Regional Lean Soft Tissue and Intracellular Water Are Associated with Changes in Lower-Body Neuromuscular Performance: A Pilot Study in Elite Soccer Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subject
2.2. Procedure
2.3. Body Composition
2.4. Hydratation Status
2.5. Dietary Intake
2.6. Physical Tests
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnson, G.O.; Nebelsick-Gullett, L.J.; Thorland, W.G.; Housh, T.J. The effect of a competitive season on the body composition of university female athletes. J. Sports Med. Phys. Fit. 1989, 29, 314–320. [Google Scholar]
- Ackland, T.R.; Lohman, T.G.; Sundgot-Borgen, J.; Maughan, R.J.; Meyer, N.L.; Stewart, A.D.; Müller, W. Current status of body composition assessment in sport: Review and position statement on behalf of the ad hoc research working group on body composition health and performance, under the auspices of the I.O.C. Medical Commission. Sports Med. Auckl. NZ 2012, 42, 227–249. [Google Scholar] [CrossRef] [PubMed]
- Lukaski, H.; Raymond-Pope, C.J. New Frontiers of Body Composition in Sport. Int. J. Sports Med. 2021, 42, 588–601. [Google Scholar] [CrossRef] [PubMed]
- Cureton, K.J.; Hensley, L.D.; Tiburzi, A. Body fatness and performance differences between men and women. Res. Q. 1979, 50, 333–340. [Google Scholar] [CrossRef]
- Nevill, A.; Holder, R.; Watts, A. The changing shape of “successful” professional footballers. J. Sports Sci. 2009, 27, 419–426. [Google Scholar] [CrossRef]
- Harley, J.A.; Hind, K.; O’hara, J.P. Three-compartment body composition changes in elite rugby league players during a super league season, measured by dual-energy X-ray absorptiometry. J. Strength Cond. Res. 2011, 25, 1024–1029. [Google Scholar] [CrossRef]
- Milanese, C.; Cavedon, V.; Corradini, G.; De Vita, F.; Zancanaro, C. Seasonal DXA-measured body composition changes in professional male soccer players. J. Sports Sci. 2015, 33, 1219–1228. [Google Scholar] [CrossRef]
- Sardinha, L.B.; Correia, I.R.; Magalhães, J.P.; Júdice, P.B.; Silva, A.M.; Hetherington-Rauth, M. Development and validation of BIA prediction equations of upper and lower limb lean soft tissue in athletes. Eur. J. Clin. Nutr. 2020, 74, 1646–1652. [Google Scholar] [CrossRef]
- Hoff, J.; Helgerud, J. Endurance and strength training for soccer players: Physiological considerations. Sports Med. 2004, 34, 165–180. [Google Scholar] [CrossRef]
- Carbuhn, A.F.; Fernandez, T.E.; Bragg, A.F.; Green, J.S.; Crouse, S.F. Sport and training influence bone and body composition in women collegiate athletes. J. Strength Cond. Res. 2010, 24, 1710–1717. [Google Scholar] [CrossRef]
- González-Ravé, J.M.; Arija, A.; Clemente-Suarez, V. Seasonal changes in jump performance and body composition in women volleyball players. J. Strength Cond. Res. 2011, 25, 1492–1501. [Google Scholar] [CrossRef] [PubMed]
- Gorostiaga, E.M.; Granados, C.; Ibañez, J.; González-Badillo, J.J.; Izquierdo, M. Effects of an entire season on physical fitness changes in elite male handball players. Med. Sci. Sports Exerc. 2006, 38, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Granados, C.; Izquierdo, M.; Ibáñez, J.; Ruesta, M.; Gorostiaga, E.M. Effects of an entire season on physical fitness in elite female handball players. Med. Sci. Sports Exerc. 2008, 40, 351–361. [Google Scholar] [CrossRef]
- Häkkinen, K. Changes in physical fitness profile in female basketball players during the competitive season including explosive type strength training. J. Sports Med. Phys. Fit. 1993, 33, 19–26. [Google Scholar]
- Silva, A.M.; Santos, D.A.; Matias, C.N.; Rocha, P.M.; Petroski, E.L.; Minderico, C.S.; Sardinha, L.B. Changes in regional body composition explain increases in energy expenditure in elite junior basketball players over the season. Eur. J. Appl. Physiol. 2012, 112, 2727–2737. [Google Scholar] [CrossRef] [PubMed]
- Devlin, B.L.; Kingsley, M.; Leveritt, M.D.; Belski, R. Seasonal Changes in Soccer Players’ Body Composition and Dietary Intake Practices. J. Strength Cond. Res. 2017, 31, 3319–3326. [Google Scholar] [CrossRef]
- Colyer, S.L.; Roberts, S.P.; Robinson, J.B.; Thompson, D.; Stokes, K.A.; Bilzon, J.L.J.; Salo, A.I.T. Detecting meaningful body composition changes in athletes using dual-energy X-ray absorptiometry. Physiol. Meas. 2016, 37, 596–609. [Google Scholar] [CrossRef]
- Suarez-Arrones, L.; Saez de Villarreal, E.; Núñez, F.J.; Di Salvo, V.; Petri, C.; Buccolini, A.; Maldonado, R.A.; Torreno, N.; Mendez-Villanueva, A. In-season eccentric-overload training in elite soccer players: Effects on body composition, strength and sprint performance. PLoS ONE 2018, 13, e0205332. [Google Scholar] [CrossRef]
- Gonzalez, M.C.; Barbosa-Silva, T.G.; Heymsfield, S.B. Bioelectrical impedance analysis in the assessment of sarcopenia. Curr. Opin. Clin. Nutr. Metab. Care 2018, 21, 366–374. [Google Scholar] [CrossRef]
- Shepherd, J.A.; Ng, B.K.; Fan, B.; Schwartz, A.V.; Cawthon, P.; Cummings, S.R.; Kritchevsky, S.; Nevitt, M.; Santanasto, A.; Cootes, T.F. Modeling the shape and composition of the human body using dual energy X-ray absorptiometry images. PLoS ONE 2017, 12, e0175857. [Google Scholar] [CrossRef]
- Wilson, J.P.; Kanaya, A.M.; Fan, B.; Shepherd, J.A. Ratio of trunk to leg volume as a new body shape metric for diabetes and mortality. PLoS ONE 2013, 8, e68716. [Google Scholar] [CrossRef]
- De Caldas Honorato, C.; Soares Marreiros Ferraz, A.; Kassiano, W.; Martins, P.C.; Silva, D.A.S.; Ceccatto, V.M. Regional phase angle, not whole-body, is augmented in response to pre-season in professional soccer players. Res. Sports Med. 2022; in press. [Google Scholar] [CrossRef]
- Bongiovanni, T.; Trecroci, A.; Rossi, A.; Iaia, F.M.; Pasta, G.; Campa, F. Association between Change in Regional Phase Angle and Jump Performance: A Pilot Study in Serie A Soccer Players. Eur. J. Investig. Health Psychol. Educ. 2021, 11, 860–865. [Google Scholar] [CrossRef]
- Silva, A.M.; Matias, C.N.; Santos, D.A.; Rocha, P.M.; Minderico, C.S.; Sardinha, L.B. Increases in intracellular water explain strength and power improvements over a season. Int. J. Sports Med. 2014, 35, 1101–1105. [Google Scholar] [CrossRef]
- Matias, C.N.; Santos, D.A.; Monteiro, C.P.; Silva, A.M.; de Fátima Raposo, M.; Martins, F.; Sardinha, L.B.; Bicho, M.; Laires, M.J. Magnesium and strength in elite judo athletes according to intracellular water changes. Magnes. Res. 2010, 23, 138–141. [Google Scholar] [CrossRef]
- Silvestre, R.; Kraemer, W.J.; West, C.; Judelson, D.A.; Spiering, B.A.; Vingren, J.L.; Hatfield, D.L.; Anderson, J.M.; Maresh, C.M. Body composition and physical performance during a National Collegiate Athletic Association Division I men’s soccer season. J. Strength Cond. Res. 2006, 20, 962–970. [Google Scholar] [CrossRef] [PubMed]
- Nana, A.; Slater, G.J.; Stewart, A.D.; Burke, L.M. Methodology review: Using dual-energy X-ray absorptiometry (DXA) for the assessment of body composition in athletes and active people. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 198–215. [Google Scholar] [CrossRef] [PubMed]
- Bongiovanni, T.; Trecroci, A.; Cavaggioni, L.; Rossi, A.; Perri, E.; Pasta, G.; Iaia, F.M.; Alberti, G. Importance of anthropometric features to predict physical performance in elite youth soccer: A machine learning approach. Res. Sports Med. 2020, 29, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Hangartner, T.N.; Warner, S.; Braillon, P.; Jankowski, L.; Shepherd, J. The Official Positions of the International Society for Clinical Densitometry: Acquisition of dual-energy X-ray absorptiometry body composition and considerations regarding analysis and repeatability of measures. J. Clin. Densitom. Off. J. Int. Soc. Clin. Densitom. 2013, 16, 520–536. [Google Scholar] [CrossRef] [PubMed]
- Tinsley, G.M.; Moore, M.L.; Graybeal, A.J. Precision of Dual-Energy X-ray Absorptiometry Reflection Scans in Muscular Athletes. J. Clin. Densitom. Off. J. Int. Soc. Clin. Densitom. 2020, 23, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Bongiovanni, T.; Mascherini, G.; Genovesi, F.; Pasta, G.; Iaia, F.M.; Trecroci, A.; Ventimiglia, M.; Alberti, G.; Campa, F. Bioimpedance Vector References Need to Be Period-Specific for Assessing Body Composition and Cellular Health in Elite Soccer Players: A Brief Report. J. Funct. Morphol. Kinesiol. 2020, 5, 73. [Google Scholar] [CrossRef] [PubMed]
- Matias, C.N.; Santos, D.A.; Júdice, P.B.; Magalhães, J.P.; Minderico, C.S.; Fields, D.A.; Lukaski, H.C.; Sardinha, L.B.; Silva, A.M. Estimation of total body water and extracellular water with bioimpedance in athletes: A need for athlete-specific prediction models. Clin. Nutr. Edinb. Scotl. 2016, 35, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Vienna, A.; Capucci, E.; De Stefano, G.F.; Hauser, G. Bioelectrical impedance analysis and anthropometry in Ecuadorian children of African ancestry. Coll. Antropol. 1998, 22, 433–446. [Google Scholar] [PubMed]
- Vienna, A.; Hauser, G. A qualitative approach to assessing body compartments using bioelectrical variables. Coll. Antropol. 1999, 23, 461–472. [Google Scholar] [PubMed]
- Moon, J.R. Body composition in athletes and sports nutrition: An examination of the bioimpedance analysis technique. Eur. J. Clin. Nutr. 2013, 67 (Suppl. S1), S54–S59. [Google Scholar] [CrossRef] [PubMed]
- Osterberg, K.L.; Horswill, C.A.; Baker, L.B. Pregame urine specific gravity and fluid intake by National Basketball Association players during competition. J. Athl. Train. 2009, 44, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Stover, E.A.; Petrie, H.J.; Passe, D.; Horswill, C.A.; Murray, B.; Wildman, R. Urine specific gravity in exercisers prior to physical training. Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Metab. 2006, 31, 320–327. [Google Scholar] [CrossRef]
- Häussinger, D.; Roth, E.; Lang, F.; Gerok, W. Cellular hydration state: An important determinant of protein catabolism in health and disease. Lancet Lond. Engl. 1993, 341, 1330–1332. [Google Scholar] [CrossRef]
- Lang, F.; Busch, G.L.; Ritter, M.; Völkl, H.; Waldegger, S.; Gulbins, E.; Häussinger, D. Functional significance of cell volume regulatory mechanisms. Physiol. Rev. 1998, 78, 247–306. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.M.; Fields, D.A.; Heymsfield, S.B.; Sardinha, L.B. Body composition and power changes in elite judo athletes. Int. J. Sports Med. 2010, 31, 737–741. [Google Scholar] [CrossRef]
- Silva, A.M.; Fields, D.A.; Heymsfield, S.B.; Sardinha, L.B. Relationship between changes in total-body water and fluid distribution with maximal forearm strength in elite judo athletes. J. Strength Cond. Res. 2011, 25, 2488–2495. [Google Scholar] [CrossRef] [PubMed]
- Bongiovanni, T.; Rossi, A.; Iaia, F.M.; DI Baldassarre, A.; Pasta, G.; Manetti, P.; Alberti, G.; Trecroci, A. Relationship of regional and whole body morphology to vertical jump in elite soccer players: A data-driven approach. J. Sports Med. Phys. Fit. 2021, 21, 12323-0. [Google Scholar] [CrossRef]
- Ishida, A.; Travis, S.K.; Stone, M.H. Associations of Body Composition, Maximum Strength, Power Characteristics with Sprinting, Jumping, and Intermittent Endurance Performance in Male Intercollegiate Soccer Players. J. Funct. Morphol. Kinesiol. 2021, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Arrones, L.; Gonzalo-Skok, O.; Carrasquilla, I.; Asián-Clemente, J.; Santalla, A.; Lara-Lopez, P.; Núñez, F.J. Relationships between Change of Direction, Sprint, Jump, and Squat Power Performance. Sports 2020, 8, 38. [Google Scholar] [CrossRef] [PubMed]
- Markström, J.L.; Olsson, C.-J. Countermovement jump peak force relative to body weight and jump height as predictors for sprint running performances: (in)homogeneity of track and field athletes? J. Strength Cond. Res. 2013, 27, 944–953. [Google Scholar] [CrossRef]
- Fessi, M.S.; Zarrouk, N.; Filetti, C.; Rebai, H.; Elloumi, M.; Moalla, W. Physical and anthropometric changes during pre- and in-season in professional soccer players. J. Sports Med. Phys. Fit. 2016, 56, 1163–1170. [Google Scholar]
- Peart, A.N.; Nicks, C.R.; Mangum, M.; Tyo, B.M. Evaluation of Seasonal Changes in Fitness, Anthropometrics, and Body Composition in Collegiate Division II Female Soccer Players. J. Strength Cond. Res. 2018, 32, 2010–2017. [Google Scholar] [CrossRef] [PubMed]
- Bongiovanni, T.; Rossi, A.; Iaia, F.M.; Alberti, G.; Pasta, G.; Trecroci, A. Association of phase angle and appendicular upper and lower body lean soft tissue with physical performance in young elite soccer players: A pilot study. J. Sports Med. Phys. Fit. 2021, 21, 12911-1. [Google Scholar] [CrossRef]
- Campa, F.; Bongiovanni, T.; Trecroci, A.; Rossi, A.; Greco, G.; Pasta, G.; Coratella, G. Effects of the COVID-19 Lockdown on Body Composition and Bioelectrical Phase Angle in Serie A Soccer Players: A Comparison of Two Consecutive Seasons. Biology 2021, 10, 1175. [Google Scholar] [CrossRef] [PubMed]
Macronutrients | Mean ± SD |
---|---|
Energy (kcal) | 3172.0 ± 210 |
Proteins (g) | 149.0 ± 8.0 |
Proteins (g/kg) | 1.8 ± 1.0 |
Total energy from proteins (%) | 18.8 ± 2.2 |
Fats (g) | 85.5 ± 6.0 |
Fats (g/kg) | 1.04 ± 0.5 |
Total energy from fats (%) | 24.2 ± 1.5 |
Carbohydrates (g) | 408.8 ± 25.0 |
Carbohydrates (g/kg) | 5.0 ± 1.0 |
Total energy from carbohydrates (%) | 57.0 ± 3.0 |
Fiber (g) | 40.0 ± 5.0 |
Features | Initial Stage of the Competitive Season | Final Stage of the Competitive Season | Difference [CIlow, CIhigh] | Change (%) | ES |
---|---|---|---|---|---|
Body mass (kg) | 81.2 ± 6.7 | 82.5 ± 6.5 | 1.82 [1.11, 2.53] *** | 2.18 ± 1.8 | 0.28 |
BMI (kg/m2) | 23.8 ± 1.0 | 24.2 ± 0.9 | 0.53 [0.33, 0.73] *** | 2.18 ± 1.8 | 0.53 |
# BMC (kg) | 3.84 ± 0.35 | 3.89 ± 0.36 | 0.09 [0.03, 0.14] *** | 2.11 ± 2.9 | 0.23 |
# fat mass (kg) | 9.98 ± 1.80 | 9.68 ± 2.03 | −0.07 [−0.42, 0.28] | −1.34 ± 7.9 | −0.05 |
# fat mass (%) | 12.25 ± 1.79 | 11.67 ± 1.98 | −0.36 [−0.72, −0.00] * | −3.53 ± 6.8 | −0.24 |
# fat-free mass (kg) | 71.25 ± 5.74 | 72.80 ± 5.23 | 1.89 [1.39, 2.40] *** | 2.59 ± 1.4 | 0.33 |
# LST (kg) | 67.41 ± 5.47 | 68.91 ± 4.94 | 1.80 [1.33, 2.28] *** | 2.61 ± 1.4 | 0.33 |
# ALST (kg) | 8.65 ± 1.14 | 8.41 ± 1.11 | −0.10 [−0.33, 0.12] | −1.38 ± 6.2 | −0.10 |
# LLST (kg) a | 27.83 ± 2.99 | 28.98 ± 2.42 | 1.15 [0.70, 1.61] *** | 4.19 ± 4.1 | 0.39 |
TBW (L) | 51.04 ± 3.79 | 51.45 ± 3.44 | 0.69 [0.28, 1.10] ** | 1.34 ± 1.7 | 0.19 |
ICW (L) | 30.98 ± 2.25 | 31.30 ± 2.04 | 0.48 [0.23, 0.72] *** | 1.54 ± 1.7 | 0.21 |
ECW (L) | 20.07 ± 1.55 | 20.16 ± 1.43 | 0.21 [0.03, 0.39] * | 1.06 ± 1.2 | 0.14 |
USG a | 1.020 ± 0.002 | 1.019 ± 0.003 | −0.001 [−0.00, −0.00] *** | −0.13 ± 0.2 | −0.53 |
Rz (ohm) | 465.27 ± 26.25 | 467.09 ± 28.63 | 0.09 [−7.82, 8.00] | −0.04 ± 3.7 | 0.00 |
Xc (ohm) | 65.09 ± 5.07 | 66.09 ± 5.13 | 0.52 [−1.08, 2.12] | 0.62 ± 5.3 | 0.10 |
PhA (°) a | 8.01 ± 0.69 | 8.11 ± 0.58 | 0.08 [−0.07, 0.24] | 0.92 ± 4.1 | 0.11 |
CMJ Height (cm) | 50.51 ± 4.49 | 52.50 ± 4.57 | 2.05 [1.78, 2.31] *** | 3.91 ± 1.17 | 0.45 |
CMJ Power (W) a | 4927.73 ± 451.6 | 4955.45 ± 420.7 | 36.00 [0.89, 71.11] * | 0.78 ± 1.5 | 0.09 |
CMJ Strength (N) | 2212.91 ± 250.6 | 2248.09 ± 235.4 | 47.77 [31.03, 64.52] *** | 2.22 ± 1.8 | 0.21 |
ZH (ohm/m) | 254.26 ± 17.32 | 255.17 ± 16.55 | −0.02 [−4.32, 4.29] | −0.04 ± 3.65 | 0.00 |
Feature | Coeff | Coeff Error | p-Value | CI Lower | CI Upper |
---|---|---|---|---|---|
Intercept | 1.97 | 0.18 | <0.001 | 1.60 | 2.35 |
ΔLLST | 0.27 | 0.10 | 0.02 | 0.05 | 0.49 |
ΔICW | −0.49 | 0.20 | 0.02 | −0.90 | −0.09 |
Feature | Coeff | Coeff Error | p-Value | CI Lower | CI Upper |
---|---|---|---|---|---|
Intercept | 66.50 | 11.79 | <0.001 | 41.83 | 91.18 |
ΔALST | 41.31 | 14.74 | 0.01 | 10.46 | 72.16 |
ΔBMI | −27.30 | 16.84 | 0.05 | −62.54 | −7.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bongiovanni, T.; Tinsley, G.; Martera, G.; Orlandi, C.; Genovesi, F.; Puleo, G.; Rossi, A.; Trecroci, A. Regional Lean Soft Tissue and Intracellular Water Are Associated with Changes in Lower-Body Neuromuscular Performance: A Pilot Study in Elite Soccer Players. Eur. J. Investig. Health Psychol. Educ. 2022, 12, 882-892. https://doi.org/10.3390/ejihpe12080064
Bongiovanni T, Tinsley G, Martera G, Orlandi C, Genovesi F, Puleo G, Rossi A, Trecroci A. Regional Lean Soft Tissue and Intracellular Water Are Associated with Changes in Lower-Body Neuromuscular Performance: A Pilot Study in Elite Soccer Players. European Journal of Investigation in Health, Psychology and Education. 2022; 12(8):882-892. https://doi.org/10.3390/ejihpe12080064
Chicago/Turabian StyleBongiovanni, Tindaro, Grant Tinsley, Giulia Martera, Carmine Orlandi, Federico Genovesi, Giuseppe Puleo, Alessio Rossi, and Athos Trecroci. 2022. "Regional Lean Soft Tissue and Intracellular Water Are Associated with Changes in Lower-Body Neuromuscular Performance: A Pilot Study in Elite Soccer Players" European Journal of Investigation in Health, Psychology and Education 12, no. 8: 882-892. https://doi.org/10.3390/ejihpe12080064
APA StyleBongiovanni, T., Tinsley, G., Martera, G., Orlandi, C., Genovesi, F., Puleo, G., Rossi, A., & Trecroci, A. (2022). Regional Lean Soft Tissue and Intracellular Water Are Associated with Changes in Lower-Body Neuromuscular Performance: A Pilot Study in Elite Soccer Players. European Journal of Investigation in Health, Psychology and Education, 12(8), 882-892. https://doi.org/10.3390/ejihpe12080064