1. Introduction
Drug users affect several neural systems at the subcortical and cortical levels, causing cognitive and emotional impairments [
1,
2,
3,
4]. Drugs use and dependence, comprising recreational use only, impair different regions of the prefrontal cortex [
5].
However, there are differences in the induced impairments depending on the diverse drugs used alone or at the same time [
6], and there are also relevant commonalities. Excitant drugs, such as amphetamine and cocaine, as well as in alcohol, for example, show altered functioning of the prefrontal cortex (PFC) of users [
7,
8], particularly relating to the medial prefrontal cortex [
9]. Recreational use of cannabis and psychostimulants have also been associated with mild executive deficits [
10,
11,
12,
13,
14]. Therefore, the PFC cerebral area is crucial in self-monitoring and self-control: the more the exposure, the greater the level of craving [
15,
16,
17,
18,
19] and dependence [
20]. Furthermore, prefrontal cortex dysfunction, known to be primarily involved in motivation and decision-making processes, prevents good compliance with any treatment [
21,
22,
23].
There are several studies on the cognitive disorders caused by drugs abuse and the emotional decoding of drugs abusers’ competence, and emotion recognition from faces is one of the most extensively investigated areas in individuals with alcohol use disorder. Most studies identified impairments in the decoding of emotions from faces [
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32] and in facial emotion recognition in alcohol-user patients [
33,
34,
35,
36,
37]. Many other studies with cocaine users have also revealed impairment in their ability to identify basic facial affect expressions [
38,
39,
40,
41,
42]. However, a few studies have found specific alterations in fear and anger decoding processing from faces in cocaine users [
43,
44,
45]. Moreover, in polysubstance users, recognition of these emotions was negatively correlated with cocaine use intensity [
46].
Variability in the accuracy of recognition of emotions such as fear has often been correlated with indices of intelligence and the tendency to compensate for dysfunctional brain networks or damaged brain tissue following a pre-morbid tendency, revealing a potential relationship between IQ and fear recognition in cocaine users [
43]. However, impairment in fear recognition has been observed in the literature in habitual cocaine users and is mainly related to the frequency of substance use [
44]. In addition, lower gray matter volumes in specific cortical and subcortical regions support the idea of a neural deficit present in cocaine addicts [
44], as well as serotonin dysregulation and amygdala dysfunction, which could explain the fear recognition deficits in frequent cocaine users [
45].
Many aspects of cognitive dysfunction have also been described in alcoholics, some of which may be a consequence of deficits in cognitive function of the prefrontal areas of the cortex [
25] and a cause of reduced neuroplasticity, which may lead to errors in emotion recognition [
23]. Such deficits do not seem to improve after a long period of abstention from substance use [
34].
Therefore, it is important to focus on the relationship between emotion recognition, with a focus on fear and anger, and cognitive deficiencies resulting from alcohol and cocaine use in individuals with addiction to these substances.
Is also important to consider that, in real life, people detect relevant social signs by decoding not only facial expressions but also emotional body postures. The emotional recognition problem is a crucial issue, as abusers frequently manifest problems in social interaction, due to, for example, confounding or misinterpreting emotions such as fear and anger [
47,
48,
49,
50,
51,
52]. Furthermore, the success of psychosocial or behavioral treatments, such as residential treatments or training based on cue exposure or attentional bias, to induce the maintenance of drug withdrawal mainly relies on the neural regulations of areas such as the PFC, which has a key role in emotional processing and craving [
14,
16,
21,
50,
53]. Escalation and maintenance of drug dependence are associated with dysregulation of the anatomical structures that are also involved in the emotional circuit [
39] and in the anatomical areas associated with awareness of body emotional language, such as the ventromedial prefrontal cortex, insula and anterior cingulate cortex [
52].
There is evidence that dependence on alcohol causes not only an overestimation of the intensity of the emotional facial expressions of happiness, anger and disgust [
29,
31] associated with a poorer recognition of sadness [
54], but also difficulties in discriminating anger and disgust [
31,
55,
56]. Indeed, selective alterations in fear recognition have been shown in cocaine and polysubstance psychostimulant abusers [
45,
46].
At the ontogenetic level, disgust is considered the refusal of, or defense from, potentially harmful food products or contaminants for the individual (core disgust) [
57]. However, with the evolution of society, four additional domains have been identified: poor hygiene, inappropriate sexual acts, death and violation of the ideal body or external form, which in turn are linked to the broader domain of moral disgust [
57]. Contamination and moral disgust are both relevant elements in substance dependence, considering the modalities to assume different drugs and the recurrent violation of the body, such as drug injection. Identifying selective impairments of emotional decoding may contribute to better focus on different forms of treatment.
Understanding the processes of emotion coding, especially relative to negative emotions, could offer a significant contribution in creating more effective treatments for dependent people. On the psychosocial level, for example, this involves creating more focused psychoeducational activities or individual and/or group activities that focus on roleplay and simulations of relational situations. On a neurocognitive level, the understanding of emotion encoding processes could help to create interventions based on the relationship between emotions and specific cognitive processes. Several interventions are, in fact, based on both assessment and structuring training related to cognitive biases associated with prefrontal areas, such as the attentional probe.
In this study, we aimed to investigate emotional decoding in subjects with alcohol and cocaine dependence, including body posture recognition and the processing of disgust, and to explore the ability to express these emotions [
58] by measuring both accuracy and velocity in terms of reaction times, as these cognitive competencies are typically associated with the PFC. We believe that our study will provide data concerning (i) the impact of cocaine and alcohol on emotional processing, (ii) the influence of the duration of consumption of both substances on emotional processing and, finally, (iii) the putative influence of cognitive dysfunction related to the prefrontal cortex on emotional competencies.
3. Results
No significant differences were found between demographic variables (
p > 0.05). The one-way ANOVA showed a significant difference for cognitive level between groups considering the RAPM scores, with lower scores reported from cocaine subjects compared with the control group. A significant trend was also found for the BIS score, in which cocaine subjects reported higher impulsivity scores (
Table 2).
For accuracy, no differences were found for FER and BEAST (
Table 3).
With regards to reaction times, significant differences were found for FER and BEAST (
Table 4). A significant trend was found for sadness facial expressions and both for anger and sadness body expression. The post-hoc analysis revealed that cocaine-dependent subjects were slower than controls in the recognition of sadness facial expression, and alcohol-dependent subjects were slower in recognizing both anger and sadness body expression.
With regards to accuracy of DRT, no differences were found (
Table 5).
With regards to the reaction times of the DRT, a significant difference was found for food images (
Table 6). The post-hoc analysis revealed that alcohol-dependent subjects were slower than controls in responding to disgusting food images.
As regards IES, a significant difference was found using one-way ANOVA for both sadness and happiness of the BEAST task. The post-hoc analysis revealed that alcoholic subjects were impaired in sadness and happiness emotion recognition compared to controls (
Table 7).
With regards to substances and gender interactions, a significant difference was found on RTs for both the fear emotion of FER (F(5,57) = 4.12; p = 0.022; η2p = 0.13) and amputation images of the DRT (F(5,55) = 3.25; p = 0.047; η2p = 0.11), with higher reaction times reported by females with cocaine dependence. Moreover, a significant trend was also found on RTs regarding the sadness emotion of the FER (F(5,57) = 3.1; p = 0.058; η2p = 0.11) and both body product images (F(5,57) = 2.9; p = 0.062; η2p = 0.10) and death images (F(5,56) = 3; p = 0.057; η2p = 0.11) of the DRT, with higher reaction times reported for females with cocaine dependence.
Considering the onset of drug dependence for the primary substance of dependence, the days of abstinence and the type of secondary substance, we did not find any significant correlation with any of the measures we adopted to explore emotional processing (p > 0.05).
4. Discussion
This study aimed to detail the emotional profile of individuals with dependence on psychostimulants or depressor drugs by expanding on the recognition of body postures and disgust processing. We found that individuals with dependence on alcohol and cocaine could accurately recognize emotions from the face and the body, regardless of the emotional categories measured. However, weighing accuracy and velocity rules out a trade-off that suggests that these individuals need significantly more time to reach the same accuracy as individuals without dependence. Similarly, individuals with alcohol dependence are generally slower than controls. There are already studies reporting that alcohol abusers need significantly more time than controls “
to answer accurately to questions about the emotional decoding of the emotional facial expression task, regardless of the exposure time of the stimulu, and the type of answer expected” [
29] (p. 39). Based on this observation, using time-limited tasks might also help appreciate significant differences in terms of accuracy. The results for alcohol abusers suggest that the entire emotional system has “slowed down” despite withdrawal from the abuse.
We did not find the same effect in cocaine abusers. Similarly, Woicik and colleagues [
42] found that cocaine abusers are not different from controls in facial emotion recognition tasks. Previous studies, testing accuracy in polyabusers, showed that the quantity of drugs used could explain the impairment of emotions in recognizing facial expressions in the use of substances throughout the entire lifespan [
46].
However, our data show that dependent subjects were slower in recognizing disgusting stimuli if they belonged to the “food” category and showed higher BIS scores than controls. What we have found agrees with the conclusions of recent studies [
70]. However, our results outline a more accurate profile for the different forms of disgust. These findings also agree with previous studies showing a significant impact of cocaine in emotional and inhibition processing [
16,
46].
One could speculate that prolonged cocaine use affects the striatum, connected through serial and parallel pathways to the basal ganglia and the prefrontal cortex [
71,
72]; indeed, both structures are involved in food processing. Interestingly, studies have shown that individuals with dependence, regardless of the substance abused, show impairments of the prefrontal cortex [
5,
73] and that the anatomical structures of the reward system appear to be dysfunctional in both subjects with food intake dysregulation and cocaine abuse [
74]. This cerebral structure is crucial in monitoring executive functions and emotional processes [
51,
74,
75]. Both components are relevant in complex behaviors such as decision making, which is central for compliance with treatments and the maintenance of drug withdrawal [
3,
15,
16,
18]. We speculate that emotional processing impairments that reduce the ability to decode social signs (relevant for interaction and communication) also negatively affect drug abuse treatment [
2,
76]. Very little is known about emotional processing and dependence; in particular, the results on facial emotion recognition are mixed [
55].
Disgust has evolved as a “behavioral immune system” to help people defend against specific environmental threats, classified as pathogenic (e.g., spoiled food, feces, disease), sexual (sexually transmitted diseases) and moral (moral transgressions) [
77]. Disgust is associated with a growing concern about health/cleanliness concepts and health prevention strategies [
78]. It has been argued that alterations in drive states may reduce sensitivity to disgust and could potentially lead to increased risk-taking (having unprotected sex, consuming spoiled food) [
79]. It is conceivable that altered drive states in cocaine-dependent individuals could lead to reduced disgust sensitivity. Similar effects have been observed, for example, when individuals in a high hunger state show less disgust activity when they have been exposed to images of unpleasant food [
79]. It is possible that the high levels of impulsivity and the long period of abstinence reported in cocaine-addicted individuals of our group have increased craving and the need to use substance, that could explain the reduced disgust sensitivity. The triggering of disgust activates parts of the brain (particularly the anterior insula) that are also activated by central disgust, but the anterior insula is not uniquely associated with disgust (and vice versa) [
57]. The insula has been shown to also be a critical neural substrate for craving in addiction [
80]. Future research could better investigate the relationship between disgust and craving in cocaine-addicted subjects.
We found a significant difference for the groups concerning RTs for anger and sadness face expression and sadness body expression, suggesting that individuals with a dependence on alcohol and cocaine are slower in recognition of these emotions expressed by the face and the body than controls. However, as no main effect emerged for accuracy, these findings could only represent a trade-off between speed and accuracy. This effect could be plausible considering that no time limit has been assigned for these tasks. The inverse efficiency score (IES) [
81] is a combined index accounting for speed and error rates. The IES is calculated by dividing the RT value by the accuracy score. Thus, in the current study, such a conversion allows controlling of the impact of accuracy on the speed of responses. This measure provides a more reliable and stable measure of emotional impairment when recognition is intact. Considering IES, we can imagine that impairment for sadness and happiness emotion recognition are to be attributed to prolonged alcohol use.
We also found that cocaine-addicted females showed slower response times compared to males for the facial expression of and for body product and amputation images. This may simply reflect the smaller sample of females in our study [
44].