International Conference on Consumer Electronics (ICCE-Berlin), Berlin, Germany, 8–11 September 2019; pp. 301–305. [Google Scholar] [CrossRef]
- Zarei, M.R.; Moosavi, M.R. A Memory-Based Collaborative Filtering Recommender System Using Social Ties. In Proceedings of the 2019 4th International Conference on Pattern Recognition and Image Analysis (IPRIA), Tehran, Iran, 6–7 March 2019; pp. 263–267. [Google Scholar] [CrossRef]
- Lee, J.; Sun, M.; Lebanon, G. A comparative study of collaborative filtering algorithms. arXiv 2012, arXiv:1205.3193. [Google Scholar]
- Liu, Y.; Cai, F.; Ren, P.; Gu, Z. Item life cycle based collaborative filtering. J. Intell. Fuzzy Syst. 2019, 36, 2743–2755. [Google Scholar] [CrossRef]
- Wong, W.K.; Zeng, X.; Au, W.; Mok, P.; Leung, S. A fashion mix-and-match expert system for fashion retailers using fuzzy screening approach. Expert Syst. Appl. 2009, 36, 1750–1764. [Google Scholar] [CrossRef]
- Adomavicius, G.; Zhang, J. Impact of data characteristics on recommender systems performance. ACM Trans. Manag. Inf. Syst. 2012, 3, 1–17. [Google Scholar] [CrossRef]
- Raghuwanshi, S.K.; Pateriya, R.K. Recommendation systems: Techniques, challenges, application, and evaluation. In Soft Computing for Problem Solving; Bansal, J.C., Das, K.N., Nagar, A., Deep, K., Ojha, A.K., Eds.; Springer: Singapore, 2019; Volume 817, pp. 151–164. [Google Scholar] [CrossRef]
- Shah, L.; Gaudani, H.; Balani, P. Survey on Recommendation System. Int. J. Comput. Appl. 2016, 137, 43–49. [Google Scholar] [CrossRef]
- Burke, R. Hybrid recommender systems: Survey and experiments. User Model. User Adapt. Interact. 2002, 12, 331–370. [Google Scholar] [CrossRef]
- Kawale, J.; Bui, H.H.; Kveton, B.; Tran-Thanh, L.; Chawla, S. Efficient Thompson Sampling for Online Matrix-Factorization Recommendation. In Advances in Neural Information Processing Systems; ACM: New York, NY, USA, 2015; pp. 1297–1305. [Google Scholar]
- Li, Y.-M.; Lin, L.-F.; Ho, C.-C. A social route recommender mechanism for store shopping support. Decis. Support Syst. 2017, 94, 97–108. [Google Scholar] [CrossRef]
- Han, X.; Wu, Z.; Huang, W.; Scott, M.R.; Davis, L.S. FiNet: Compatible and diverse fashion image inpainting. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–3 November 2019; pp. 4481–4491. [Google Scholar]
- Raj, A.; Sangkloy, P.; Chang, H.; Hays, J.; Ceylan, D.; Lu, J. SwapNet: Image based garment transfer. In Computer Vision ECCV 2018; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer International Publishing: New York, NY, USA, 2018; Volume 11216, pp. 679–695. [Google Scholar] [CrossRef]
- Yu, L.; Zhong, Y.; Wang, X. Inpainting-Based Virtual Try-on Network for Selective Garment Transfer. IEEE Access 2019, 7, 134125–134136. [Google Scholar] [CrossRef]
- Yu, R.; Wang, X.; Xie, X. VTNFP: An image-based virtual try-on network with body and clothing feature preservation. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–3 November 2019; pp. 10511–10520. [Google Scholar]
- Lin, Y.-L.; Wang, M.-J.J. The development of a clothing fit evaluation system under virtual environment. Multimed. Tools Appl. 2015, 75, 7575–7587. [Google Scholar] [CrossRef]
- Shani, G.; Gunawardana, A. Evaluating recommendation systems. In Recommender Systems Handbook; Springer: Boston, MA, USA, 2011; pp. 257–297. [Google Scholar]
- Demšar, J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7, 1–30. [Google Scholar]
- Elkahky, A.M.; Song, Y.; He, X. A multi-view deep learning approach for cross domain user modeling in recommendation systems. In Proceedings of the 24th International Conference on World Wide Web—WWW ’15, Florence, Italy, 18–22 May 2015; pp. 278–288. [Google Scholar] [CrossRef] [Green Version]
- Xue, H.-J.; Dai, X.; Zhang, J.; Huang, S.; Chen, J. Deep Matrix Factorization Models for Recommender Systems. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, VIC, Australia, 19–25 August 2017; pp. 3203–3209. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Andrew, S. Gill, S. Exploring fashion choice criteria for older Chinese female consumers: A wardrobe study approach. In Advances in Intelligent Systems and Computing; Springer International Publishing: New York, NY, USA, 2018; pp. 109–121. [Google Scholar] [CrossRef]
- Zheng, Y.; Tang, B.; Ding, W.; Zhou, H. A Neural Autoregressive Approach to Collaborative Filtering. arXiv 2016, arXiv:1605.09477. [Google Scholar]
- Du, C.; Li, C.; Zheng, Y.; Zhu, J.; Zhang, B. Collaborative Filtering with User-Item Co-Autoregressive Models. arXiv 2018, arXiv:1612.07146 [Cs]. [Google Scholar]
- Liu, X.; Sun, Y.; Liu, Z.; Lin, D. Learning diverse fashion collocation by neural graph filtering. arXiv 2020, arXiv:2003.04888. [Google Scholar] [CrossRef]
- Zhang, F.; Yuan, N.J.; Lian, D.; Xie, X.; Ma, W.-Y. Collaborative Knowledge Base Embedding for Recommender Systems. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 353–362. [Google Scholar] [CrossRef]
- Vasileva, M.I.; Plummer, B.A.; Dusad, K.; Rajpal, S.; Kumar, R.; Forsyth, D. Learning type-aware embeddings for fashion compatibility. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 390–405. [Google Scholar]
Year | Recommendation System Approach | Properties |
---|---|---|
Before 1992 | Mafia, developed in 1990 |
|
1992 to 1998 | Tapestry, developed in 1992 |
|
Grouplens, first used in 1994 |
| |
Movielens, proposed in 1997 |
| |
1999 to 2005 | PLSA (Probabilistic Latent Semantic Analysis), proposed in 1999 |
|
2005 to 2009 | Several Latent Factor Models such as Singular Value Decompositions (SVD), Robust Singular Value Decomposition (RSVD), Normalized Singular Value Deviation (NSVD). |
|
2010 to onwards | Context-aware-based, instant-personalization-based |
|
Recommendation System | References | Features and Implementation |
---|---|---|
Fashion image retrieval | [7,10,11,25,34,85,86,91,92,93,94,95,96,97,98,99] |
|
Personal wardrobe recommendation | [10,31,88,90,93,100,101,102,103,104,105,106,107,108] |
|
Fashion pairing recommendation system | [4,10,15,22,36,45,46,47,48,49,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124] |
|
Smart or intelligent recommendation | [33,39,40,41,42,43,44,50,74,88,89,112,123,125,126,127,128,129,130,131,132,133,134,135,136,137] |
|
Social-network-based recommendation | [7,8,31,43,92,133,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152] |
|
Algorithm/Model | Recommendation System Used | Performance |
---|---|---|
Convolutional Neural Networks (CNN) |
| The proposed CNN model achieved a maximum of Normalized Discounted Cumulative Gain (NDCG) ranking score of 0.50, which outperformed support vector machine (SVM), because SVM achieved an NDCG score of 0.45. |
Recurrent Neural Network (RNN) |
| The proposed RNN model achieved a higher AUC value of 88.5% compared to the AUC value of 80.2% achieved by a popularity ranking baseline approach. |
Multilayer Perceptron (MLP) |
| The proposed MLP model achieved a minimal squared loss function value, which was 48% lower than distance-based similarity recommendation model. |
Generative adversarial network (GAN) |
| The proposed method outperformed the strongest content unaware method (Bayesian Personalized Ranking) substantially by around 5.13% in terms of accuracy and achieved a 6.8% improvement over a retrieval-based method in terms of preference score. |
kNN (k-nearest neighbor) |
| The model achieved a higher accuracy in terms of AUC (91%) than that of the AUC (85%) of the baseline model. |
Autoencoder |
| The proposed model achieved an AUC value 0.884 compared to the AUC value of 0.762 achieved by the probabilistic knowledge distillation (PKD) method. |
Bayesian Networks |
| The proposed model outperformed the basic Bayesian model by 50% in terms of frequency of selection (of the same cloth) and by 90% in terms of recommended combinations |
Filtering Techniques | Strength | Weakness |
---|---|---|
Content-based |
|
|
Collaborative |
|
|
Hybrid |
|
|
Hyperpersonalization |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chakraborty, S.; Hoque, M.S.; Rahman Jeem, N.; Biswas, M.C.; Bardhan, D.; Lobaton, E. Fashion Recommendation Systems, Models and Methods: A Review. Informatics 2021, 8, 49. https://doi.org/10.3390/informatics8030049
Chakraborty S, Hoque MS, Rahman Jeem N, Biswas MC, Bardhan D, Lobaton E. Fashion Recommendation Systems, Models and Methods: A Review. Informatics. 2021; 8(3):49. https://doi.org/10.3390/informatics8030049
Chicago/Turabian StyleChakraborty, Samit, Md. Saiful Hoque, Naimur Rahman Jeem, Manik Chandra Biswas, Deepayan Bardhan, and Edgar Lobaton. 2021. "Fashion Recommendation Systems, Models and Methods: A Review" Informatics 8, no. 3: 49. https://doi.org/10.3390/informatics8030049
APA StyleChakraborty, S., Hoque, M. S., Rahman Jeem, N., Biswas, M. C., Bardhan, D., & Lobaton, E. (2021). Fashion Recommendation Systems, Models and Methods: A Review. Informatics, 8(3), 49. https://doi.org/10.3390/informatics8030049