Human-Computer Interaction in Digital Mental Health
Abstract
:1. Introduction
1.1. Early Evolution of Psychological Science in Human-Computer Interaction
1.2. Modern Developments in Human-Computer Interaction and Digital Mental Health
2. Methods
3. Results
3.1. Web-Based and Smartphone Technologies
3.2. Artificial Intelligence
3.3. Digital Phenotyping
3.4. Immersive Technologies
4. Discussion
4.1. Human-Computer Interaction Challenges and Digital Mental Health as an Adjunct to Care
4.2. Ethics, the Digital Therapeutic Alliance and Blended, Hybrid and Stepped Models of Care
5. Conclusions
- The integrative review found that HCI has long needed to be better integrated into technological developments for mental health care.
- The design, development, implementation, and evaluation of digital mental health tools has the potential to help resolve systemic mental health care issues (e.g., through better and faster service for the underserved with low to moderate anxiety and depression as well as TECC for those at-risk of suicide).
- Digital mental health tools best serve as an adjunct to mental health care—users and mental health practitioners can help improve effective outcomes through codesign of HCI (e.g., the DTA, clinical guidelines on validating machine learning findings as well as stepped models of care that utilize supporting resources—peer workers).
- There are many web-based or smartphone technology products and services available (especially apps) which serve in telehealth and (self-)guided digital interventions as well as AI, immersive technologies, and digital phenotyping. But a lack of HCI investment has resulted in unrealized potential (e.g., a secure, trusted and eminent integrated-multimodal digital platform using AI has yet to be effectively designed, developed, used, strategized, funded and scaled).
- Future research for enhanced quality, safety and usability may benefit from integrating a predictive model with HCD (i.e., adding real humans into the loop of simulations by computer algorithms that run human-created models).
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Dix, A. Human-Computer Interaction. In Encyclopedia of Database Systems; Liu, L., Özsu, M.T., Eds.; Springer: Boston, MA, USA, 2009. [Google Scholar] [CrossRef]
- Card, S.K.; Moran, T.P.; Newell, A. The Psychology of Human-Computer Interaction; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Myers, B.A. A brief history of human-computer interaction technology. Interactions 1998, 5, 44–54. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.H.; Godin, S.W.; Bloomquist, M.L. Human factors engineering in computerized mental health care delivery. Behav. Res. Methods Instrum. 1981, 13, 425–429. [Google Scholar] [CrossRef] [Green Version]
- Newell, A.; Card, S.K. The Prospects for Psychological Science in Human-Computer Interaction. Hum.-Comput. Interact. 1985, 1, 209–242. [Google Scholar] [CrossRef]
- Booth, P. An Introduction to Human-Computer Interaction (Psychology Revivals); Psychology Press: Hove, East Sussex, UK, 2014. [Google Scholar] [CrossRef]
- Morrison, D. The applications of cognitive theory and science to HCI: A psychological perspective. Int. J. Hum.-Comput. Interact. 1992, 4, 3–5. [Google Scholar] [CrossRef]
- Carroll, J.M. Human–computer interaction: Psychology as a science of design. Int. J. Hum.-Comput. Stud. 1997, 46, 501–522. [Google Scholar] [CrossRef] [Green Version]
- Marks, I. Computer Aids to Mental Health Care. Can. J. Psychiatry 1999, 44, 548–555. [Google Scholar] [CrossRef] [Green Version]
- Farzanfar, R.; Frishkopf, S.; Friedman, R.; Ludena, K. Evaluating an automated mental health care system: Making meaning of human–computer interaction. Comput. Hum. Behav. 2007, 23, 1167–1182. [Google Scholar] [CrossRef]
- Martin, J.; McKay, E.; Shankar, J. Bias Misinformation and Disinformation: Mental Health Employment and Human Computer Interaction. In Proceedings of the 2006 InSITE Conference, Manchester, UK, 25–28 June 2006. [Google Scholar]
- Burns, J.M.; Davenport, T.A.; Durkin, L.A.; Luscombe, G.M.; Hickie, I.B. The internet as a setting for mental health service utilisation by young people. Med. J. Aust. 2010, 192, S22–S26. [Google Scholar] [CrossRef]
- Dearden, A.; Finlay, J. Pattern Languages in HCI: A Critical Review. Hum. –Comput. Interact. 2006, 21, 49–102. [Google Scholar] [CrossRef]
- Keating, B.; Campbell, J.; Radoll, P. Evaluating a new pattern development process for interface design: Application to mental health services. In Proceedings of the 34th International Conference on Information Systems (ICIS 2013), Milano, Italy, 15–18 December 2013; Chau, M., Baskerville, R., Eds.; Association for Information Systems (AIS): Atlanta, GA, USA, 2013; pp. 1–10. Available online: https://aisel.aisnet.org (accessed on 13 December 2021).
- Dingwall, K.M.; Puszka, S.; Sweet, M.; Mills, P.P.J.R.; Nagel, T. Evaluation of a culturally adapted training course in Indigenous e-mental health. Australas. Psychiatry 2015, 23, 630–635. [Google Scholar] [CrossRef]
- Radoll, P.J.; Campbell, J. Editorial for the Indigenous use of Information and Communication Technologies Section. Australas. J. Inf. Syst. 2015, 19. [Google Scholar] [CrossRef] [Green Version]
- Bennett-Levy, J.; Singer, J.; Rotumah, D.; Bernays, S.; Edwards, D. From Digital Mental Health to Digital Social and Emotional Wellbeing: How Indigenous Community-Based Participatory Research Influenced the Australian Government’s Digital Mental Health Agenda. Int. J. Environ. Res. Public Health 2021, 18, 9757. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, K.M.; Farrer, L.; Christensen, H. The efficacy of internet interventions for depression and anxiety disorders: A review of randomised controlled trials. Med. J. Aust. 2010, 192, S4–S11. [Google Scholar] [CrossRef]
- Doherty, G.; Coyle, D.; Matthews, M. Design and evaluation guidelines for mental health technologies. Interact. Comput. 2010, 22, 243–252. [Google Scholar] [CrossRef]
- Mohr, D.C.; Burns, M.N.; Schueller, S.M.; Clarke, G.; Klinkman, M. Behavioral intervention technologies: Evidence review and recommendations for future research in mental health. Gen. Hosp. Psychiatry 2013, 35, 332–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valencia-García, R.; García-Sánchez, F. Natural Language Processing and Human–Computer Interaction. Comput. Stand. Interfaces 2013, 35, 415–416. [Google Scholar] [CrossRef]
- Olff, M. Mobile mental health: A challenging research agenda. Eur. J. Psychotraumatol. 2015, 6, 27882. [Google Scholar] [CrossRef] [Green Version]
- Dinakar, K.; Chen, J.; Lieberman, H.; Picard, R.; Filbin, R. Mixed-Initiative Real-Time Topic Modeling & Visualization for Crisis Counseling. In Proceedings of the 20th International Conference on Intelligent User Interfaces, Atlanta, GA, USA, 29 March–1 April 2015; pp. 417–426. [Google Scholar] [CrossRef] [Green Version]
- Calvo, R.A.; Dinakar, K.; Picard, R.; Maes, P. Computing in Mental Health. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems (CHI EA’16), San Jose, CA, USA, 7–12 May 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 3438–3445. [Google Scholar] [CrossRef]
- Mohr, D.C.; Lyon, A.R.; Lattie, E.G.; Reddy, M.; Schueller, S.M. Accelerating Digital Mental Health Research From Early Design and Creation to Successful Implementation and Sustainment. J. Med. Internet Res. 2017, 19, e153. [Google Scholar] [CrossRef]
- Zhang, M.W.B.; Ho, R.C.M. Enabling Psychiatrists to Explore the Full Potential of E-Health. Front. Psychiatry 2015, 6, 177. [Google Scholar] [CrossRef] [Green Version]
- Khazaal, Y.; Favrod, J.; Sort, A.; Borgeat, F.; Bouchard, S. (Eds.) Computers and Games for Mental Health and Well-Being. Front. Res. Top. 2018, 9, 141. [Google Scholar] [CrossRef]
- Søgaard Neilsen, A.; Wilson, R.L. Combining e-mental health intervention development with human computer interaction (HCI) design to enhance technology-facilitated recovery for people with depression and/or anxiety conditions: An integrative literature review. Int. J. Ment. Health Nurs. 2018, 28, 22–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torous, J.; Nicholas, J.; Larsen, M.E.; Firth, J.; Christensen, H. Clinical review of user engagement with mental health smartphone apps: Evidence, theory and improvements. Evid.-Based Ment. Health 2018, 21, 116–119. [Google Scholar] [CrossRef] [PubMed]
- Batterham, P.J.; Calear, A.L.; O’Dea, B.; Larsen, M.E.J.; Kavanagh, D.; Titov, N.; Gorman, P. Stakeholder perspectives on evidence for digital mental health interventions: Implications for accreditation systems. Digit. Health 2019, 5, 205520761987806. [Google Scholar] [CrossRef]
- Blandford, A. HCI for health and wellbeing: Challenges and opportunities. Int. J. Hum.-Comput. Stud. 2019, 131, 41–51. [Google Scholar] [CrossRef]
- Scholten, H.; Granic, I. Use of the principles of design thinking to address limitations of digital mental health interventions for youth. J. Med. Internet Res. 2019, 21, e11528. [Google Scholar] [CrossRef] [PubMed]
- Stowers, K.; Mouloua, M. Human Computer Interaction Trends in Healthcare: An Update. Proc. Int. Symp. Hum. Factors Ergon. Health Care 2018, 7, 88–91. [Google Scholar] [CrossRef]
- Necho, M.; Tsehay, M.; Birkie, M.; Biset, G.; Tadesse, E. Prevalence of anxiety, depression, and psychological distress among the general population during the COVID-19 pandemic: A systematic review and meta-analysis. Int. J. Soc. Psychiatry 2021, 67, 892–906. [Google Scholar] [CrossRef]
- Torous, J.; Jän Myrick, K.; Rauseo-Ricupero, N.; Firth, J. Digital Mental Health and COVID-19: Using Technology Today to Accelerate the Curve on Access and Quality Tomorrow. JMIR Ment. Health 2020, 7, e18848. [Google Scholar] [CrossRef]
- Gratzer, D.; Torous, J.; Lam, R.W.; Patten, S.B.; Kutcher, S.; Chan, S.; Yatham, L.N. Our Digital Moment: Innovations and Opportunities in Digital Mental Health Care. Can. J. Psychiatry 2020, 66, 5–8. [Google Scholar] [CrossRef]
- Malla, A.; Joober, R. COVID-19 and the Future with Digital Mental Health: Need for Attention to Complexities. Can. J. Psychiatry 2020, 66, 14–16. [Google Scholar] [CrossRef]
- Balcombe, L.; De Leo, D. Athlete Psychological Resilience and Integration with Digital Mental Health Implementation Amid Covid-19. In Anxiety, Uncertainty, and Resilience during the Pandemic Period—Anthropological and Psychological Perspectives; IntechOpen: London, UK, 2021. [Google Scholar]
- Whittemore, R.; Knafl, K. The integrative review: Updated methodology. J. Adv. Nurs. 2005, 52, 546–553. [Google Scholar] [CrossRef]
- Balcombe, L.; De Leo, D. Digital Mental Health Amid COVID-19. Encyclopedia 2021, 1, 1047–1057. [Google Scholar] [CrossRef]
- Rice, S.; Goodall, J.; Hetrick, S.; Parke, R.A.; Gilbertson, T.; Amminger, G.; Davey, C.; McGorry, P.; Gleeson, J.; Alvarez-Jimenez, M. Online and Social Networking Interventions for the Treatment of Depression in Young People: A Systematic Review. J. Med. Internet Res. 2014, 16, e206. [Google Scholar] [CrossRef] [Green Version]
- Sevilla-Llewellyn-Jones, J.; Santesteban-Echarri, O.; Pryor, I.; McGorry, P.; Alvarez-Jimenez, M. Web-Based Mindfulness Interventions for Mental Health Treatment: Systematic Review and Meta-Analysis. JMIR Ment. Health 2018, 5, e10278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Price, M.; Yuen, E.K.; Goetter, E.M.; Herbert, J.D.; Forman, E.M.; Acierno, R.; Ruggiero, K.J. mHealth: A Mechanism to Deliver More Accessible, More Effective Mental Health Care. Clin. Psychol. Psychother. 2013, 21, 427–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thieme, A.; Wallace, J.; Meyer, T.D.; Olivier, P. Designing for mental wellbeing. In Proceedings of the 2015 British HCI Conference, Lincoln Lincolnshire, UK, 13–17 July 2015; Association for Computing Machinery (ACM): New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Spek, V.; Cuijpers, P.; Nyklicek, I.; Riper, H.; Keyzer, J.; Pop, V. Internet-based cognitive behaviour therapy for symptoms of depression and anxiety: A meta-analysis. Psychol. Med. 2007, 37, 319. [Google Scholar] [CrossRef]
- Andersson, G.; Cuijpers, P.; Carlbring, P.; Riper, H.; Hedman, E. Guided Internet-based vs. face-to-face cognitive behavior therapy for psychiatric and somatic disorders: A systematic review and meta-analysis. World Psychiatry 2014, 13, 288–295. [Google Scholar] [CrossRef]
- Gilbody, S.; Littlewood, E.; Hewitt, C.; Brierley, G.; Tharmanathan, P.; Araya, R.; White, D. Computerised cognitive behaviour therapy (cCBT) as treatment for depression in primary care (REEACT trial): Large scale pragmatic randomised controlled trial. BMJ 2015, 351, h5627. [Google Scholar] [CrossRef] [Green Version]
- Gilbody, S.; Brabyn, S.; Lovell, K.; Kessler, D.; Devlin, T.; Smith, L. Telephone-supported computerised cognitive–behavioural therapy: REEACT-2 large-scale pragmatic randomised controlled trial. Br. J. Psychiatry 2017, 210, 362–367. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.T.; Wu, S.; Tomasino, K.N.; Lattie, E.G.; Mohr, D.C. A multi-faceted approach to characterizing user behavior and experience in a digital mental health intervention. J. Biomed. Inform. 2019, 94, 103187. [Google Scholar] [CrossRef]
- Farrer, L.M.; Gulliver, A.; Katruss, N.; Fassnacht, D.B.; Kyrios, M.; Batterham, P.J. A novel multi-component online intervention to improve the mental health of university students: Randomised controlled trial of the Uni Virtual Clinic. Internet Interv. 2019, 18, 100276. [Google Scholar] [CrossRef] [PubMed]
- Yogarajah, A.; Kenter, R.; Lamo, Y.; Kaldo, V.; Nordgreen, T. Internet-delivered mental health treatment systems in Scandinavia—A usability evaluation. Internet Interv. 2020, 20, 100314. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Jimenez, M.; Rice, S.; D’Alfonso, S.; Leicester, S.; Bendall, S.; Pryor, I.; Gleeson, J. A Novel Multimodal Digital Service (Moderated Online Social Therapy+) for Help-Seeking Young People Experiencing Mental Ill-Health: Pilot Evaluation Within a National Youth E-Mental Health Service. J. Med. Internet Res. 2020, 22, e17155. [Google Scholar] [CrossRef] [PubMed]
- O’Dea, B.; Subotic-Kerry, M.; King, C.; Mackinnon, A.J.; Achilles, M.R.; Anderson, M.; Christensen, H. A cluster randomised controlled trial of a web-based youth mental health service in Australian schools. Lancet Reg. Health-West. Pac. 2021, 12, 100178. [Google Scholar] [CrossRef]
- van Doorn, M.; Nijhuis, L.A.; Egeler, M.D.; Daams, J.G.; Popma, A.; van Amelsvoort, T.; McEnery, C.; Gleeson, J.F.; Öry, F.G.; Avis, K.A.; et al. Online Indicated Preventive Mental Health Interventions for Youth: A Scoping Review. Front. Psychiatry 2021, 12, 580843. [Google Scholar] [CrossRef]
- Williams, A.; Fossey, E.; Farhall, J.; Foley, F.; Thomas, N. Impact of Jointly Using an e–Mental Health Resource (Self-Management and Recovery Technology) on Interactions Between Service Users Experiencing Severe Mental Illness and Community Mental Health Workers: Grounded Theory Study. JMIR Ment. Health 2021, 8, e25998. [Google Scholar] [CrossRef] [PubMed]
- Mertan, E.; Croucher, L.; Shafran, R.; Bennett, S.D. An investigation of the information provided to the parents of young people with mental health needs on an internet forum. Internet Interv. 2021, 23, 100353. [Google Scholar] [CrossRef]
- Hetrick, S.; Robinson, J.; Burge, E.; Blandon, R.; Mobilio, B.; Rice, S.; Simmons, M.; Alvarez-Jimenez, M.; Goodrich, S.; Davey, C. Youth Codesign of a Mobile Phone App to Facilitate Self-Monitoring and Management of Mood Symptoms in Young People with Major Depression, Suicidal Ideation, and Self-Harm. JMIR Ment. Health 2018, 5, e9. [Google Scholar] [CrossRef]
- Faurholt-Jepsen, M.; Kessing, L.V. Apps for mental health care: The raise of digital psychiatry. Eur. Neuropsychopharmacol. 2021, 47, 51–53. [Google Scholar] [CrossRef]
- Kenny, R.; Fitzgerald, A.; Segurado, R.; Dooley, B. Is there an app for that? A cluster randomised controlled trial of a mobile app–based mental health intervention. Health Inform. J. 2019, 26, 1538–1559. [Google Scholar] [CrossRef] [Green Version]
- Inal, Y.; Wake, J.D.; Guribye, F.; Nordgreen, T. Usability Evaluations of Mobile Mental Health Technologies: Systematic Review. J. Med. Internet Res. 2020, 22, e15337. [Google Scholar] [CrossRef] [PubMed]
- D’Alfonso, S.; Lederman, R.; Bucci, S.; Berry, K. The Digital Therapeutic Alliance and Human-Computer Interaction. JMIR Ment. Health 2020, 7, e21895. [Google Scholar] [CrossRef]
- Cataldo, F.; Chang, S.; Mendoza, A.; Buchanan, G. A Perspective on Client-Psychologist Relationships in Videoconferencing Psychotherapy: Literature Review. JMIR Ment. Health 2021, 8, e19004. [Google Scholar] [CrossRef] [PubMed]
- Venning, A.; Herd, M.C.; Oswald, T.K.; Razmi, S.; Glover, F.; Hawke, T.; Redpath, P. Exploring the acceptability of a digital mental health platform incorporating a virtual coach: The good, the bad, and the opportunities. Health Inform. J. 2021, 27, 146045822199487. [Google Scholar] [CrossRef]
- Meier, A.; Reinecke, L. Computer-Mediated Communication, Social Media, and Mental Health: A Conceptual and Empirical Meta-Review. Commun. Res. 2020, 48, 1182–1209. [Google Scholar] [CrossRef]
- Joshi, D.; Patwardhan, D.M. An analysis of mental health of social media users using unsupervised approach. Comput. Hum. Behav. Rep. 2020, 2, 100036. [Google Scholar] [CrossRef]
- Uban, A.-S.; Chulvi, B.; Rosso, P. An emotion and cognitive based analysis of mental health disorders from social media data. Future Gener. Comput. Syst. 2021, 124, 480–494. [Google Scholar] [CrossRef]
- Hull, T.D.; Levine, J.; Bantilan, N.; Desai, A.N.; Majumder, M.S. Analyzing Digital Evidence from a Telemental Health Platform to Assess Complex Psychological Responses to the COVID-19 Pandemic: Content Analysis of Text Messages. JMIR Form. Res. 2021, 5, e26190. [Google Scholar] [CrossRef]
- Flore, J. Ingestible sensors, data, and pharmaceuticals: Subjectivity in the era of digital mental health. New Media Soc. 2020, 23, 2034–2051. [Google Scholar] [CrossRef]
- Ali, K.; Farrer, L.; Gulliver, A.; Griffiths, K.M. Online Peer-to-Peer Support for Young People with Mental Health Problems: A Systematic Review. JMIR Ment. Health 2015, 2, e19. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Choudhury, M.; Althoff, T.; Sharma, A. Engagement Patterns of Peer-to-Peer Interactions on Mental Health Platforms. In Proceedings of the International AAAI Conference on Web and Social Media, Atlanta, GA, USA, 6–9 June 2020; Volume 14, pp. 614–625. [Google Scholar]
- Shalaby, R.A.H.; Agyapong, V.I.O. Peer Support in Mental Health: Literature Review. JMIR Ment. Health 2020, 7, e15572. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, B.M.; Kodish, T.; Cohen, Z.D.; Gong-Guy, E.; Craske, M.G. A novel peer-to-peer coaching program to support digital mental health: Design and implementation. JMIR Ment. Health 2022, 9, e32430. [Google Scholar] [CrossRef]
- American Psychological Association. The Promise and Challenges of AI. Monit. Psychol. 2021, 52. Available online: http://www.apa.org/monitor/2021/11/cover-artificial-intelligence (accessed on 2 November 2021).
- Calix, R.A.; Javadpour, L.; Knapp, G.M. Detection of Affective States from Text and Speech for Real-Time Human–Computer Interaction. Hum. Factors J. Hum. Factors Ergon. Soc. 2011, 54, 530–545. [Google Scholar] [CrossRef] [PubMed]
- Bantilan, N.; Malgaroli, M.; Ray, B.; Hull, T.D. Just in time crisis response: Suicide alert system for telemedicine psychotherapy settings. Psychother. Res. 2020, 31, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Iorfino, F.; Occhipinti, J.-A.; Skinner, A.; Davenport, T.; Rowe, S.; Prodan, A.; Hickie, I.B. The Impact of Technology-Enabled Care Coordination in a Complex Mental Health System: A Local System Dynamics Model. J. Med. Internet Res. 2021, 23, e25331. [Google Scholar] [CrossRef]
- Fitzpatrick, K.K.; Darcy, A.; Vierhile, M. Delivering Cognitive Behavior Therapy to Young Adults with Symptoms of Depression and Anxiety Using a Fully Automated Conversational Agent (Woebot): A Randomized Controlled Trial. JMIR Ment. Health 2017, 4, e19. [Google Scholar] [CrossRef]
- Denecke, K.; Abd-Alrazaq, A.; Househ, M. Artificial Intelligence for Chatbots in Mental Health: Opportunities and Challenges. In Lecture Notes in Bioengineering; Springer: Cham, Switzerland, 2021; pp. 115–128. [Google Scholar] [CrossRef]
- Malgaroli, M.; Hull, T.D.; Wiltsey Stirman, S.; Resick, P. Message Delivery for the Treatment of Posttraumatic Stress Disorder: Longitudinal Observational Study of Symptom Trajectories. J. Med. Internet Res. 2020, 22, e15587. [Google Scholar] [CrossRef]
- Kollins, S.H.; Childress, A.; Heusser, A.C.; Lutz, J. Effectiveness of a digital therapeutic as adjunct to treatment with medication in pediatric ADHD. Npj Digit. Med. 2021, 4, 1–8. [Google Scholar] [CrossRef]
- Graham, S.; Depp, C.; Lee, E.E.; Nebeker, C.; Tu, X.; Kim, H.-C.; Jeste, D.V. Artificial Intelligence for Mental Health and Mental Illnesses: An Overview. Curr. Psychiatry Rep. 2019, 21, 116. [Google Scholar] [CrossRef] [PubMed]
- Zytek, A.; Liu, D.; Vaithianathan, R.; Veeramachaneni, K. Understanding the Usability Challenges of Machine Learning In High-Stakes Decision Making’. IEEE Trans. Vis. Comput. Graph. 2021, 28, 1161–1171. [Google Scholar] [CrossRef] [PubMed]
- Luxton, D.D.; Anderson, S.L.; Anderson, M. Ethical Issues and Artificial Intelligence Technologies in Behavioral and Mental Health Care. In Artificial Intelligence in Behavioral and Mental Health Care; Elsevier BV: Amsterdam, The Netherlands, 2016; pp. 255–276. [Google Scholar] [CrossRef]
- Fiske, A.; Henningsen, P.; Buyx, A. Your Robot Therapist Will See You Now: Ethical Implications of Embodied Artificial Intelligence in Psychiatry, Psychology, and Psychotherapy. J. Med. Internet Res. 2019, 21, e13216. [Google Scholar] [CrossRef]
- Carr, S. “AI gone mental”: Engagement and ethics in data-driven technology for mental health. J. Ment. Health 2020, 29, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Robert, L.P., Jr.; Bansal, G.; Lütge, C. ICIS 2019 SIGHCI workshop panel report: Human–computer interaction challenges and opportunities for fair, trustworthy and ethical artificial intelligence. AIS Trans. Hum.-Comput. Interact. 2020, 12, 96–108. [Google Scholar] [CrossRef]
- Thieme, A.; Belgrave, D.; Doherty, G. Machine Learning in Mental Health. ACM Trans. Comput.-Hum. Interact. 2020, 27, 1–53. [Google Scholar] [CrossRef]
- Shatte, A.B.R.; Hutchinson, D.M.; Teague, S.J. Machine learning in mental health: A scoping review of methods and applications. Psychol. Med. 2019, 49, 1426–1448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, S.J.; Hwang, J.; Kana, R.; Torous, J.; Kim, J.W. Accuracy of Machine Learning Algorithms for the Diagnosis of Autism Spectrum Disorder: Systematic Review and Meta-Analysis of Brain Magnetic Resonance Imaging Studies. JMIR Ment. Health 2019, 6, e14108. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Zhang-James, Y.; Barnett, E.J.; Lichtenstein, P.; Jokinen, J.; D’Onofrio, B.M.; Fazel, S. Predicting suicide attempt or suicide death following a visit to psychiatric specialty care: A machine learning study using Swedish national registry data. PLoS Med. 2020, 17, e1003416. [Google Scholar] [CrossRef]
- Jiang, T.; Nagy, D.; Rosellini, A.J.; Horváth-Puhó, E.; Keyes, K.M.; Lash, T.L.; Gradus, J.L. (Suicide prediction among men and women with depression: A population-based study. J. Psychiatr. Res. 2021, 142, 275–282. [Google Scholar] [CrossRef]
- Machado, C.; Dos, S.; Ballester, P.L.; Cao, B.; Mwangi, B.; Caldieraro, M.A.; Kapczinski, F.; Passos, I.C. Prediction of suicide attempts in a prospective cohort study with a nationally representative sample of the US population. Psychol. Med. 2021, 1–12. [Google Scholar] [CrossRef] [PubMed]
- García de la Garza, Á.; Blanco, C.; Olfson, M.; Wall, M.M. Identification of Suicide Attempt Risk Factors in a National US Survey Using Machine Learning. JAMA Psychiatry 2021, 78, 398. [Google Scholar] [CrossRef]
- Xu, W. Toward human-centered AI: A perspective from human-computer interaction. Interactions 2019, 26, 42–46. Available online: https://interactions.acm.org/archive/view/july-august-2019/toward-human-centered-ai (accessed on 21 December 2021). [CrossRef] [Green Version]
- Vaidyam, A.N.; Wisniewski, H.; Halamka, J.D.; Kashavan, M.S.; Torous, J.B. Chatbots and Conversational Agents in Mental Health: A Review of the Psychiatric Landscape. Can. J. Psychiatry 2019, 64, 456–464. [Google Scholar] [CrossRef]
- Obermeyer, Z.; Powers, B.; Vogeli, C.; Mullainathan, S. Dissecting racial bias in an algorithm used to manage the health of populations. Science 2019, 366, 447–453. [Google Scholar] [CrossRef] [Green Version]
- Straw, I.; Callison-Burch, C. Artificial Intelligence in mental health and the biases of language based models. PLoS ONE 2020, 15, e0240376. [Google Scholar] [CrossRef]
- Bigman, Y.E.; Yam, K.C.; Marciano, D.; Reynolds, S.J.; Gray, K. Threat of racial and economic inequality increases preference for algorithm decision-making. Comput. Hum. Behav. 2021, 122, 106859. [Google Scholar] [CrossRef]
- Brown, J.E.H.; Halpern, J. AI chatbots cannot replace human interactions in the pursuit of more inclusive mental healthcare. SSM-Ment. Health 2021, 1, 100017. [Google Scholar] [CrossRef]
- Denecke, K.; Abd-Alrazaq, A.; Househ, M.; Warren, J. Evaluation Metrics for Health Chatbots: A Delphi Study. Methods Inf. Med. 2021, 60, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Darcy, A.; Daniels, J.; Salinger, D.; Wicks, P.; Robinson, A. Evidence of Human-Level Bonds Established With a Digital Conversational Agent: Cross-sectional, Retrospective Observational Study. JMIR Form. Res. 2021, 5, e27868. [Google Scholar] [CrossRef]
- Gunning, D.; Aha, D. DARPA’s Explainable Artificial Intelligence (XAI) Program. AI Mag. 2019, 40, 44–58. [Google Scholar] [CrossRef]
- Barredo Arrieta, A.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; Herrera, F. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 2020, 58, 82–115. [Google Scholar] [CrossRef] [Green Version]
- Setchi, R.; Dehkordi, M.B.; Khan, J.S. Explainable Robotics in Human-Robot Interactions. Procedia Comput. Sci. 2020, 176, 3057–3066. [Google Scholar] [CrossRef]
- Ćosić, K.; Popovic´, S.; Šarlija, M.; Kesedžic, I.; Gambiraža, M.; Dropuljic´, B.; Mijic´, I.; Henigsberg, N.; Jovanovic, T. AI-Based Prediction and Prevention of Psychological and Behavioral Changes in Ex-COVID-19 Patients. Front. Psychol. 2021, 12, 782866. [Google Scholar] [CrossRef]
- Insel, T.R. Digital phenotyping: A global tool for psychiatry. World Psychiatry 2018, 17, 276–277. [Google Scholar] [CrossRef] [Green Version]
- Dagum, P. Digital biomarkers of cognitive function. Npj Digit. Med. 2018, 1, 1–3. [Google Scholar] [CrossRef]
- Huckvale, K.; Venkatesh, S.; Christensen, H. Toward clinical digital phenotyping: A timely opportunity to consider purpose, quality, and safety. Npj Digit. Med. 2019, 2, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Torous, J.; Wisniewski, H.; Bird, B.; Carpenter, E.; David, G.; Elejalde, E.; Keshavan, M. Creating a Digital Health Smartphone App and Digital Phenotyping Platform for Mental Health and Diverse Healthcare Needs: An Interdisciplinary and Collaborative Approach. J. Technol. Behav. Sci. 2019, 4, 73–85. [Google Scholar] [CrossRef] [Green Version]
- Wisniewski, H.; Henson, P.; Torous, J. Using a Smartphone App to Identify Clinically Relevant Behavior Trends via Symptom Report, Cognition Scores, and Exercise Levels: A Case Series. Front. Psychiatry 2019, 10, 652. [Google Scholar] [CrossRef] [Green Version]
- Stanghellini, G.; Leoni, F. Digital Phenotyping: Ethical Issues, Opportunities, and Threats. Front. Psychiatry 2020, 11, 473. [Google Scholar] [CrossRef]
- Dai, J.; Chen, Y.; Xia, C.; Zhou, J.; Liu, C.; Chen, C. Digital Sensory Phenotyping for Psychiatric Disorders. (2020). J. Psychiatry Brain Sci. 2020, 5, e200015. [Google Scholar] [CrossRef]
- Akbarialiabad, H.; Bastani, B.; Taghrir, M.H.; Paydar, S.; Ghahramani, N.; Kumar, M. Threats to Global Mental Health from Unregulated Digital Phenotyping and Neuromarketing: Recommendations for COVID-19 Era and Beyond. Front. Psychiatry 2021, 12, 713987. [Google Scholar] [CrossRef] [PubMed]
- Braciszewski, J.M. Digital Technology for Suicide Prevention. Adv. Psychiatry Behav. Health 2021, 1, 53–65. [Google Scholar] [CrossRef]
- Dogan, E.; Sander, C.; Wagner, X.; Hegerl, U.; Kohls, E. Smartphone-Based Monitoring of Objective and Subjective Data in Affective Disorders: Where Are We and Where Are We Going? Systematic Review. J. Med. Internet Res. 2017, 19, e262. [Google Scholar] [CrossRef] [Green Version]
- Müller, L.; De Rooy, D. Digital biomarkers for the prediction of mental health in aviation personnel. BMJ Health Care Inform. 2021, 28, e100335. [Google Scholar] [CrossRef]
- Coyle, D.; Matthews, M.; Sharry, J.; Nisbet, A.; Doherty, G. Personal Investigator: A Therapeutic 3D Game for Adolescent Psychotherapy. Int. J. Interact. Technol. Smart Educ. 2005, 2, 73–88. [Google Scholar] [CrossRef] [Green Version]
- Morris, S.; Dickinson, D.; Bellack, A.S.; Tenhula, W.N.; Gold, J.M. The development of a computer-based cognitive remediation program for schizophrenia. Schizophr. Res. 2003, 60, 326. [Google Scholar] [CrossRef]
- Walshe, D.G.; Lewis, E.J.; Kim, S.I.; O’Sullivan, K.; Wiederhold, B.K. Exploring the Use of Computer Games and Virtual Reality in Exposure Therapy for Fear of Driving Following a Motor Vehicle Accident. CyberPsychol. Behav. 2003, 6, 329–334. [Google Scholar] [CrossRef]
- Arns, M.; de Ridder, S.; Strehl, U.; Breteler, M.; Coenen, A. Efficacy of Neurofeedback Treatment in ADHD: The Effects on Inattention, Impulsivity and Hyperactivity: A Meta-Analysis. Clin. EEG Neurosci. 2009, 40, 180–189. [Google Scholar] [CrossRef]
- Fernández-Aranda, F.; Jiménez-Murcia, S.; Santamaría, J.J.; Gunnard, K.; Soto, A.; Kalapanidas, E.; Penelo, E. Video games as a complementary therapy tool in mental disorders: PlayMancer, a European multicentre study. J. Ment. Health 2012, 21, 364–374. [Google Scholar] [CrossRef]
- Cáceres, E.; Carrasco, M.; Ríos, S. Evaluation of an eye-pointer interaction device for human-computer interaction. Heliyon 2018, 4, e00574. [Google Scholar] [CrossRef] [Green Version]
- Mele, M.L.; Federici, S. Gaze and eye-tracking solutions for psychological research. Cogn. Process. 2012, 13, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Coyle, D.; Doherty, G.; Sharry, J. An Evaluation of a Solution Focused Computer Game in Adolescent Interventions. Clin. Child Psychol. Psychiatry 2009, 14, 345–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, H.; Smit, J.; Fleming, T.; Riper, H. Serious games for mental health: Are they accessible, feasible, and effective? A systematic review and meta-analysis. Front. Psychiatry 2020, 7, 209. [Google Scholar] [CrossRef] [Green Version]
- Kollins, S.H.; DeLoss, D.J.; Cañadas, E.; Lutz, J.; Findling, R.L.; Keefe, R.S.E.; Faraone, S.V. A novel digital intervention for actively reducing severity of paediatric ADHD (STARS-ADHD): A randomised controlled trial. Lancet Digit. Health 2020, 2, e168–e178. [Google Scholar] [CrossRef]
- Rodrigo-Yanguas, M.; Martin-Moratinos, M.; Menendez-Garcia, A.; Gonzalez-Tardon, C.; Royuela, A.; Blasco-Fontecilla, H. A Virtual Reality Game (The Secret Trail of Moon) for Treating Attention-Deficit/Hyperactivity Disorder: Development and Usability Study. JMIR Serious Games 2021, 9, e26824. [Google Scholar] [CrossRef]
- Kowal, M.; Conroy, E.; Ramsbottom, N.; Smithies, T.; Toth, A.; Campbell, M. Gaming Your Mental Health: A Narrative Review on Mitigating Symptoms of Depression and Anxiety Using Commercial Video Games. JMIR Serious Games 2021, 9, e26575. [Google Scholar] [CrossRef]
- Pallavicini, F.; Pepe, A.; Mantovani, F. Commercial Off-The-Shelf Video Games for Reducing Stress and Anxiety: Systematic Review. JMIR Ment. Health 2021, 8, e28150. [Google Scholar] [CrossRef]
- Riva, G.; Serino, S. Virtual Reality in the Assessment, Understanding and Treatment of Mental Health Disorders. J. Clin. Med. 2020, 9, 3434. [Google Scholar] [CrossRef]
- Weerdmeester, J.; van Rooij, M.M.J.W.; Maciejewski, D.F.; Engels, R.C.M.E.; Granic, I. A randomized controlled trial assessing the efficacy of a virtual reality biofeedback video game: Anxiety outcomes and appraisal processes. Technol. Mind Behav. 2021, 2. [Google Scholar] [CrossRef]
- Pallavicini, F.; Pepe, A. Virtual Reality Games and the Role of Body Involvement in Enhancing Positive Emotions and Decreasing Anxiety: Within-Subjects Pilot Study. JMIR Serious Games 2020, 8, e15635. [Google Scholar] [CrossRef] [PubMed]
- Rus-Calafell, M.; Garety, P.; Sason, E.; Craig, T.; Valmaggia, L. Virtual reality in the assessment and treatment of psychosis: A systematic review of its utility, acceptability and effectiveness. Psychol. Med. 2018, 48, 362–391. [Google Scholar] [CrossRef] [PubMed]
- Brander, M.; Egger, S.T.; Hürlimann, N.; Seifritz, E.; Sumner, R.W.; Vetter, S.; Magnenat, S. Virtual Reality Human–Human Interface to Deliver Psychotherapy to People Experiencing Auditory Verbal Hallucinations: Development and Usability Study. JMIR Serious Games 2021, 9, e26820. [Google Scholar] [CrossRef] [PubMed]
- Calvo, R.A.; Dinakar, K.; Picard, R.; Christensen, H.; Torous, J. Toward Impactful Collaborations on Computing and Mental Health. J. Med. Internet Res. 2018, 20, e49. [Google Scholar] [CrossRef] [PubMed]
- Flood, M.; Ennis, M.; Ludlow, A.; Sweeney, F.F.; Holton, A.; Morgan, S.; Moriarty, F. Research methods from human-centered design: Potential applications in pharmacy and health services research. Res. Soc. Adm. Pharm. 2018, 17, 2036–2043. [Google Scholar] [CrossRef]
- Hickie, I.B.; Scott, E.M.; Cross, S.P.; Iorfino, F.; Davenport, T.A.; Guastella, A.J.; Naismith, S.L.; Carpenter, J.S.; Rohleder, C.; Crouse, J.J.; et al. Right care, first time: A highly personalised and measurement-based care model to manage youth mental health. Med. J. Aust. 2019, 211, S3–S46. [Google Scholar] [CrossRef] [Green Version]
- Davenport, T.A.; Cheng, V.W.S.; Iorfino, F.; Hamilton, B.; Castaldi, E.; Burton, A.; Scott, E.M.; Hickie, I.B. Flip the Clinic: A Digital Health Approach to Youth Mental Health Service Delivery During the COVID-19 Pandemic and Beyond. JMIR Ment. Health 2019, 7, e24578. [Google Scholar] [CrossRef]
- Compton, M.T.; Shim, R.S. Mental Illness Prevention and Mental Health Promotion: When, Who, and How. Psychiatr. Serv. 2020, 71, 981–983. [Google Scholar] [CrossRef]
- Simon, F.A.J.; Schenk, M.; Palm, D.; Faltraco, F.; Thome, J. The Collateral Damage of the COVID-19 Outbreak on Mental Health and Psychiatry. Int. J. Environ. Res. Public Health 2021, 18, 4440. [Google Scholar] [CrossRef]
- Rocheleau, J.N.; Shaughnessy, K.; Courtice, E.L.; Reyes, R.; Huijbregts, T.; Gahir, R.; Fischler, I. Evaluating a Mobile Digital Health Platform as an Adjunct to Patients’ Mental Healthcare Using a Longitudinal, Mixed-Methods Study Design; SAGE Publications Ltd.: Thousand Oaks, CA, USA, 2018. [Google Scholar]
- Malhotra, S.; Chakrabarti, S.; Shah, R. A model for digital mental healthcare: Its usefulness and potential for service delivery in low- and middle-income countries. Indian J. Psychiatry 2019, 61, 27–36. [Google Scholar] [CrossRef]
- Menon, V.; Varadharajan, N. Digital approaches for mental health service delivery in low- and middle-income countries like India: Key implementational challenges and recommendations. Asian J. Psychiatry 2020, 50, 101962. [Google Scholar] [CrossRef] [PubMed]
- Jalil, S.; Myers, T.; Atkinson, I.; Soden, M. Complementing a Clinical Trial with Human-Computer Interaction: Patients’ User Experience with Telehealth. JMIR Hum. Factors 2019, 6, e9481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balcombe, L.; De Leo, D. An Integrated Blueprint for Digital Mental Health Services Amidst COVID-19. JMIR Ment. Health 2020, 7, e21718. [Google Scholar] [CrossRef] [PubMed]
- Balcombe, L.; De Leo, D. Psychological Screening and Tracking of Athletes and Digital Mental Health Solutions in a Hybrid Model of Care: Mini Review. JMIR Form. Res. 2020, 4, e22755. [Google Scholar] [CrossRef] [PubMed]
- Balcombe, L.; De Leo, D. The Potential Impact of Adjunct Digital Tools and Technology to Help Distressed and Suicidal Men: An Integrative Review. Front. Psychol. 2022, 12, 796371. [Google Scholar] [CrossRef] [PubMed]
- Cosgrove, L.; Karter, J.M.; Morrill, Z.; McGinley, M. Psychology and Surveillance Capitalism: The Risk of Pushing Mental Health Apps During the COVID-19 Pandemic. J. Humanist. Psychol. 2020, 60, 611–625. [Google Scholar] [CrossRef]
- Aung, Y.Y.M.; Wong, D.C.S.; Ting, D.S.W. The promise of artificial intelligence: A review of the opportunities and challenges of artificial intelligence in healthcare. Br. Med. Bull. 2021, 139, 4–15. [Google Scholar] [CrossRef]
- Lee, E.E.; Torous, J.; De Choudhury, M.; Depp, C.A.; Graham, S.A.; Kim, H.-C.; Jeste, D.V. Artificial Intelligence for Mental Health Care: Clinical Applications, Barriers, Facilitators, and Artificial Wisdom. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2021, 6, 856–864. [Google Scholar] [CrossRef]
- Torous, J.; Hsin, H. Empowering the digital therapeutic relationship: Virtual clinics for digital health interventions. Npj Digit. Med. 2018, 1, 1–3. [Google Scholar] [CrossRef]
- Balcombe, L.; De Leo, D. Digital Mental Health Challenges and the Horizon Ahead for Solutions. JMIR Ment. Health 2021, 8, e26811. [Google Scholar] [CrossRef]
- Wies, B.; Landers, C.; Ienca, M. Digital Mental Health for Young People: A Scoping Review of Promises and Challenges. Front. Digit. Health 2021, 3, 91. [Google Scholar] [CrossRef]
- Lederman, R.; Gleeson, J.; Wadley, G.; D’Alfonso, S.; Rice, S.; Santesteban-Echarri, O.; Alvarez-Jimenez, M. Support for Carers of Young People with Mental Illness. ACM Trans. Comput.-Hum. Interact. 2019, 26, 1–33. [Google Scholar] [CrossRef]
- Tremain, H.; McEnery, C.; Fletcher, K.; Murray, G. The Therapeutic Alliance in Digital Mental Health Interventions for Serious Mental Illnesses: Narrative Review. JMIR Ment. Health 2020, 7, e17204. [Google Scholar] [CrossRef] [PubMed]
- Iorfino, F.; Piper, S.E.; Prodan, A.; LaMonica, H.M.; Davenport, T.A.; Lee, G.Y.; Hickie, I.B. Using Digital Technologies to Facilitate Care Coordination Between Youth Mental Health Services: A Guide for Implementation. Front. Health Serv. 2021, 1, 745456. [Google Scholar] [CrossRef]
- Blitz, R.; Storck, M.; Baune, B.T.; Dugas, M.; Opel, N. Design and Implementation of an Informatics Infrastructure for Standardized Data Acquisition, Transfer, Storage, and Export in Psychiatric Clinical Routine: Feasibility Study. JMIR Ment. Health 2021, 8, e26681. [Google Scholar] [CrossRef] [PubMed]
- Paton, C.; Kushniruk, A.W.; Borycki, E.M.; English, M.; Warren, J. Improving the Usability and Safety of Digital Health Systems: The Role of Predictive Human-Computer Interaction Modeling. J. Med. Internet Res. 2021, 23, e25281. [Google Scholar] [CrossRef] [PubMed]
(1) Problem identification |
(2) Literature search |
▪ Participant characteristics |
▪ Reported outcomes |
▪ Empirical or theoretical approach |
(3) Author views |
▪ Clinical effectiveness |
▪ User impact (feasibility/acceptability) |
▪ Social and cultural impact |
▪ Readiness for clinical or digital solutions adoption |
▪ Critical appraisal and evaluation |
(4) Determine rigor and contribution to data analysis |
(5) Synthesis of important foundations or conclusions into an integrated summation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balcombe, L.; De Leo, D. Human-Computer Interaction in Digital Mental Health. Informatics 2022, 9, 14. https://doi.org/10.3390/informatics9010014
Balcombe L, De Leo D. Human-Computer Interaction in Digital Mental Health. Informatics. 2022; 9(1):14. https://doi.org/10.3390/informatics9010014
Chicago/Turabian StyleBalcombe, Luke, and Diego De Leo. 2022. "Human-Computer Interaction in Digital Mental Health" Informatics 9, no. 1: 14. https://doi.org/10.3390/informatics9010014
APA StyleBalcombe, L., & De Leo, D. (2022). Human-Computer Interaction in Digital Mental Health. Informatics, 9(1), 14. https://doi.org/10.3390/informatics9010014